#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ConflictSet.h" #include "third_party/nadeau.h" std::atomic transactions; constexpr int kWindowSize = 10000000; constexpr int kNumPrefixes = 250000; std::string makeKey(int64_t num, int suffixLen) { std::string result; result.resize(sizeof(int64_t) + suffixLen); int64_t be = __builtin_bswap64(num); memcpy(result.data(), &be, sizeof(int64_t)); memset(result.data() + sizeof(int64_t), 0, suffixLen); return result; } void workload(weaselab::ConflictSet *cs) { int64_t version = kWindowSize; constexpr int kNumWrites = 16; for (;; transactions.fetch_add(1, std::memory_order_relaxed)) { std::vector keys; std::vector writes; for (int i = 0; i < kNumWrites; ++i) { keys.push_back(makeKey(rand() % kNumPrefixes, rand() % 50)); } for (int i = 0; i < kNumWrites; ++i) { writes.push_back({{(const uint8_t *)keys[i].data(), int(keys[i].size())}, {nullptr, 0}}); } cs->addWrites(writes.data(), writes.size(), version); cs->setOldestVersion(version - kWindowSize); ++version; } } // Adapted from getaddrinfo man page int getListenFd(const char *node, const char *service) { struct addrinfo hints; struct addrinfo *result, *rp; int sfd, s; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */ hints.ai_socktype = SOCK_STREAM; /* stream socket */ hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */ hints.ai_protocol = 0; /* Any protocol */ hints.ai_canonname = nullptr; hints.ai_addr = nullptr; hints.ai_next = nullptr; s = getaddrinfo(node, service, &hints, &result); if (s != 0) { fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s)); abort(); } /* getaddrinfo() returns a list of address structures. Try each address until we successfully bind(2). If socket(2) (or bind(2)) fails, we (close the socket and) try the next address. */ for (rp = result; rp != nullptr; rp = rp->ai_next) { sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (sfd == -1) { continue; } int val = 1; setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val)); if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0) { break; /* Success */ } close(sfd); } freeaddrinfo(result); /* No longer needed */ if (rp == nullptr) { /* No address succeeded */ fprintf(stderr, "Could not bind\n"); abort(); } int rv = listen(sfd, SOMAXCONN); if (rv) { perror("listen()"); abort(); } return sfd; } // HTTP response // std::string_view part1 = "HTTP/1.1 200 OK \r\nContent-type: text/plain; version=0.0.4; " "charset=utf-8; escaping=values\r\nContent-Length: "; // Decimal content length std::string_view part2 = "\r\n\r\n"; // Body double toSeconds(timeval t) { return double(t.tv_sec) + double(t.tv_usec) * 1e-6; } #ifdef __linux__ #include struct PerfCounter { PerfCounter(int type, int config, const std::string &labels = {}, int groupLeaderFd = -1) : labels(labels) { struct perf_event_attr pe; memset(&pe, 0, sizeof(pe)); pe.type = type; pe.size = sizeof(pe); pe.config = config; pe.inherit = 1; pe.exclude_kernel = 1; pe.exclude_hv = 1; fd = perf_event_open(&pe, 0, -1, groupLeaderFd, 0); if (fd < 0 && errno != ENOENT && errno != EINVAL) { perror(labels.c_str()); } } int64_t total() const { int64_t count; if (read(fd, &count, sizeof(count)) != sizeof(count)) { perror("read instructions from perf"); abort(); } return count; } PerfCounter(PerfCounter &&other) : fd(std::exchange(other.fd, -1)), labels(std::move(other.labels)) {} PerfCounter &operator=(PerfCounter &&other) { fd = std::exchange(other.fd, -1); labels = std::move(other.labels); return *this; } ~PerfCounter() { if (fd >= 0) { close(fd); } } bool ok() const { return fd >= 0; } const std::string &getLabels() const { return labels; } int getFd() const { return fd; } private: int fd; std::string labels; static long perf_event_open(struct perf_event_attr *hw_event, pid_t pid, int cpu, int group_fd, unsigned long flags) { int ret; ret = syscall(SYS_perf_event_open, hw_event, pid, cpu, group_fd, flags); return ret; } }; #endif int main(int argc, char **argv) { if (argc != 3) { goto fail; } { int listenFd = getListenFd(argv[1], argv[2]); weaselab::ConflictSet cs{0}; weaselab::ConflictSet::MetricsV1 *metrics; int metricsCount; cs.getMetricsV1(&metrics, &metricsCount); #ifdef __linux__ PerfCounter instructions{PERF_TYPE_HARDWARE, PERF_COUNT_HW_INSTRUCTIONS}; PerfCounter cycles{PERF_TYPE_HARDWARE, PERF_COUNT_HW_CPU_CYCLES, "", instructions.getFd()}; std::vector cacheCounters; for (auto [id, idStr] : std::initializer_list>{ {PERF_COUNT_HW_CACHE_L1D, "l1d"}, {PERF_COUNT_HW_CACHE_L1I, "l1i"}, {PERF_COUNT_HW_CACHE_LL, "ll"}, {PERF_COUNT_HW_CACHE_DTLB, "dtlb"}, {PERF_COUNT_HW_CACHE_ITLB, "itlb"}, {PERF_COUNT_HW_CACHE_BPU, "bpu"}, {PERF_COUNT_HW_CACHE_NODE, "node"}, }) { for (auto [op, opStr] : std::initializer_list>{ {PERF_COUNT_HW_CACHE_OP_READ, "read"}, {PERF_COUNT_HW_CACHE_OP_WRITE, "write"}, {PERF_COUNT_HW_CACHE_OP_PREFETCH, "prefetch"}, }) { int groupLeaderFd = -1; for (auto [result, resultStr] : std::initializer_list>{ {PERF_COUNT_HW_CACHE_RESULT_MISS, "miss"}, {PERF_COUNT_HW_CACHE_RESULT_ACCESS, "access"}, }) { auto labels = "{id=\"" + idStr + "\", op=\"" + opStr + "\", result=\"" + resultStr + "\"}"; cacheCounters.emplace_back(PERF_TYPE_HW_CACHE, id | (op << 8) | (result << 16), labels, groupLeaderFd); if (!cacheCounters.back().ok()) { cacheCounters.pop_back(); } else { if (groupLeaderFd == -1) { groupLeaderFd = cacheCounters.back().getFd(); } } } } } #endif auto w = std::thread{workload, &cs}; for (;;) { struct sockaddr_storage peer_addr = {}; socklen_t peer_addr_len = sizeof(peer_addr); const int connfd = accept(listenFd, (struct sockaddr *)&peer_addr, &peer_addr_len); std::string body; rusage r; getrusage(RUSAGE_SELF, &r); body += "# HELP process_cpu_seconds_total Total user and system CPU time " "spent in seconds.\n# TYPE process_cpu_seconds_total counter\n" "process_cpu_seconds_total "; body += std::to_string(toSeconds(r.ru_utime) + toSeconds(r.ru_stime)); body += "\n"; body += "# HELP process_resident_memory_bytes Resident memory size in " "bytes.\n# TYPE process_resident_memory_bytes gauge\n" "process_resident_memory_bytes "; body += std::to_string(getCurrentRSS()); body += "\n"; body += "# HELP transactions_total Total number of transactions\n" "# TYPE transactions_total counter\n" "transactions_total "; body += std::to_string(transactions.load(std::memory_order_relaxed)); body += "\n"; #ifdef __linux__ body += "# HELP instructions_total Total number of instructions\n" "# TYPE instructions_total counter\n" "instructions_total "; body += std::to_string(instructions.total()); body += "\n"; body += "# HELP cycles_total Total number of cycles\n" "# TYPE cycles_total counter\n" "cycles_total "; body += std::to_string(cycles.total()); body += "\n"; body += "# HELP cache_event_total Total number of cache events\n" "# TYPE cache_event_total counter\n"; for (const auto &counter : cacheCounters) { body += "cache_event_total" + counter.getLabels() + " " + std::to_string(counter.total()) + "\n"; } #endif for (int i = 0; i < metricsCount; ++i) { body += "# HELP "; body += metrics[i].name; body += " "; body += metrics[i].help; body += "\n"; body += "# TYPE "; body += metrics[i].name; body += " "; body += metrics[i].type == metrics[i].Counter ? "counter" : "gauge"; body += "\n"; body += metrics[i].name; body += " "; body += std::to_string(metrics[i].getValue()); body += "\n"; } auto len = std::to_string(body.size()); iovec iov[] = { {(void *)part1.data(), part1.size()}, {(void *)len.data(), len.size()}, {(void *)part2.data(), part2.size()}, {(void *)body.data(), body.size()}, }; int written; do { written = writev(connfd, iov, sizeof(iov) / sizeof(iov[0])); } while (written < 0 && errno == EINTR); close(connfd); } } fail: fprintf(stderr, "Expected ./%s \n", argv[0]); return 1; }