#include "ConflictSet.h" #include "Internal.h" #include #include #include #include #include #include #include #include #include #ifdef HAS_AVX #include #elif defined(HAS_ARM_NEON) #include #endif // ==================== BEGIN IMPLEMENTATION ==================== struct Entry { int64_t pointVersion; int64_t rangeVersion; }; enum class Type : int8_t { Node4, Node16, Node48, Node256, Invalid, }; struct Node { /* begin section that's copied to the next node */ Node *parent = nullptr; int64_t maxVersion; Entry entry; int16_t numChildren = 0; bool entryPresent = false; uint8_t parentsIndex = 0; /* end section that's copied to the next node */ Type type = Type::Invalid; }; struct Node4 : Node { // Sorted uint8_t index[4] = {}; Node *children[4] = {}; Node4() { this->type = Type::Node4; } }; Node *newNode() { return new (safe_malloc(sizeof(Node4))) Node4; } struct Node16 : Node { // Sorted uint8_t index[16] = {}; Node *children[16] = {}; Node16() { this->type = Type::Node16; } }; struct Node48 : Node { int8_t nextFree = 0; int8_t index[256]; Node *children[48] = {}; Node48() { this->type = Type::Node48; memset(index, -1, 256); } }; struct Node256 : Node { Node *children[256] = {}; Node256() { this->type = Type::Node256; } }; int getNodeIndex(Node4 *self, uint8_t index) { for (int i = 0; i < self->numChildren; ++i) { if (self->index[i] == index) { return i; } } return -1; } int getNodeIndex(Node16 *self, uint8_t index) { #ifdef HAS_AVX // Based on https://www.the-paper-trail.org/post/art-paper-notes/ // key_vec is 16 repeated copies of the searched-for byte, one for every // possible position in child_keys that needs to be searched. __m128i key_vec = _mm_set1_epi8(index); // Compare all child_keys to 'index' in parallel. Don't worry if some of the // keys aren't valid, we'll mask the results to only consider the valid ones // below. __m128i indices; memcpy(&indices, self->index, sizeof(self->index)); __m128i results = _mm_cmpeq_epi8(key_vec, indices); // Build a mask to select only the first node->num_children values from the // comparison (because the other values are meaningless) int mask = (1 << self->numChildren) - 1; // Change the results of the comparison into a bitfield, masking off any // invalid comparisons. int bitfield = _mm_movemask_epi8(results) & mask; // No match if there are no '1's in the bitfield. if (bitfield == 0) return -1; // Find the index of the first '1' in the bitfield by counting the leading // zeros. return __builtin_ctz(bitfield); #elif defined(HAS_ARM_NEON) // Based on // https://community.arm.com/arm-community-blogs/b/infrastructure-solutions-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon uint8x16_t indices; memcpy(&indices, self->index, sizeof(self->index)); // 0xff for each match uint16x8_t results = vreinterpretq_u16_u8(vceqq_u8(vdupq_n_u8(index), indices)); uint64_t mask = self->numChildren == 16 ? uint64_t(-1) : (uint64_t(1) << (self->numChildren * 4)) - 1; // 0xf for each match in valid range uint64_t bitfield = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(results, 4)), 0) & mask; if (bitfield == 0) return -1; return __builtin_ctzll(bitfield) / 4; #else for (int i = 0; i < self->numChildren; ++i) { if (self->index[i] == index) { return i; } } return -1; #endif } #ifdef HAS_AVX int firstNonNeg1(const int8_t x[16]) { __m128i key_vec = _mm_set1_epi8(-1); __m128i indices; memcpy(&indices, x, 16); __m128i results = _mm_cmpeq_epi8(key_vec, indices); uint32_t bitfield = _mm_movemask_epi8(results) ^ 0xffff; if (bitfield == 0) return -1; return __builtin_ctz(bitfield); } int lastNonNeg1(const int8_t x[16]) { __m128i key_vec = _mm_set1_epi8(-1); __m128i indices; memcpy(&indices, x, 16); __m128i results = _mm_cmpeq_epi8(key_vec, indices); uint32_t bitfield = _mm_movemask_epi8(results) ^ 