Implement firstGeq directly

This commit is contained in:
2024-02-06 12:11:50 -08:00
parent d2c89f605f
commit 03e9dc01fd

View File

@@ -602,6 +602,20 @@ Node *prevPhysical(Node *node) {
} }
} }
Node *nextSibling(Node *node) {
for (;;) {
if (node->parent == nullptr) {
return nullptr;
}
auto next = getChildGeq(node->parent, node->parentsIndex + 1);
if (next < 0) {
node = node->parent;
} else {
return getChildExists(node->parent, next);
}
}
}
Node *prevLogical(Node *node) { Node *prevLogical(Node *node) {
for (node = prevPhysical(node); node != nullptr && !node->entryPresent; for (node = prevPhysical(node); node != nullptr && !node->entryPresent;
node = prevPhysical(node)) node = prevPhysical(node))
@@ -614,7 +628,12 @@ struct Iterator {
int cmp; int cmp;
}; };
std::string_view getSearchPath(Arena &arena, Node *n) { namespace {
std::string getSearchPath(Node *n) {
Arena arena;
if (n == nullptr) {
return "<end>";
}
auto result = vector<char>(arena); auto result = vector<char>(arena);
for (;;) { for (;;) {
for (int i = n->partialKeyLen - 1; i >= 0; --i) { for (int i = n->partialKeyLen - 1; i >= 0; --i) {
@@ -628,124 +647,76 @@ std::string_view getSearchPath(Arena &arena, Node *n) {
} }
std::reverse(result.begin(), result.end()); std::reverse(result.begin(), result.end());
if (result.size() > 0) { if (result.size() > 0) {
return std::string_view((const char *)&result[0], return printable(std::string_view((const char *)&result[0],
result.size()); // NOLINT result.size())); // NOLINT
} else { } else {
return std::string_view(); return std::string();
} }
} }
} // namespace
struct StepwiseLastLeq {
StepwiseLastLeq() {}
Node *n;
std::span<const uint8_t> remaining;
StepwiseLastLeq(Node *n, const std::span<const uint8_t> key)
: n(n), remaining(key) {}
int cmp;
enum Phase { Search, ScanBackward, DownRightSpine };
Phase phase = Search;
bool step() {
switch (phase) {
case Search:
if (n->partialKeyLen > 0) {
int commonLen = std::min<int>(n->partialKeyLen, remaining.size());
for (int i = 0; i < commonLen; ++i) {
auto c = n->partialKey[i] <=> remaining[i];
if (c == 0) {
continue;
}
if (c > 0) {
n = prevPhysical(n);
phase = ScanBackward;
return false;
} else {
phase = DownRightSpine;
return false;
}
}
if (commonLen == n->partialKeyLen) {
// partial key matches
remaining =
remaining.subspan(commonLen, remaining.size() - commonLen);
} else if (n->partialKeyLen > int(remaining.size())) {
// n is the first physical node greater than remaining, and there's no
// eq node
n = prevPhysical(n);
phase = ScanBackward;
return false;
}
}
if (remaining.size() == 0) {
// We've found the physical node corresponding to search path `key`
if (n->entryPresent) {
cmp = 0;
return true;
} else {
phase = ScanBackward;
return false;
}
} else {
int c = getChildLeq(n, remaining[0]);
if (c == remaining[0]) {
n = getChildExists(n, c);
remaining = remaining.subspan(1, remaining.size() - 1);
} else {
if (c >= 0) {
n = getChildExists(n, c);
phase = DownRightSpine;
return false;
} else {
phase = ScanBackward;
return false;
}
}
}
return false;
case DownRightSpine:
// The physical node corresponding to search path `key` does not
// exist. Let's find the physical node corresponding to the highest
// search key (not necessarily present) less than key.
// Move down the right spine
{
int c = getChildLeq(n, 255);
if (c >= 0) {
n = getChildExists(n, c);
} else {
phase = ScanBackward;
}
return false;
}
case ScanBackward:
// Iterate backwards along existing physical nodes until we find a present
// entry
if (!n->entryPresent) {
n = prevPhysical(n);
return false;
}
cmp = -1;
return true;
}
__builtin_unreachable(); // GCOVR_EXCL_LINE
}
};
Iterator lastLeq(Node *n, const std::span<const uint8_t> key) {
StepwiseLastLeq l{n, key};
while (!l.step())
;
return {l.n, l.cmp};
}
Iterator firstGeq(Node *n, const std::span<const uint8_t> key) { Iterator firstGeq(Node *n, const std::span<const uint8_t> key) {
auto result = lastLeq(n, key); auto remaining = key;
if (result.cmp == 0) { for (;;) {
return result; if (n->partialKeyLen > 0) {
