Short-circuiting, efficient checkRangeRead

This commit is contained in:
2024-02-07 16:31:54 -08:00
parent 9363d7866c
commit 2cbb6e0170

View File

@@ -680,73 +680,101 @@ std::string getSearchPath(Node *n) {
} }
} // namespace } // namespace
Iterator firstGeq(Node *n, const std::span<const uint8_t> key) { struct FirstGeqStepwise {
auto remaining = key; Node *n;
std::span<const uint8_t> remaining;
Node *nextSib = nullptr; Node *nextSib = nullptr;
for (;;) { int cmp;
if (n->partialKeyLen > 0) {
int commonLen = std::min<int>(n->partialKeyLen, remaining.size()); enum Phase { Search, DownLeftSpine };
for (int i = 0; i < commonLen; ++i) { Phase phase;
auto c = n->partialKey[i] <=> remaining[i];
if (c == 0) { FirstGeqStepwise(Node *n, std::span<const uint8_t> remaining)
continue; : n(n), remaining(remaining), phase(Search) {}
bool step() {
switch (phase) {
case Search:
if (n->partialKeyLen > 0) {
int commonLen = std::min<int>(n->partialKeyLen, remaining.size());
for (int i = 0; i < commonLen; ++i) {
auto c = n->partialKey[i] <=> remaining[i];
if (c == 0) {
continue;
}
if (c > 0) {
return downLeftSpine();
} else {
n = nextSib;
return downLeftSpine();
}
} }
if (c > 0) { if (commonLen == n->partialKeyLen) {
goto downLeftSpine; // partial key matches
remaining =
remaining.subspan(commonLen, remaining.size() - commonLen);
} else if (n->partialKeyLen > int(remaining.size())) {
// n is the first physical node greater than remaining, and there's no
// eq node
return downLeftSpine();
}
}
if (remaining.size() == 0) {
if (n->entryPresent) {
cmp = 0;
return true;
}
int c = getChildGeq(n, 0);
assert(c >= 0);
n = getChildExists(n, c);
return downLeftSpine();
} else {
int c = getChildGeq(n, remaining[0]);
int c2 = getChildGeq(n, int(remaining[0]) + 1);
if (c2 >= 0) {
nextSib = getChildExists(n, c2);
}
if (c == remaining[0]) {
n = getChildExists(n, c);
remaining = remaining.subspan(1, remaining.size() - 1);
} else { } else {
n = nextSib; if (c >= 0) {
goto downLeftSpine; n = getChildExists(n, c);
return downLeftSpine();
} else {
n = nextSib;
return downLeftSpine();
}
} }
} }
if (commonLen == n->partialKeyLen) { return false;
// partial key matches case DownLeftSpine:
remaining = remaining.subspan(commonLen, remaining.size() - commonLen);
} else if (n->partialKeyLen > int(remaining.size())) {
// n is the first physical node greater than remaining, and there's no
// eq node
goto downLeftSpine;
}
}
if (remaining.size() == 0) {
if (n->entryPresent) { if (n->entryPresent) {
return {n, 0}; cmp = 1;
return true;
} }
int c = getChildGeq(n, 0); int c = getChildGeq(n, 0);
assert(c >= 0); assert(c >= 0);
n = getChildExists(n, c); n = getChildExists(n, c);
goto downLeftSpine; return false;
} else {
int c = getChildGeq(n, remaining[0]);
int c2 = getChildGeq(n, int(remaining[0]) + 1);
if (c2 >= 0) {
nextSib = getChildExists(n, c2);
}
if (c == remaining[0]) {
n = getChildExists(n, c);
remaining = remaining.subspan(1, remaining.size() - 1);
} else {
if (c >= 0) {
n = getChildExists(n, c);
goto downLeftSpine;
} else {
n = nextSib;
goto downLeftSpine;
}
}
} }
} }
downLeftSpine:
if (n == nullptr) { bool downLeftSpine() {
return {nullptr, 1}; if (n == nullptr) {
} cmp = 1;
for (;;) { return true;
if (n->entryPresent) {
return {n, 1};
} }
int c = getChildGeq(n, 0); phase = DownLeftSpine;
assert(c >= 0); return step();
n = getChildExists(n, c);
} }
};
Iterator firstGeq(Node *n, const std::span<const uint8_t> key) {
FirstGeqStepwise stepwise{n, key};
while (!stepwise.step())
;
return {stepwise.n, stepwise.cmp};
} }
Iterator firstGeq(Node *n, std::string_view key) { Iterator firstGeq(Node *n, std::string_view key) {
@@ -832,84 +860,82 @@ downLeftSpine:
bool checkRangeRead(Node *n, const std::span<const uint8_t> begin, bool checkRangeRead(Node *n, const std::span<const uint8_t> begin,
const std::span<const uint8_t> end, int64_t readVersion) { const std::span<const uint8_t> end, int64_t readVersion) {
auto left = firstGeq(n, begin); auto left = FirstGeqStepwise{n, begin};
