640 lines
19 KiB
C++
640 lines
19 KiB
C++
#include "ConflictSet.h"
|
|
|
|
#include <cassert>
|
|
#include <compare>
|
|
#include <memory>
|
|
#include <random>
|
|
#include <span>
|
|
#include <string_view>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#define SHOW_PRIORITY 0
|
|
#define DEBUG 0
|
|
|
|
using Key = ConflictSet::Key;
|
|
|
|
static auto operator<=>(const Key &lhs, const Key &rhs) {
|
|
const int minLen = std::min(lhs.len, rhs.len);
|
|
const int c = memcmp(lhs.p, rhs.p, minLen);
|
|
return c != 0 ? c <=> 0 : lhs.len <=> rhs.len;
|
|
}
|
|
|
|
namespace {
|
|
// A node in the tree representing write conflict history. This tree maintains
|
|
// several invariants:
|
|
|
|
// 1. BST invariant: all keys in the tree rooted at the left child of a node
|
|
// compare less than that node's key, and all keys in the tree rooted at the
|
|
// right child of a node compare greater than that node's key.
|
|
// 2. Heap invariant: the priority of a node is >= all the priorities
|
|
// of its children (transitively)
|
|
// 3. Max invariant: `maxVersion` is the max among all values of `pointVersion`
|
|
// and `beyondVersion` for this node and its children (transitively)
|
|
// 4. The lowest key (an empty byte sequence) is always physically present in
|
|
// the tree so that "last less than or equal" queries are always well-defined.
|
|
|
|
// Logically, the contents of the tree represent a "range map" where all of the
|
|
// infinitely many points in the key space are associated with a writeVersion.
|
|
// If a point is physically present in the tree, then its writeVersion is its
|
|
// node's `pointVersion`. Otherwise, its writeVersion is the `rangeVersion` of
|
|
// the node with the last key less than point.
|
|
struct Node {
|
|
// See "Max invariant" above
|
|
int64_t maxVersion;
|
|
// The write version of the point in the key space represented by this node's
|
|
// key
|
|
int64_t pointVersion;
|
|
// The write version of the range immediately after this node's key, until
|
|
// just before the next key in the tree. I.e. (this key, next key)
|
|
int64_t rangeVersion;
|
|
// child[0] is the left child or nullptr. child[1] is the right child or
|
|
// nullptr
|
|
Node *child[2];
|
|
// The parent of this node in the tree, or nullptr if this node is the root
|
|
Node *parent;
|
|
// As a treap, this tree satisfies the heap invariant on each node's priority
|
|
uint32_t priority;
|
|
// The length of this node's key
|
|
int len;
|
|
// The contents of this node's key
|
|
// uint8_t[len];
|
|
|
|
auto operator<=>(const ConflictSet::Key &other) const {
|
|
const int minLen = std::min<int>(len, other.len);
|
|
const int c = memcmp(this + 1, other.p, minLen);
|
|
return c != 0 ? c <=> 0 : len <=> other.len;
|
|
}
|
|
};
|
|
|
|
// TODO: use a better prng. This is technically vulnerable to a
|
|
// denial-of-service attack that can make conflict-checking linear in the
|
|
// number of nodes in the tree.
|
|
thread_local uint32_t gSeed = 1013904223L;
|
|
uint32_t fastRand() {
|
|
auto result = gSeed;
|
|
gSeed = gSeed * 1664525L + 1013904223L;
|
|
return result;
|
|
}
|
|
|
|
// Note: `rangeVersion` is left uninitialized.
