
D
R
A
F
T

ARTful Concurrency Control à la FoundationDB

Andrew Noyes ∗

Version 0.0.7

Abstract

FoundationDB [18] provides serializability using a
specialized data structure called lastCommit 1 to im-
plement optimistic concurrency control [8]. This data
structure encodes the write sets for recent trans-
actions as a map from key ranges (represented as
bitwise-lexicographically-ordered half-open intervals)
to most recent write versions. Before a transac-
tion is allowed to commit, its read set is checked
for writes that happened after its read version.
FoundationDB implements lastCommit as a version-
augmented probabilistic skip list [12]. In this pa-
per, we propose an alternative implementation as
a version-augmented Adaptive Radix Tree (ART)
[9], and evaluate its performance. This implemen-
tation is available at https://git.weaselab.dev/

weaselab/conflict-set/releases as a C or C++
library. lastCommit operates on logical keys and is
agnostic to the physical structure of the data store, so
it should be straightforward to use outside of Foun-
dationDB.

1 Introduction

Let’s begin by considering design options for last-
Commit. In order to manage half-open intervals we
need an ordered data structure, so hash tables are
out of consideration. For any ordered data structure
we can implement lastCommit using a representation
where a logical key range (figure 2) is mapped so that
the value of a key is the value of the last physical key
(figure 1) less than or equal to the key. This is a

∗andrew@weaselab.dev
1See Algorithm 1 referenced in [18].

Figure 1: Physical structure of range map
ϵ

ϵ 7→ 0

a

a 7→ 1

b

b 7→ 2

Figure 2: Logical structure of range map
ϵ a b

[ϵ, a) 7→ 0 [a, b) 7→ 1 [b,∞) 7→ 2

standard technique used throughout FoundationDB
called a range map.

The problem with applying this to an off-the-shelf
ordered data structure is that checking a read range
is linear in the number of intersecting physical keys.
Scanning through every recent point write intersect-
ing a large range read would make conflict checking
unacceptably slow for high-write-throughput work-
loads.

This suggests we consider augmenting [5] an or-
dered data structure to make checking the max ver-
sion of a range sublinear. Since finding the maximum
of a set of elements is a decomposable search prob-
lem [2], we could apply the general technique using
std::max as our binary operation, and MIN INT as
our identity. Algorithmically, this describes Founda-
tionDB’s skip list. We can also consider any other
ordered data structure to augment, such as any vari-
ant of a balanced search tree [1, 6, 13, 4], or a radix
tree [9, 3].

Let’s compare the relevant properties of our can-
didate data structures for insertion/update and read

1

https://git.weaselab.dev/weaselab/conflict-set/releases
https://git.weaselab.dev/weaselab/conflict-set/releases
mailto:andrew@weaselab.dev


D
R
A
F
T

operations. After insertion, the max version along
the search path must reflect the update. For self-
balancing comparison-based trees, updating max ver-
sion along the search path cannot be done during
top-down search, because insertion will change the
search path, and we do not know whether or not this
is an insert or an update until we complete the top-
down search. We have no choice but to do a second,
bottom-up pass to propagate max version changes.
Furthermore, the change will always propagate all
the way to the root, since inserts always use the
highest-yet version. For a radix tree, insertion does
not affect the search path, and so max version can
be updated on the top-down pass. There’s minimal
overhead compared to the radix tree unaugmented.

For “last less than or equal to” queries (which make
up the core of our read workload), skip lists have the
convenient property that no backtracking is neces-
sary, since the bottommost level is a sorted linked
list. Binary search trees and radix trees both require
backtracking up the search path when an equal ele-
ment is not found. It’s possible to trade off the back-
tracking for the increased overhead of maintaining
the elements in an auxiliary sorted linked list during
insertion.