0xffff; if (bitfield == 0) return -1; return 31 - __builtin_clz(bitfield); } #endif #ifdef HAS_ARM_NEON int firstNonNeg1(const int8_t x[16]) { uint8x16_t indices; memcpy(&indices, x, 16); uint16x8_t results = vreinterpretq_u16_u8(vceqq_u8(vdupq_n_u8(-1), indices)); uint64_t bitfield = ~vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(results, 4)), 0); if (bitfield == 0) return -1; return __builtin_ctzll(bitfield) / 4; } int lastNonNeg1(const int8_t x[16]) { uint8x16_t indices; memcpy(&indices, x, 16); uint16x8_t results = vreinterpretq_u16_u8(vceqq_u8(vdupq_n_u8(-1), indices)); uint64_t bitfield = ~vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(results, 4)), 0); if (bitfield == 0) return -1; return 15 - __builtin_clzll(bitfield) / 4; } #endif [[maybe_unused]] Node *getChild(Node *self, uint8_t index) { if (self->type == Type::Node4) { auto *self4 = static_cast(self); int i = getNodeIndex(self4, index); if (i >= 0) { return self4->children[i]; } return nullptr; } else if (self->type == Type::Node16) { auto *self16 = static_cast(self); int i = getNodeIndex(self16, index); if (i >= 0) { return self16->children[i]; } return nullptr; } else if (self->type == Type::Node48) { auto *self48 = static_cast(self); int secondIndex = self48->index[index]; if (secondIndex >= 0) { return self48->children[secondIndex]; } return nullptr; } else { auto *self256 = static_cast(self); return self256->children[index]; } } // Precondition - an entry for index must exist in the node Node *&getChildExists(Node *self, uint8_t index) { if (self->type == Type::Node4) { auto *self4 = static_cast(self); return self4->children[getNodeIndex(self4, index)]; } else if (self->type == Type::Node16) { auto *self16 = static_cast(self); return self16->children[getNodeIndex(self16, index)]; } else if (self->type == Type::Node48) { auto *self48 = static_cast(self); int secondIndex = self48->index[index]; if (secondIndex >= 0) { return self48->children[secondIndex]; } } else { auto *self256 = static_cast(self); return self256->children[index]; } __builtin_unreachable(); // GCOVR_EXCL_LINE } int getChildGeq(Node *self, int child) { if (child > 255) { return -1; } if (self->type == Type::Node4) { auto *self4 = static_cast(self); for (int i = 0; i < self->numChildren; ++i) { if (i > 0) { assert(self4->index[i - 1] < self4->index[i]); } if (self4->index[i] >= child) { return self4->index[i]; } } } else if (self->type == Type::Node16) { auto *self16 = static_cast(self); #ifdef HAS_AVX __m128i key_vec = _mm_set1_epi8(child); __m128i indices; memcpy(&indices, self16->index, sizeof(self16->index)); __m128i results = _mm_cmpeq_epi8(key_vec, _mm_min_epu8(key_vec, indices)); int mask = (1 << self16->numChildren) - 1; int bitfield = _mm_movemask_epi8(results) & mask; int result = bitfield == 0 ? -1 : self16->index[__builtin_ctz(bitfield)]; assert(result == [&]() -> int { for (int i = 0; i < self16->numChildren; ++i) { if (self16->index[i] >= child) { return self16->index[i]; } } return -1; }()); return result; #elif defined(HAS_ARM_NEON) uint8x16_t indices; memcpy(&indices, self16->index, sizeof(self16->index)); // 0xff for each leq auto results = vcleq_u8(vdupq_n_u8(child), indices); uint64_t mask = self->numChildren == 16 ? uint64_t(-1) : (uint64_t(1) << (self->numChildren * 4)) - 1; // 0xf for each 0xff (within mask) uint64_t bitfield = vget_lane_u64( vreinterpret_u64_u8(vshrn_n_u16(vreinterpretq_u16_u8(results), 4)), 0) & mask; int simd = bitfield == 0 ? -1 : self16->index[__builtin_ctzll(bitfield) / 4]; assert(simd == [&]() -> int { for (int i = 0; i < self->numChildren; ++i) { if (self16->index[i] >= child) { return self16->index[i]; } } return -1; }()); return simd; #else for (int i = 0; i < self->numChildren; ++i) { if (i > 