|
|
Node *createNode(const Key &key, Node *parent, int64_t pointVersion) {
|
|
assert(key.len <= std::numeric_limits<int>::max());
|
|
Node *result = (Node *)malloc(sizeof(Node) + key.len);
|
|
result->maxVersion = pointVersion;
|
|
result->pointVersion = pointVersion;
|
|
result->child[0] = nullptr;
|
|
result->child[1] = nullptr;
|
|
result->parent = parent;
|
|
result->priority = fastRand();
|
|
#if SHOW_PRIORITY
|
|
result->priority &= 0xff;
|
|
#endif
|
|
result->len = key.len;
|
|
memcpy(result + 1, key.p, key.len);
|
|
return result;
|
|
}
|
|
|
|
void destroyNode(Node *node) {
|
|
assert(node->child[0] == nullptr);
|
|
assert(node->child[1] == nullptr);
|
|
free(node);
|
|
}
|
|
|
|
struct Iterator {
|
|
Node *node;
|
|
int cmp;
|
|
};
|
|
|
|
struct StepwiseLastLeq {
|
|
Node *current;
|
|
Node *result;
|
|
const Key *key;
|
|
int resultC = -1;
|
|
int index;
|
|
std::strong_ordering c = std::strong_ordering::equal;
|
|
|
|
StepwiseLastLeq() {}
|
|
StepwiseLastLeq(Node *current, Node *result, const Key &key, int index)
|
|
: current(current), result(result), key(&key), index(index) {}
|
|
|
|
bool step() {
|
|
if (current == nullptr) {
|
|
return true;
|
|
}
|
|
c = *current <=> *key;
|
|
if (c == 0) {
|
|
result = current;
|
|
resultC = 0;
|
|
return true;
|
|
}
|
|
result = c < 0 ? current : result;
|
|
current = current->child[c < 0];
|
|
return false;
|
|
}
|
|
};
|
|
|
|
void lastLeqMulti(Node *root, std::span<Key> keys, Iterator *results) {
|
|
assert(std::is_sorted(keys.begin(), keys.end()));
|
|
|
|
if (keys.size() == 0) {
|
|
return;
|
|
}
|
|
|
|
auto stepwiseLastLeqs =
|
|
std::unique_ptr<StepwiseLastLeq[]>{new StepwiseLastLeq[keys.size()]};
|
|
|
|
// Descend until queries for front and back diverge
|
|
Node *current = root;
|
|
Node *resultP = nullptr;
|
|
auto stepwiseLastLeqBegin =
|
|
StepwiseLastLeq(current, resultP, keys.front(), -1);
|
|
auto stepwiseLastLeqEnd = StepwiseLastLeq(current, resultP, keys.back(), -1);
|
|
for (;;) {
|
|
bool done1 = stepwiseLastLeqBegin.step();
|
|
bool done2 = stepwiseLastLeqEnd.step();
|
|
if (!done1 && !done2 && stepwiseLastLeqBegin.c == stepwiseLastLeqEnd.c) {
|
|
assert(stepwiseLastLeqBegin.current == stepwiseLastLeqEnd.current);
|
|
assert(stepwiseLastLeqBegin.result == stepwiseLastLeqEnd.result);
|
|
current = stepwiseLastLeqBegin.current;
|
|
resultP = stepwiseLastLeqBegin.result;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
int index = 0;
|
|
{
|
|
auto iter = stepwiseLastLeqs.get();
|
|
for (const auto &k : keys) {
|
|
*iter++ = StepwiseLastLeq(current, resultP, k, index++);
|
|
}
|
|
}
|
|
auto remaining =
|
|
std::span<StepwiseLastLeq>(stepwiseLastLeqs.get(), keys.size());
|
|
while (remaining.size() > 0) {
|
|
for (int i = 0; i < int(remaining.size());) {
|
|
bool done = remaining[i].step();
|
|
if (done) {
|
|
const auto &c = remaining[i];
|
|
results[c.index] = Iterator{c.result, c.resultC};
|
|
if (i != int(remaining.size()) - 1) {
|
|
remaining[i] = remaining.back();
|
|
}
|
|
remaining = remaining.subspan(0, remaining.size() - 1);
|
|
} else {
|
|
++i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return a pointer to the node whose key immediately follows `n`'s key (if
|
|
// `dir` is false, precedes). Return nullptr if none exists.
|
|
[[maybe_unused]] Node *next(Node *n, bool dir) {
|
|
// Traverse left spine of right child (when moving right, i.e. dir = true)
|
|
if (n->child[dir]) {
|
|
n = n->child[dir];
|
|
while (n->child[!dir]) {
|
|
n = n->child[!dir];
|
|
}
|
|
} else {
|
|
// Search upward for a node such that we're the left child (when moving
|
|
// right, i.e. dir = true)
|
|
while (n->parent && n == n->parent->child[dir]) {
|
|
n = n->parent;
|
|
}
|
|
n = n->parent;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
// Return a pointer to the node whose key is greatest among keys in the tree
|
|
// rooted at `n` (if dir = false, least). Return nullptr if none exists (i.e.
|
|
// `n` is null).