Our options also have various tradeoffs inherited
from their unaugmented versions such as different
worst-case and expected bounds on the length of
search paths and the number of rotations performed
upon insert. ART has been shown [9] to offer superior
performance to comparison-based data structures on
modern hardware, which is on its own a compelling
reason to consider it. The Height Optimized Trie
(HOT) [3] outperforms ART, but has a few practi-
cal disadvantages 2 and will not be considered in this
paper.

2Implementing HOT is more complex than the already-
daunting ART, and requires AVX2 and BMI2 instructions.
HOT also involves rebalancing operations during insertion.
Even so, it’s likely that a HOT-based lastCommit implemen-
tation would be superior.

Figure 3:
ε4

A4

N2

D1,1,0 T0,0,1 Y2,2,0

R4

E3,3,0 T4,4,0

2 Augmented radix tree

We now propose our design for an augmented radix
tree implementation of lastCommit. The design is the
same as the Adaptive Radix Tree [9], but each node
in the tree is annotated with either one field max,
or three fields: max, point, and range. max repre-
sents the maximum version among all keys starting
with the prefix associated with the node’s place in the
tree (i.e. the search path from the root to this node).
point represents the version of the exact key match-
ing this node’s prefix. range represents the version
of all keys k such that there is no node matching k
and this is the first node greater than k with all three
fields set. See figure 3 for an example tree after insert-
ing [AND,ANT ) → 1, {ANY } → 2, {ARE} → 3,
and {ART} → 4. Each node shows its partial prefix
annotated with max or max, point, range.

2.1 Checking point reads

The algorithm for checking point reads follows di-
rectly from the definitions of the point and range
fields. Our input is a key k and a read version r,
and we must report whether or not the write version
vk of k is less than or equal to r. In order to find
vk, we search for the node whose prefix matches k.
If such a node exists and has point set, then vk is its
point field. Otherwise, we scan forward to find the
first node greater than k with range set. If such a
node exists, then vk is its range field. Otherwise k
logically has no write version, and so the read does
not conflict.

As an optimization, during the search phase for

2



D
R
A
F
T

a point read we can inspect the max at each node
that’s a prefix of k. If the max version among all
keys starting with a prefix of k is less than or equal
to r, then vk ≤ r.

2.2 Checking range reads

Checking range reads is more involved. Logically the
idea is to partition the range read so that each sub-
range in the partition is a single point or coincides
with the set of keys beginning with a prefix (a pre-
fix range). The max version of a single point is v as
described in 2.1. The max version of a prefix range
is the max of the node associated with the prefix if
such a node exists, and range of the next node with
a range field otherwise. If there is no next node with
a range field, then we ignore that subrange in our
max version calculation. The max version among all
max versions of subranges in this partition is the max
version of the whole range, which we compare to r.
Let’s start with partitioning the range in the case

where the beginning of the range is a prefix of the
end of the range. We’ll be able to use this as a sub-
routine in the general case. Suppose our range is
[a0 . . . ak, a0 . . . an) where k < n, and ai ∈ [0, 256).
The partition starts with the singleton set containing
the first key in the range.

{a0 . . . ak}

or equivalently

[a0 . . . ak, a0 . . . ak0)

and continues with a sequence of prefix ranges ending
in each digit up until ak+1.

. . . ∪ [a0 . . . ak0, a0 . . . ak1) ∪
[a0 . . . ak1, a0 . . . ak2) ∪
. . . ∪
[a0 . . . ak(ak+1 − 1), a0 . . . ak+1)

Recall that the range [a0 . . . ak0, a0 . . . ak1) is the
set of keys starting with a0 . . . ak0. The remainder of
the partition begins with the singleton set

. . . ∪ [a0 . . . ak+1, a0 . . . ak+10) ∪ . . .

and proceeds as above until a range ending at
a0 . . . an.
Let’s now consider a range where begin is not a

prefix of end.