auto right = firstGeq(n, end); auto right = FirstGeqStepwise{n, end};
bool leftDone;
Arena arena; bool rightDone;
auto leftPath = vector<Node *>(arena); for (;;) {
auto rightPath = vector<Node *>(arena); if (left.phase == FirstGeqStepwise::Search &&
for (auto *iter = left.n; iter != nullptr; iter = iter->parent) { right.phase == FirstGeqStepwise::Search &&
leftPath.push_back(iter); left.n->maxVersion <= readVersion) {
} return true;
for (auto *iter = right.n; iter != nullptr; iter = iter->parent) { }
rightPath.push_back(iter); leftDone = left.step();
} rightDone = right.step();
Node *lca = n; if (leftDone || rightDone) {
for (int i = 0; int(leftPath.size()) - 1 - i >= 0 && break;
int(rightPath.size()) - 1 - i >= 0 && }
leftPath[int(leftPath.size()) - 1 - i] == if (left.n != right.n) {
rightPath[(rightPath.size()) - 1 - i]; break;
++i) { }
lca = leftPath[int(leftPath.size()) - 1 - i];
} }
#if DEBUG_VERBOSE && !defined(NDEBUG) if (!leftDone && !rightDone) {
fprintf(stderr, "firstGeq for `%s' got `%s'\n", printable(begin).c_str(), assert(left.n->parent == right.n->parent);
getSearchPathPrintable(left.n).c_str()); for (int c = left.n->parentsIndex; c < right.n->parentsIndex;
fprintf(stderr, "firstGeq for `%s' got `%s'\n", printable(end).c_str(), c = getChildGeq(left.n->parent, c + 1)) {
getSearchPathPrintable(right.n).c_str()); assert(c >= 0);
fprintf(stderr, "lca `%s'\n", getSearchPathPrintable(lca).c_str()); if (getChildExists(left.n->parent, c)->maxVersion > readVersion) {
#endif return false;
if (left.n != nullptr && left.cmp != 0 && }
left.n->entry.rangeVersion > readVersion) { }
return false; // We've checked everything from begin to the search path of right.n
// Now check from the search path of right.n to end
for (;;) {
if (right.phase == FirstGeqStepwise::Search &&
right.n->maxVersion <= readVersion) {
return true;
}
rightDone = right.step();
if (rightDone) {
return right.n->entry.rangeVersion <= readVersion;
}
}
} }
if (left.n == right.n) {
if (leftDone) {
if (left.n == nullptr) {
return true;
}
if (right.phase == FirstGeqStepwise::DownLeftSpine) {
if (left.n->maxVersion > readVersion) {
return false;
}
}
// We've checked everything from begin to the search path of right.n
// Now check from the search path of right.n to end
for (;;) {
if (right.phase == FirstGeqStepwise::Search &&
right.n->maxVersion <= readVersion) {
return true;
}
rightDone = right.step();
if (rightDone) {
return right.n->entry.rangeVersion <= readVersion;
}
}
}
if (rightDone) {
// This would mean that left is overtaking right
__builtin_unreachable();
}
{
assert(left.n == right.n);
return true; return true;
} }
assert(left.n != nullptr);
auto boundaryVersion = left.n->entry.pointVersion;
if (left.cmp != 0) {
boundaryVersion = std::max(boundaryVersion, left.n->entry.rangeVersion);
}
if (right.n != nullptr) {
boundaryVersion = std::max(boundaryVersion, right.n->entry.rangeVersion);
}
if (boundaryVersion > readVersion) {
return false;
}
if (left.n != lca) {
while (left.n->parent != lca) {
for (int c = getChildGeq(left.n->parent, int(left.n->parentsIndex) + 1);
c >= 0; c = getChildGeq(left.n->parent, c + 1)) {
if (getChildExists(left.n->parent, c)->maxVersion > readVersion) {
return false;
}
}
left.n = left.n->parent;
}
}
if (right.n != nullptr && right.n != lca) {
while (right.n->parent != lca) {
for (int c = getChildLeq(right.n->parent, int(right.n->parentsIndex) - 1);
c >= 0; c = getChildLeq(right.n->parent, c - 1)) {
if (getChildExists(right.n->parent, c)->maxVersion > readVersion) {
return false;
}
}
right.n = right.n->parent;
}
}
for (int c = left.n != lca ? getChildGeq(lca, int(left.n->parentsIndex) + 1)
: getChildGeq(lca, 0);
c >= 0 && (right.n == nullptr || c < right.n->parentsIndex);
c = getChildGeq(lca, c + 1)) {
if (getChildExists(lca, c)->maxVersion > readVersion) {
return false;
}
}
return true;
} }
// Returns a pointer to the newly inserted node. caller is reponsible for // Returns a pointer to the newly inserted node. caller is reponsible for