|
|
[[maybe_unused]] Node *extrema(Node *n, bool dir) {
|
|
if (n == nullptr) {
|
|
return nullptr;
|
|
}
|
|
while (n->child[dir] != nullptr) {
|
|
n = n->child[dir];
|
|
}
|
|
return n;
|
|
}
|
|
|
|
[[maybe_unused]] void debugPrintDot(FILE *file, Node *node) {
|
|
|
|
struct DebugDotPrinter {
|
|
|
|
explicit DebugDotPrinter(FILE *file) : file(file) {}
|
|
|
|
void print(Node *node) {
|
|
for (int i = 0; i < 2; ++i) {
|
|
if (node->child[i] != nullptr) {
|
|
fprintf(file, " k_%.*s -> k_%.*s;\n", node->len,
|
|
(const char *)(node + 1), node->child[i]->len,
|
|
(const char *)(node->child[i] + 1));
|
|
print(node->child[i]);
|
|
} else {
|
|
fprintf(file, " k_%.*s -> null%d;\n", node->len,
|
|
(const char *)(node + 1), id);
|
|
++id;
|
|
}
|
|
}
|
|
}
|
|
int id = 0;
|
|
FILE *file;
|
|
};
|
|
|
|
fprintf(file, "digraph TreeSet {\n");
|
|
if (node != nullptr) {
|
|
DebugDotPrinter printer{file};
|
|
fprintf(file, "\n");
|
|
printer.print(node);
|
|
fprintf(file, "\n");
|
|
for (auto iter = extrema(node, false); iter != nullptr;
|
|
iter = next(iter, true)) {
|
|
fprintf(file,
|
|
" k_%.*s [label=\"k=\\\"%.*s\\\" "
|
|
#if SHOW_PRIORITY
|
|
"p=%u "
|
|
#endif
|
|
"m=%d v=%d r=%d\"];\n",
|
|
iter->len, (const char *)(iter + 1), iter->len,
|
|
(const char *)(iter + 1),
|
|
#if SHOW_PRIORITY
|
|
iter->priority,
|
|
#endif
|
|
int(iter->maxVersion), int(iter->pointVersion),
|
|
int(iter->rangeVersion));
|
|
}
|
|
for (int i = 0; i < printer.id; ++i) {
|
|
fprintf(file, " null%d [shape=point];\n", i);
|
|
}
|
|
}
|
|
fprintf(file, "}\n");
|
|
}
|
|
|
|
[[maybe_unused]] Key toKey(int n) {
|
|
constexpr int kMaxLength = 4;
|
|
// TODO use arena allocation
|
|
static std::vector<std::vector<uint8_t>> *results =
|
|
new std::vector<std::vector<uint8_t>>;
|
|
int i = kMaxLength;
|
|
results->push_back(std::vector<uint8_t>(kMaxLength, '0'));
|
|
uint8_t *itoaBuf = results->back().data();
|
|
do {
|
|
itoaBuf[--i] = "0123456789abcdef"[n % 16];
|
|
n /= 16;
|
|
} while (n);
|
|
return Key{itoaBuf, kMaxLength};
|
|
}
|
|
|
|
// Recompute maxVersion, and propagate up the tree as necessary
|
|
// TODO interleave this? Will require careful analysis for correctness, and the
|
|
// performance gains may not be worth it.
|
|
void updateMaxVersion(Node *n) {
|
|
for (;;) {
|
|
int64_t maxVersion = std::max(n->pointVersion, n->rangeVersion);
|
|
for (int i = 0; i < 2; ++i) {
|
|
maxVersion =
|
|
std::max(maxVersion, n->child[i] != nullptr ? n->child[i]->maxVersion
|
|
: maxVersion);
|
|
}
|
|
if (n->maxVersion == maxVersion) {
|
|
break;
|
|
}
|
|
n->maxVersion = maxVersion;
|
|
if (n->parent == nullptr) {
|
|
break;
|
|
}
|
|
n = n->parent;
|
|
}
|
|
}
|
|
|
|
void rotate(Node **node, bool dir) {
|
|
// diagram shown for dir == true
|
|
/* n
|
|
/
|
|
l
|
|
\
|
|
lr
|
|
*/
|
|
assert(node != nullptr);
|
|
Node *n = *node;
|
|
assert(n != nullptr);
|
|
Node *parent = n->parent;
|
|
Node *l = n->child[!dir];
|
|
assert(l != nullptr);
|
|
Node *lr = l->child[dir];
|
|
n->child[!dir] = lr;
|
|
if (lr) {
|
|
lr->parent = n;
|
|
}
|
|
l->child[dir] = n;
|
|
n->parent = l;
|
|
l->parent = parent;
|
|
*node = l;
|
|
/* l
|
|
\
|
|
n
|
|
/
|
|
lr
|
|
*/
|
|
updateMaxVersion(n);
|
|
updateMaxVersion(l);
|
|
}
|
|
|
|
void checkParentPointers(Node *node, bool &success) {
|
|
for (int i = 0; i < 2; ++i) {
|
|
if (node->child[i] != nullptr) {
|
|
if (node->child[i]->parent != node) {
|
|
fprintf(stderr, "%.*s child %d has parent pointer %p. Expected %p\n",
|
|