[a0 . . . am, b0 . . . bn)

Let i be the lowest index such that ai ̸= bi. For
brevity we will elide the common prefix up until i in
the following discussion so that our range is denoted
as [ai . . . am, bi . . . bn). We’ll start with partitioning
this range coarsely:

[ai . . . am, ai + 1) ∪
[ai + 1, ai + 2) ∪
. . .

[bi − 1, bi) ∪
[bi, bi . . . bn)

The last range has a begin that’s a prefix of end,
and so we’ll partition that as before. The inner
ranges are already prefix ranges. This leaves only
[ai . . . am, ai + 1).
If m = i, then this range is adjacent to the first

inner range above, and we’re done. Otherwise we’ll
partition this into

[ai . . . am, ai . . . (am + 1)) ∪
[ai . . . (am + 1), ai . . . (am + 2)) ∪
. . .

[ai . . . 254, ai . . . 255) ∪
[ai . . . 255, ai . . . (am−1 + 1))

and repeat 3 starting at

. . . ∪ [ai . . . (am−1 + 1), ai . . . (am−1 + 2))

3This doesn’t explicitly describe how to handle the case
where am−1 = 255. In this case we would skip to the largest
j < m such that aj ̸= 255. We know j ≥ i since if ai = 255
then the range is inverted.

3



D
R
A
F
T

until we end at ai + 1, adjacent to the first inner
range.
A few notes on implementation:

• For clarity, the above algorithm decouples the
logical partitioning from the physical structure
of the tree. An optimized implementation would
merge adjacent prefix ranges that don’t corre-
spond to nodes in the tree as it scans, so that it
only calculates the version of such merged ranges
once. Additionally, our implementation stores
an index of which child pointers are valid as a
bitset for Node48 and Node256 to speed up this
scan using techniques inspired by [10].

• In order to avoid many costly pointer indirec-
tions, we can store the max version not in
each node itself but next to each node’s parent
pointer. Without this, the range read perfor-
mance is not competetive with the skip list.

• An optimized implementation would visit the
partition of [ai . . . am, ai + 1) in reverse order,
as it descends along the search path to ai . . . am

• An optimized implementation would search for
the common prefix first, and return early if any
prefix of the common prefix has a max ≤ r.

2.3 Reclaiming old entries

In order to bound memory usage, we track an oldest
version, reject transactions with read versions before
oldest version, and reclaim nodes made redundant
by oldest version. We track the rate of insertions
of new nodes and make sure that our incremental
reclaiming of old nodes according to oldest version
outpaces inserts.

2.4 Adding point writes

A point write of k at version v simply sets max← v 4

for every node along k’s search path, and sets range
for k’s node to the range of the first node greater
than k, or oldest version if none exists.

4Write versions are non-decreasing.

2.5 Adding range writes

A range write of [b, e) at version v performs a point
write of b at v, and then inserts a node at e with
range set to v, and point set such that the result of
checking a read of e is unaffected. Nodes along the
search path to e that are a strict prefix of e get max
set to v, and all nodes between b and e are removed.

3 Evaluation

4 Testing

The correctness of lastCommit is critically important,
as a bug would likely result in data corruption, and
so we use a variety of testing techniques. The main
technique is to let libfuzzer [11] generate sequences
of arbitrary operations, and apply each sequence to
both the optimized radix tree and a naive implemen-
tation based on an unaugmented ordered map that
serves as the specification of the intended behavior.
After libfuzzer generates inputs with broad code cov-
erage, we use libfuzzer’s “corpus minimization” fea-
ture to pare down the test inputs without losing cov-
erage (as measured by libfuzzer) into a fixed set of
tests short enough that it’s feasible to run interac-
tively during development. In order to keep these
test inputs short, we constrain the size of keys at the
loss of some generality. We believe there isn’t any-
thing in the implementation particularly sensitive to
the exact length of keys 5. Libfuzzer’s minimized
corpus achieves 98% line coverage on its own. We
regenerate the corpus on an ad hoc basis by running
libfuzzer for a few cpu-hours, during which it tests
millions of unique inputs.