0) { assert(self16->index[i - 1] < self16->index[i]); } if (self16->index[i] >= child) { return self16->index[i]; } } #endif } else if (self->type == Type::Node48) { auto *self48 = static_cast(self); #if defined(HAS_AVX) || defined(HAS_ARM_NEON) int i = child; for (; (i & 0xf) != 0; ++i) { if (self48->index[i] >= 0) { assert(self48->children[self48->index[i]] != nullptr); return i; } } for (; i < 256; i += 16) { auto result = firstNonNeg1(self48->index + i); if (result != -1) { return i + result; } } #else for (int i = child; i < 256; ++i) { if (self48->index[i] >= 0) { assert(self48->children[self48->index[i]] != nullptr); return i; } } #endif } else { auto *self256 = static_cast(self); for (int i = child; i < 256; ++i) { if (self256->children[i]) { return i; } } } return -1; } int getChildLeq(Node *self, int child) { if (child < 0) { return -1; } if (self->type == Type::Node4) { auto *self4 = static_cast(self); for (int i = self->numChildren - 1; i >= 0; --i) { if (i > 0) { assert(self4->index[i - 1] < self4->index[i]); } if (self4->index[i] <= child) { return self4->index[i]; } } } else if (self->type == Type::Node16) { auto *self16 = static_cast(self); #ifdef HAS_AVX __m128i key_vec = _mm_set1_epi8(child); __m128i indices; memcpy(&indices, self16->index, sizeof(self16->index)); __m128i results = _mm_cmpeq_epi8(key_vec, _mm_max_epu8(key_vec, indices)); int mask = (1 << self16->numChildren) - 1; int bitfield = _mm_movemask_epi8(results) & mask; int result = bitfield == 0 ? -1 : self16->index[31 - __builtin_clz(bitfield)]; assert(result == [&]() -> int { for (int i = self16->numChildren - 1; i >= 0; --i) { if (self16->index[i] <= child) { return self16->index[i]; } } return -1; }()); return result; #elif defined(HAS_ARM_NEON) uint8x16_t indices; memcpy(&indices, self16->index, sizeof(self16->index)); // 0xff for each leq auto results = vcleq_u8(indices, vdupq_n_u8(child)); uint64_t mask = self->numChildren == 16 ? uint64_t(-1) : (uint64_t(1) << (self->numChildren * 4)) - 1; // 0xf for each 0xff (within mask) uint64_t bitfield = vget_lane_u64( vreinterpret_u64_u8(vshrn_n_u16(vreinterpretq_u16_u8(results), 4)), 0) & mask; int simd = bitfield == 0 ? -1 : self16->index[15 - __builtin_clzll(bitfield) / 4]; assert(simd == [&]() -> int { for (int i = self->numChildren - 1; i >= 0; --i) { if (self16->index[i] <= child) { return self16->index[i]; } } return -1; }()); return simd; #else for (int i = self->numChildren - 1; i >= 0; --i) { if (self16->index[i] <= child) { return self16->index[i]; } } return -1; #endif } else if (self->type == Type::Node48) { auto *self48 = static_cast(self); #if defined(HAS_AVX) || defined(HAS_ARM_NEON) int i = child; if (i < 0) { return -1; } for (; (i & 0xf) != 0; --i) { if (self48->index[i] >= 0) { assert(self48->children[self48->index[i]] != nullptr); return i; } } if (self48->index[i] >= 0) { assert(self48->children[self48->index[i]] != nullptr); return i; } i -= 16; for (; i >= 0; i -= 16) { auto result = lastNonNeg1(self48->index + i); if (result != -1) { return i + result; } } #else for (int i = child; i >= 0; --i) { if (self48->index[i] >= 0) { assert(self48->children[self48->index[i]] != nullptr); return i; } } #endif } else { auto *self256 = static_cast(self); for (int i = child; i >= 0; --i) { if (self256->children[i]) { return i; } } } return -1; } void setChildrenParents(Node *node) { for (int i = getChildGeq(node, 0); i >= 0; i = getChildGeq(node, i + 1)) { getChildExists(node, i)->parent = node; } } Node *&getOrCreateChild(Node *&self, uint8_t index) { if (self->type == Type::Node4) { auto *self4 = static_cast(self); { int i = getNodeIndex(self4, index); if (i >= 0) { return self4->children[i]; } } if (self->numChildren == 4) { auto *newSelf = new (safe_malloc(sizeof(Node16))) Node16; memcpy((void *)newSelf, self, offsetof(Node, type)); memcpy(newSelf->index, self4->index, 4); memcpy(newSelf->children, self4->children, 4 * sizeof(void *)); free(std::exchange(self, newSelf)); setChildrenParents(self); goto insert16; } else { ++self->numChildren; for (int i = 0; i < int(self->numChildren) - 1; ++i) { if (int(self4->index[i]) > int(index)) { memmove(self4->index + i + 1, self4->index + i, self->numChildren - (i + 1)); memmove(self4->children + i + 1, self4->children + i, (self->numChildren - (i + 1)) * sizeof(void *)); self4->index[i] = index; self4->children[i] = nullptr; return self4->children[i]; } } self4->index[self->numChildren - 1] = index; self4->children[self->numChildren - 1] = nullptr; return self4->children[self->numChildren - 1]; } } else if (self->type == Type::Node16) { insert16: auto *self16 = static_cast(self); { int i = getNodeIndex(self16, index); if (i >= 0) { return self16->children[i]; } } if (self->numChildren == 16) { auto *newSelf = new (safe_malloc(sizeof(Node48))) Node48; memcpy((void *)newSelf, self, offsetof(Node, type)); newSelf->nextFree = 16; int i = 0; for (auto x : self16->index) { newSelf->children[i] = self16->children[i]; newSelf->index[x] = i; ++i; } assert(i == 16); free(std::exchange(self, newSelf)); setChildrenParents(self); goto insert48; } else { ++self->numChildren; for (int i = 0; i < int(self->numChildren) - 1; ++i) { if (int(self16->index[i]) > int(index)) { memmove(self16->index + i + 1, self16->index + i, self->numChildren - (i + 1)); memmove(self16->children + i + 1, self16->children + i, (self->numChildren - (i + 1)) * sizeof(void *)); self16->index[i] = index; self16->children[i] = nullptr; return self16->children[i]; } } self16->index[self->numChildren - 1] = index; self16->children[self->numChildren - 1] = nullptr; return self16->children[self->numChildren - 1]; } } else if (self->type == Type::Node48) { insert48: auto *self48 = static_cast(self); int secondIndex = self48->index[index]; if (secondIndex >= 0) { return self48->children[secondIndex]; } if (self->numChildren == 48) { auto *newSelf = new (safe_malloc(sizeof(Node256))) Node256; memcpy((void *)newSelf, self, offsetof(Node, type)); for (int i = 0; i < 256; ++i) { if (self48->index[i] >= 0) { newSelf->children[i] = self48->children[self48->index[i]]; } } free(std::exchange(self, newSelf)); self = newSelf; setChildrenParents(self); goto insert256; } else { ++self->numChildren; assert(self48->nextFree < 48); self48->index[index] = self48->nextFree; self48->children[self48->nextFree] = nullptr; return self48->children[self48->nextFree++]; } } else { insert256: auto *self256 = static_cast(self); if (!self256->children[index]) { ++self->numChildren; } return self256->children[index]; } } // Precondition - an entry for index must exist in the node [[maybe_unused]] void eraseChild(Node *self, uint8_t index) { if (self->type == Type::Node4) { auto *self4 = static_cast(self); int nodeIndex = getNodeIndex(self4, index); memmove(self4->index + nodeIndex, self4->index + nodeIndex + 1, sizeof(self4->index[0]) * (self->numChildren - (nodeIndex + 1))); memmove(self4->children + nodeIndex, self4->children + nodeIndex + 1, sizeof(self4->children[0]) * // NOLINT (self->numChildren - (nodeIndex + 1))); } else if (self->type == Type::Node16) { auto *self16 = static_cast(self); int nodeIndex = getNodeIndex(self16, index); memmove(self16->index + nodeIndex, self16->index + nodeIndex + 1, sizeof(self16->index[0]) * (self->numChildren - (nodeIndex + 1))); memmove(self16->children + nodeIndex, self16->children + nodeIndex + 1, sizeof(self16->children[0]) * // NOLINT (self->numChildren - (nodeIndex + 1))); } else if (self->type == Type::Node48) { auto *self48 = static_cast(self); int8_t