node->len, (const char *)(node + 1), i,
|
|
(void *)node->child[i]->parent, (void *)node);
|
|
}
|
|
checkParentPointers(node->child[i], success);
|
|
}
|
|
}
|
|
}
|
|
|
|
int64_t checkMaxVersion(Node *node, bool &success) {
|
|
int64_t expected = std::max(node->pointVersion, node->rangeVersion);
|
|
for (int i = 0; i < 2; ++i) {
|
|
if (node->child[i] != nullptr) {
|
|
expected = std::max(expected, checkMaxVersion(node->child[i], success));
|
|
}
|
|
}
|
|
if (node->maxVersion != expected) {
|
|
fprintf(stderr, "%.*s has max version %d. Expected %d\n", node->len,
|
|
(const char *)(node + 1), int(node->maxVersion), int(expected));
|
|
}
|
|
success = false;
|
|
return expected;
|
|
}
|
|
|
|
bool checkInvariants(Node *node) {
|
|
bool success = true;
|
|
// Check bst invariant
|
|
std::vector<std::string_view> keys;
|
|
for (auto iter = extrema(node, false); iter != nullptr;
|
|
iter = next(iter, true)) {
|
|
keys.push_back(std::string_view((char *)(iter + 1), iter->len));
|
|
for (int i = 0; i < 2; ++i) {
|
|
if (iter->child[i] != nullptr) {
|
|
if (iter->priority < iter->child[i]->priority) {
|
|
fprintf(stderr, "%.*s has priority < its child %.*s\n", iter->len,
|
|
(const char *)(iter + 1), iter->child[i]->len,
|
|
(const char *)(iter->child[i] + 1));
|
|
success = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
assert(std::is_sorted(keys.begin(), keys.end()));
|
|
|
|
checkMaxVersion(node, success);
|
|
checkParentPointers(node, success);
|
|
|
|
// TODO Compare logical contents of map with
|
|
// reference implementation
|
|
return success;
|
|
}
|
|
|
|
template <class Stepwise>
|
|
void runInterleaved(std::span<Stepwise> remaining, int stepLimit = -1) {
|
|
while (remaining.size() > 0) {
|
|
for (int i = 0; i < int(remaining.size());) {
|
|
if (stepLimit-- == 0) {
|
|
return;
|
|
}
|
|
bool done = remaining[i].step();
|
|
if (done) {
|
|
if (i != int(remaining.size()) - 1) {
|
|
using std::swap;
|
|
swap(remaining[i], remaining.back());
|
|
}
|
|
remaining = remaining.subspan(0, remaining.size() - 1);
|
|
} else {
|
|
++i;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <class Stepwise>
|
|
void runSequential(std::span<Stepwise> remaining, int stepLimit = -1) {
|
|
for (auto &r : remaining) {
|
|
if (stepLimit-- == 0) {
|
|
return;
|
|
}
|
|
while (!r.step()) {
|
|
if (stepLimit-- == 0) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
struct ConflictSet::Impl {
|
|
Node *root;
|
|
int64_t oldestVersion;
|
|
explicit Impl(int64_t oldestVersion) noexcept
|
|
: root(createNode({nullptr, 0}, nullptr, oldestVersion)),
|
|
oldestVersion(oldestVersion) {
|
|
root->rangeVersion = oldestVersion;
|
|
}
|
|
|
|
void check(const ReadRange *reads, Result *results, int count) const {
|
|
auto iters = std::unique_ptr<Iterator[]>{new Iterator[count]};
|
|
auto begins = std::unique_ptr<Key[]>{new Key[count]};
|
|
for (int i = 0; i < count; ++i) {
|
|
begins.get()[i] = reads[i].begin;
|
|
}
|
|
lastLeqMulti(root, std::span<Key>(begins.get(), count), iters.get());
|
|
// TODO check non-singleton reads lol
|
|
for (int i = 0; i < count; ++i) {
|
|
assert(reads[i].end.len == 0);
|
|
assert(iters[i].node != nullptr);
|
|
if ((iters[i].cmp == 0
|
|
? iters[i].node->pointVersion
|
|
: iters[i].node->rangeVersion) > reads[i].readVersion) {
|
|
results[i] = ConflictSet::Conflict;
|
|
}
|
|
}
|
|
}
|
|
|
|
struct StepwiseInsert {
|
|
// Search phase state. After this phase, the heap invariant may be violated
|
|
// for (*current)->parent.