In addition to asserting correct externally-visible
behavior, in each of these tests we assert that inter-
nal invariants hold between operations. We also use
address sanitizer [15] to detect memory errors, unde-
fined behavior sanitizer [17] to detect invocations of
undefined behavior, and thread sanitizer [14] (while
exercising concurrent access as allowed by the con-

5longestCommonPrefix (a routine in the implementation) is
a possible exception, but its length sensitivity is well encapsu-
lated

4



D
R
A
F
T

tract documented in the c++ header file) to detect
data-race-related undefined behavior.
Each of these sanitizers is implemented using com-

piler instrumentation, which means that they are not
testing the final binary artifact that will be run in
production. Therefore we also run the test inputs
linking directly to the final release artifact, both stan-
dalone and under valgrind [16]. When testing the fi-
nal artifacts, we do not assert internal invariants as
we lack convenient access to the internals. As a de-
fense against possible bugs in compilers’ sanitizer and
optimizer passes [7], we also test with sanitizers en-
abled and optimizations disabled, and test with both
clang and gcc.
We audited the 2% of lines that were not covered

by libfuzzer 6 and found the following:

• Three occurrences which can be reached from an
input that libfuzzer could theoretically generate.
In each case the uncovered code is straightfor-
ward, and is exercised from an entry point by a
manually written test.

• One occurrence which requires a large number of
operations, and cannot be reached from an input
satisfying the size constraints we impose on lib-
fuzzer. This code is also straightforward, and
is exercised from an entry point by a manually
written test. The purpose of this code is to keep
memory usage in check, and so it’s expected that
it cannot be reached without a large number of
operations.

• One occurrence which is not reachable from any
entry point. This line is now suppressed with an
explanatory comment.

We assert 100% line coverage in continuous integra-
tion, which is achieved with a few caveats. 2% of the
code is only covered by a few manually written tests.
We suppress lines manually checked to be unreach-
able from an entry point. There is also a significant
amount of test-only code which is suppressed from

6In order to see the uncovered lines for yourself, exclude
all tests containing the word “script” with ctest -E script.
Look in Jenkinsfile in the root of the source tree for an ex-
ample of how to measure coverage.

coverage measurements. There’s a small difference
in the behavior between debug and release builds:
the code which scans for old entries gets run more
frequently when assertions are enabled. This code
is not straightforward, so exercising it from only a
manually written test seems insufficient.

5 Conclusion

References

[1] Georgii Maksimovich Adelson-Velskii and
Evgenii Mikhailovich Landis. “An algorithm
for organization of information”. In: Doklady
Akademii Nauk. Vol. 146. 2. Russian Academy
of Sciences. 1962, pp. 263–266.

[2] Jon Louis Bentley et al. “Decomposable
searching problems”. In: Inf. Process. Lett. 8.5
(1979), pp. 244–251.

[3] Robert Binna et al. “HOT: A height
optimized trie index for main-memory
database systems”. In: Proceedings of the 2018
International Conference on Management of
Data. 2018, pp. 521–534.

[4] Douglas Comer. “Ubiquitous B-tree”. In:
ACM Computing Surveys (CSUR) 11.2
(1979), pp. 121–137.

[5] Thomas H Cormen et al. Introduction to
algorithms. MIT press, 2022. Chap. 17
Augmenting Data Structures.

[6] Leo J Guibas and Robert Sedgewick. “A
dichromatic framework for balanced trees”. In:
19th Annual Symposium on Foundations of
Computer Science (sfcs 1978). IEEE. 1978,
pp. 8–21.

[7] Raphael Isemann et al. “Don’t Look UB:
Exposing Sanitizer-Eliding Compiler
Optimizations”. In: Proc. ACM Program.
Lang. 7.PLDI (June 2023). doi:
10.1145/3591257. url:
https://doi.org/10.1145/3591257.