int commonLen = std::min<int>(n->partialKeyLen, remaining.size());
for (int i = 0; i < commonLen; ++i) {
auto c = n->partialKey[i] <=> remaining[i];
if (c == 0) {
continue;
}
if (c > 0) {
goto downLeftSpine;
} else {
n = nextSibling(n);
goto downLeftSpine;
}
}
if (commonLen == n->partialKeyLen) {
// partial key matches
remaining = remaining.subspan(commonLen, remaining.size() - commonLen);
} else if (n->partialKeyLen > int(remaining.size())) {
// n is the first physical node greater than remaining, and there's no
// eq node
goto downLeftSpine;
}
}
if (remaining.size() == 0) {
if (n->entryPresent) {
return {n, 0};
}
int c = getChildGeq(n, 0);
assert(c >= 0);
n = getChildExists(n, c);
goto downLeftSpine;
} else {
int c = getChildGeq(n, remaining[0]);
if (c == remaining[0]) {
n = getChildExists(n, c);
remaining = remaining.subspan(1, remaining.size() - 1);
} else {
if (c >= 0) {
n = getChildExists(n, c);
goto downLeftSpine;
} else {
n = nextSibling(n);
goto downLeftSpine;
}
}
}
}
downLeftSpine:
if (n == nullptr) {
return {nullptr, 1};
}
for (;;) {
if (n->entryPresent) {
return {n, 1};
}
int c = getChildGeq(n, 0);
assert(c >= 0);
n = getChildExists(n, c);
} }
return {nextLogical(result.n), 1};
} }
// Returns a pointer to the newly inserted node. caller is reponsible for // Returns a pointer to the newly inserted node. caller is reponsible for
@@ -837,6 +808,14 @@ struct __attribute__((visibility("hidden"))) ConflictSet::Impl {
reads[i].begin.p, reads[i].begin.len)); reads[i].begin.p, reads[i].begin.len));
auto right = firstGeq( auto right = firstGeq(
root, std::span<const uint8_t>(reads[i].end.p, reads[i].end.len)); root, std::span<const uint8_t>(reads[i].end.p, reads[i].end.len));
#if DEBUG_VERBOSE && !defined(NDEBUG)
fprintf(stderr, "firstGeq for `%s' got `%s'\n",
printable(reads[i].begin).c_str(),
getSearchPath(left.n).c_str());
fprintf(stderr, "firstGeq for `%s' got `%s'\n",
printable(reads[i].end).c_str(),
getSearchPath(right.n).c_str());
#endif
if (left.n != nullptr && left.cmp != 0 && if (left.n != nullptr && left.cmp != 0 &&
left.n->entry.rangeVersion > reads[i].readVersion) { left.n->entry.rangeVersion > reads[i].readVersion) {
result[i] = Conflict; result[i] = Conflict;
@@ -1069,10 +1048,9 @@ void checkParentPointers(Node *node, bool &success) {
for (int i = getChildGeq(node, 0); i >= 0; i = getChildGeq(node, i + 1)) { for (int i = getChildGeq(node, 0); i >= 0; i = getChildGeq(node, i + 1)) {
auto *child = getChildExists(node, i); auto *child = getChildExists(node, i);
if (child->parent != node) { if (child->parent != node) {
Arena arena;
fprintf(stderr, "%s child %d has parent pointer %p. Expected %p\n", fprintf(stderr, "%s child %d has parent pointer %p. Expected %p\n",
printable(getSearchPath(arena, node)).c_str(), i, getSearchPath(node).c_str(), i, (void *)child->parent,
(void *)child->parent, (void *)node); (void *)node);
success = false; success = false;
} }
checkParentPointers(child, success); checkParentPointers(child, success);
@@ -1089,10 +1067,8 @@ void checkParentPointers(Node *node, bool &success) {
expected = std::max(expected, checkMaxVersion(child, success)); expected = std::max(expected, checkMaxVersion(child, success));
} }
if (node->maxVersion != expected) { if (node->maxVersion != expected) {
Arena arena;
fprintf(stderr, "%s has max version %" PRId64 " . Expected %" PRId64 "\n", fprintf(stderr, "%s has max version %" PRId64 " . Expected %" PRId64 "\n",
printable(getSearchPath(arena, node)).c_str(), node->maxVersion, getSearchPath(node).c_str(), node->maxVersion, expected);
expected);
success = false; success = false;
} }
return expected; return expected;
@@ -1107,7 +1083,7 @@ void checkParentPointers(Node *node, bool &success) {
if (e == 0) { if (e == 0) {
Arena arena; Arena arena;
fprintf(stderr, "%s has child %02x with no reachable entries\n", fprintf(stderr, "%s has child %02x with no reachable entries\n",
printable(getSearchPath(arena, node)).c_str(), i); getSearchPath(node).c_str(), i);
success = false; success = false;
} }
} }