toRemoveChildrenIndex = std::exchange(self48->index[index], -1); int8_t lastChildrenIndex = --self48->nextFree; assert(toRemoveChildrenIndex >= 0); assert(lastChildrenIndex >= 0); if (toRemoveChildrenIndex != lastChildrenIndex) { self48->children[toRemoveChildrenIndex] = std::exchange(self48->children[lastChildrenIndex], nullptr); self48->index[self48->children[toRemoveChildrenIndex]->parentsIndex] = toRemoveChildrenIndex; } } else { auto *self256 = static_cast(self); self256->children[index] = nullptr; } --self->numChildren; if (self->numChildren == 0 && !self->entryPresent && self->parent != nullptr) { eraseChild(self->parent, self->parentsIndex); } } Node *nextPhysical(Node *node) { int index = -1; for (;;) { auto nextChild = getChildGeq(node, index + 1); if (nextChild >= 0) { return getChildExists(node, nextChild); } index = node->parentsIndex; node = node->parent; if (node == nullptr) { return nullptr; } } } Node *nextLogical(Node *node) { for (node = nextPhysical(node); node != nullptr && !node->entryPresent; node = nextPhysical(node)) ; return node; } Node *prevPhysical(Node *node) { assert(node->parent != nullptr); auto prevChild = getChildLeq(node->parent, node->parentsIndex - 1); assert(prevChild < node->parentsIndex); if (prevChild >= 0) { node = getChildExists(node->parent, prevChild); // Move down the right spine for (;;) { auto rightMostChild = getChildLeq(node, 255); if (rightMostChild >= 0) { node = getChildExists(node, rightMostChild); } else { return node; } } } else { return node->parent; } } struct Iterator { Node *n; int cmp; }; std::string_view getSearchPath(Arena &arena, Node *n) { if (n->parent == nullptr) { return {}; } auto result = vector(arena); for (; n->parent != nullptr; n = n->parent) { result.push_back(n->parentsIndex); } std::reverse(result.begin(), result.end()); return std::string_view((const char *)&result[0], result.size()); // NOLINT } Iterator lastLeq(Node *n, const std::span key) { auto remaining = key; for (;;) { Arena arena; assert((std::string(getSearchPath(arena, n)) + std::string((const char *)remaining.data(), remaining.size())) .ends_with(std::string((const char *)key.data(), key.size()))); if (remaining.size() == 0) { // We've found the physical node corresponding to search path `key` if (n->entryPresent) { return {n, 0}; } else { break; } } else { int c = getChildLeq(n, remaining[0]); if (c == remaining[0]) { n = getChildExists(n, c); remaining = remaining.subspan(1, remaining.size() - 1); } else { // The physical node corresponding to search path `key` does not exist. // Let's find the physical node corresponding to the highest search key // (not necessarily present) less than key // Move down the right spine for (;;) { if (c >= 0) { n = getChildExists(n, c); } else { break; } c = getChildLeq(n, 255); } break; } } } // Iterate backwards along existing physical nodes until we find a present // entry for (; !n->entryPresent; n = prevPhysical(n)) { } return {n, -1}; } void insert(Node **self_, std::span key, int64_t writeVersion) { for (;;) { auto &self = *self_; self->maxVersion = std::max(self->maxVersion, writeVersion); if (key.size() == 0) { auto l = lastLeq(self, key); self->entryPresent = true; self->entry.pointVersion = writeVersion; assert(l.n != nullptr); assert(l.n->entryPresent); self->entry.rangeVersion = l.n->entry.rangeVersion; return; } auto &child = getOrCreateChild(self, key.front()); if (!child) { child = newNode(); child->parent = self; child->parentsIndex = key.front(); } self_ = &child; key = key.subspan(1, key.size() - 1); } } void destroyTree(Node *root) { Arena arena; auto toFree = vector(arena); toFree.push_back(root); while (toFree.size() > 0) { auto *n = toFree.back(); toFree.pop_back(); // Add all children to toFree for (int child = getChildGeq(n, 0); child >= 0; child = getChildGeq(n, child + 1)) { auto *c = getChildExists(n, child); assert(c != nullptr); toFree.push_back(c); } free(n); } } struct __attribute__((visibility("hidden"))) ConflictSet::Impl { void check(const ReadRange *reads, Result *result, int count) const { for (int i = 0; i < count; ++i) { const auto &r = reads[i]; if (r.readVersion < oldestVersion) { result[i] = TooOld; continue; } // TODO support non-point reads assert(r.end.len == 0); auto [l, c] = lastLeq(root, std::span(r.begin.p, r.begin.len)); #if DEBUG_VERBOSE && !defined(NDEBUG) Arena arena; printf("LastLeq for `%s' got `%s'\n", printable(r.begin).c_str(), printable(getSearchPath(arena, l)).c_str()); #endif assert(l != nullptr); assert(l->entryPresent); result[i] = (c == 0 ? l->entry.pointVersion : l->entry.rangeVersion) > r.readVersion ? Conflict : Commit; } } void addWrites(const WriteRange *writes, int count) { for (int i = 0; i < count; ++i) { const auto &w = writes[i]; // TODO support non-point writes assert(w.end.len == 0); insert(&root, std::span(w.begin.p, w.begin.len), w.writeVersion); } } void setOldestVersion(int64_t oldestVersion) { this->oldestVersion = oldestVersion; } explicit Impl(int64_t oldestVersion) : oldestVersion(oldestVersion) { // Insert "" root = newNode(); root->maxVersion = oldestVersion; root->entry.pointVersion = oldestVersion; root->entry.rangeVersion = oldestVersion; root->entryPresent = true; } ~Impl() { destroyTree(root); } Node *root; int64_t oldestVersion; }; // ==================== END IMPLEMENTATION ==================== // GCOVR_EXCL_START void ConflictSet::check(const ReadRange *reads, Result *results, int count) const { return impl->check(reads, results, count); } void ConflictSet::addWrites(const WriteRange *writes, int count) { return impl->addWrites(writes, count); } void ConflictSet::setOldestVersion(int64_t oldestVersion) { return impl->setOldestVersion(oldestVersion); } ConflictSet::ConflictSet(int64_t oldestVersion) : impl(new (safe_malloc(sizeof(Impl))) Impl{oldestVersion}) {} ConflictSet::~ConflictSet() { if (impl) { impl->~Impl(); free(impl); } } ConflictSet::ConflictSet(ConflictSet &&other) noexcept : impl(std::exchange(other.impl, nullptr)) {} ConflictSet &ConflictSet::operator=(ConflictSet &&other) noexcept { impl = std::exchange(other.impl, nullptr); return *this; } using ConflictSet_Result = ConflictSet::Result; using ConflictSet_Key = ConflictSet::Key; using ConflictSet_ReadRange = ConflictSet::ReadRange; using ConflictSet_WriteRange = ConflictSet::WriteRange; extern "C" { __attribute__((__visibility__("default"))) void ConflictSet_check(void *cs, const ConflictSet_ReadRange *reads, ConflictSet_Result *results, int count) { ((ConflictSet::Impl *)cs)->check(reads, results, count); } __attribute__((__visibility__("default"))) void ConflictSet_addWrites(void *cs, const ConflictSet_WriteRange *writes, int count) { ((ConflictSet::Impl *)cs)->addWrites(writes, count); } __attribute__((__visibility__("default"))) void ConflictSet_setOldestVersion(void *cs, int64_t oldestVersion) { ((ConflictSet::Impl *)cs)->setOldestVersion(oldestVersion); } __attribute__((__visibility__("default"))) void * ConflictSet_create(int64_t oldestVersion) { return new (safe_malloc(sizeof(ConflictSet::Impl))) ConflictSet::Impl{oldestVersion}; } __attribute__((__visibility__("default"))) void ConflictSet_destroy(void *cs) { using Impl = ConflictSet::Impl; ((Impl *)cs)->~Impl(); free(cs); } } namespace { void printLogical(std::string &result, Node *node) { Arena arena; for (Node *iter = node; iter != nullptr;) { auto *next = nextLogical(iter); std::string key; for (uint8_t c : getSearchPath(arena, iter)) { key += "x"; key += "0123456789abcdef"[c / 16]; key += "0123456789abcdef"[c % 