5

https://doi.org/10.1145/3591257
https://doi.org/10.1145/3591257


D
R
A
F
T

[8] Hsiang-Tsung Kung and John T Robinson.
“On optimistic methods for concurrency
control”. In: ACM Transactions on Database
Systems (TODS) 6.2 (1981), pp. 213–226.

[9] Viktor Leis, Alfons Kemper, and
Thomas Neumann. “The adaptive radix tree:
ARTful indexing for main-memory
databases”. In: 29th IEEE International
Conference on Data Engineering, ICDE 2013,
Brisbane, Australia, April 8-12, 2013. Ed. by
Christian S. Jensen, Christopher M. Jermaine,
and Xiaofang Zhou. IEEE Computer Society,
2013, pp. 38–49. doi:
10.1109/ICDE.2013.6544812. url: https:
//doi.org/10.1109/ICDE.2013.6544812.

[10] Daniel Lemire et al. “Roaring bitmaps:
Implementation of an optimized software
library”. In: Software: Practice and Experience
48.4 (Jan. 2018), pp. 867–895. issn:
1097-024X. doi: 10.1002/spe.2560. url:
http://dx.doi.org/10.1002/spe.2560.

[11] libFuzzer – a library for coverage-guided fuzz
testing.
https://llvm.org/docs/LibFuzzer.html.
Accessed: 2024-04-19.

[12] William Pugh. “Skip lists: a probabilistic
alternative to balanced trees”. In: Commun.
ACM 33.6 (June 1990), pp. 668–676. issn:
0001-0782. doi: 10.1145/78973.78977. url:
https://doi.org/10.1145/78973.78977.

[13] Raimund Seidel and Cecilia R Aragon.
“Randomized search trees”. In: Algorithmica
16.4-5 (1996), pp. 464–497.

[14] Konstantin Serebryany and
Timur Iskhodzhanov. “ThreadSanitizer: data
race detection in practice”. In: Proceedings of
the Workshop on Binary Instrumentation and
Applications. WBIA ’09. New York, New York,
USA: Association for Computing Machinery,
2009, pp. 62–71. isbn: 9781605587936. doi:
10.1145/1791194.1791203. url: https:
//doi.org/10.1145/1791194.1791203.

[15] Konstantin Serebryany et al.
“AddressSanitizer: a fast address sanity
checker”. In: Proceedings of the 2012 USENIX
Conference on Annual Technical Conference.
USENIX ATC’12. Boston, MA: USENIX
Association, 2012, p. 28.

[16] Julian Seward and Nicholas Nethercote.
“Using Valgrind to detect undefined value
errors with bit-precision”. In: Proceedings of
the Annual Conference on USENIX Annual
Technical Conference. ATEC ’05. Anaheim,
CA: USENIX Association, 2005, p. 2.

[17] UndefinedBehaviorSanitizer — Clang 19.0.0git
documentation. https://clang.llvm.org/
docs/UndefinedBehaviorSanitizer.html.
Accessed: 2024-04-19.

[18] Jingyu Zhou et al. “FoundationDB: A
Distributed Unbundled Transactional Key
Value Store”. In: SIGMOD ’21: International
Conference on Management of Data, Virtual
Event, China, June 20-25, 2021. Ed. by
Guoliang Li et al. ACM, 2021, pp. 2653–2666.
doi: 10.1145/3448016.3457559. url: https:
//doi.org/10.1145/3448016.3457559.

6

https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1002/spe.2560
http://dx.doi.org/10.1002/spe.2560
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/78973.78977
https://doi.org/10.1145/78973.78977
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/1791194.1791203
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://doi.org/10.1145/3448016.3457559
https://doi.org/10.1145/3448016.3457559
https://doi.org/10.1145/3448016.3457559

	Introduction
	Augmented radix tree
	Checking point reads
	Checking range reads
	Reclaiming old entries
	Adding point writes
	Adding range writes

	Evaluation
	Testing
	Conclusion