16]; } if (iter->entry.pointVersion == iter->entry.rangeVersion) { result += key + " -> " + std::to_string(iter->entry.pointVersion) + "\n"; } else { result += key + " -> " + std::to_string(iter->entry.pointVersion) + "\n"; if (next == nullptr || (getSearchPath(arena, next) != (std::string(getSearchPath(arena, iter)) + std::string("\x00", 1)))) { result += key + "x00 -> " + std::to_string(iter->entry.rangeVersion) + "\n"; } } iter = next; } } [[maybe_unused]] void debugPrintDot(FILE *file, Node *node) { struct DebugDotPrinter { explicit DebugDotPrinter(FILE *file) : file(file) {} void print(Node *n) { assert(n != nullptr); if (n->entryPresent) { fprintf(file, " k_%p [label=\"m=%d p=%d r=%d\"];\n", (void *)n, int(n->maxVersion), int(n->entry.pointVersion), int(n->entry.rangeVersion)); } else { fprintf(file, " k_%p [label=\"m=%d\"];\n", (void *)n, int(n->maxVersion)); } for (int child = getChildGeq(n, 0); child >= 0; child = getChildGeq(n, child + 1)) { auto *c = getChildExists(n, child); fprintf(file, " k_%p -> k_%p [label=\"'%02x'\"];\n", (void *)n, (void *)c, child); print(c); } } FILE *file; }; fprintf(file, "digraph ConflictSet {\n"); assert(node != nullptr); DebugDotPrinter printer{file}; printer.print(node); fprintf(file, "}\n"); } void checkParentPointers(Node *node, bool &success) { for (int i = getChildGeq(node, 0); i >= 0; i = getChildGeq(node, i + 1)) { auto *child = getChildExists(node, i); if (child->parent != node) { Arena arena; fprintf(stderr, "%s child %d has parent pointer %p. Expected %p\n", printable(getSearchPath(arena, node)).c_str(), i, (void *)child->parent, (void *)node); success = false; } checkParentPointers(child, success); } } [[maybe_unused]] int64_t checkMaxVersion(Node *node, bool &success) { int64_t expected = node->entryPresent ? std::max(node->entry.pointVersion, node->entry.rangeVersion) : std::numeric_limits::lowest(); for (int i = getChildGeq(node, 0); i >= 0; i = getChildGeq(node, i + 1)) { auto *child = getChildExists(node, i); expected = std::max(expected, checkMaxVersion(child, success)); } if (node->maxVersion != expected) { Arena arena; fprintf(stderr, "%s has max version %d. Expected %d\n", printable(getSearchPath(arena, node)).c_str(), int(node->maxVersion), int(expected)); success = false; } return expected; } bool checkCorrectness(Node *node, ReferenceImpl &refImpl) { bool success = true; checkParentPointers(node, success); std::string logicalMap; std::string referenceLogicalMap; printLogical(logicalMap, node); refImpl.printLogical(referenceLogicalMap); if (logicalMap != referenceLogicalMap) { fprintf(stderr, "Logical map not equal to reference logical map.\n\nActual:\n" "%s\nExpected:\n%s\n", logicalMap.c_str(), referenceLogicalMap.c_str()); success = false; } return success; } } // namespace namespace std { void __throw_length_error(const char *) { __builtin_unreachable(); } } // namespace std #ifdef ENABLE_MAIN #define ANKERL_NANOBENCH_IMPLEMENT #include "third_party/nanobench.h" void bench() { ankerl::nanobench::Bench bench; { auto *n = newNode(); for (int i = 0; i < 64; ++i) { getOrCreateChild(n, i) = newNode(); bench.run("getChildLeq" + std::to_string(i), [&]() { bench.doNotOptimizeAway(getChildLeq(n, 255)); }); } destroyTree(n); } { auto *n = newNode(); for (int i = 255; i >= 3 * 64; --i) { getOrCreateChild(n, i) = newNode(); bench.run("getChildGeq" + std::to_string(i), [&]() { bench.doNotOptimizeAway(getChildGeq(n, 0)); }); } destroyTree(n); } } int main(void) { bench(); return 0; } #endif #ifdef ENABLE_FUZZ extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) { TestDriver driver{data, size}; do { bool success = checkCorrectness(driver.cs.root, driver.refImpl); if (!success) { abort(); } } while (!driver.next()); return 0; } #endif // GCOVR_EXCL_STOP