|
|
Node **current;
|
|
Node *parent;
|
|
const Key *key;
|
|
int64_t writeVersion;
|
|
|
|
StepwiseInsert() {}
|
|
StepwiseInsert(Node **root, const Key &key, int64_t writeVersion)
|
|
: current(root), parent(nullptr), key(&key),
|
|
writeVersion(writeVersion) {}
|
|
bool step() {
|
|
#if DEBUG
|
|
fprintf(stderr, "Step insert of %.*s. At node: %.*s\n", key->len, key->p,
|
|
(*current) ? (*current)->len : 7,
|
|
(*current) ? (const char *)((*current) + 1) : "nullptr");
|
|
#endif
|
|
if (*current == nullptr) {
|
|
auto *newNode = createNode(*key, parent, writeVersion);
|
|
*current = newNode;
|
|
// We could interleave the iteration in next, but we'd need a careful
|
|
// analysis for correctness and it's unlikely to be worthwhile.
|
|
auto *prev = ::next(newNode, false);
|
|
assert(prev != nullptr);
|
|
assert(prev->rangeVersion <= writeVersion);
|
|
newNode->rangeVersion = prev->rangeVersion;
|
|
return true;
|
|
} else {
|
|
// This is the key optimization - setting the max version on the way
|
|
// down the search path so we only have to do one traversal.
|
|
(*current)->maxVersion = std::max((*current)->maxVersion, writeVersion);
|
|
auto c = *key <=> **current;
|
|
if (c == 0) {
|
|
(*current)->pointVersion = writeVersion;
|
|
return true;
|
|
}
|
|
parent = *current;
|
|
current = &((*current)->child[c > 0]);
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
void addWrites(const WriteRange *writes, int count) {
|
|
auto stepwiseInserts =
|
|
std::unique_ptr<StepwiseInsert[]>{new StepwiseInsert[count]};
|
|
for (int i = 0; i < count; ++i) {
|
|
// TODO handle non-singleton writes lol
|
|
assert(writes[i].end.len == 0);
|
|
|
|
stepwiseInserts[i] =
|
|
StepwiseInsert{&root, writes[i].begin, writes[i].writeVersion};
|
|
}
|
|
|
|
// TODO Descend until queries for front and back diverge
|
|
|
|
// Mitigate potential n^2 behavior of insertion by shuffling the insertion
|
|
// order. Not sure how this interacts with interleaved insertion but it's
|
|
// probably fine.
|
|
// TODO better/faster RNG?
|
|
std::mt19937 g(fastRand());
|
|
std::shuffle(stepwiseInserts.get(), stepwiseInserts.get() + count, g);
|
|
|
|
runInterleaved(std::span<StepwiseInsert>(stepwiseInserts.get(), count));
|
|
|
|
std::vector<Node *> workList;
|
|
workList.reserve(count);
|
|
for (int i = 0; i < count; ++i) {
|
|
workList.push_back(*stepwiseInserts[i].current);
|
|
}
|
|
|
|
while (!workList.empty()) {
|
|
Node *n = workList.back();
|
|
workList.pop_back();
|
|
#if DEBUG
|
|
fprintf(stderr, "\tcheck heap invariant %.*s\n", n->len,
|
|
(const char *)(n + 1));
|
|
#endif
|
|
if (n->parent == nullptr) {
|
|
continue;
|
|
}
|
|
const bool dir = n == n->parent->child[1];
|
|
assert(dir || n == n->parent->child[0]);
|
|
// p is the address of the pointer to n->parent in the tree
|
|
Node **p = n->parent->parent == nullptr
|
|
? &root
|
|
: &n->parent->parent
|
|
->child[n->parent->parent->child[1] == n->parent];
|
|
assert(*p == n->parent);
|
|
if (n->parent->priority < n->priority) {
|
|
#if DEBUG
|
|
fprintf(stderr, "\trotate %.*s %s\n", n->len, (const char *)(n + 1),
|
|
!dir ? "right" : "left");
|
|
#endif
|
|
rotate(p, !dir);
|
|
workList.push_back(*p);
|
|
assert((*p)->child[!dir] != nullptr);
|
|
auto *lr = (*p)->child[!dir]->child[dir];
|
|
if (lr != nullptr) {
|
|
workList.push_back(lr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void setOldestVersion(int64_t oldestVersion) {
|
|
assert(oldestVersion > this->oldestVersion);
|
|
this->oldestVersion = oldestVersion;
|
|
}
|
|
|
|
~Impl() {
|
|
std::vector<Node *> toFree;
|
|
if (root != nullptr) {
|
|
toFree.push_back(root);
|
|
}
|
|
while (toFree.size() > 0) {
|
|
Node *n = toFree.back();
|
|
toFree.pop_back();
|
|
for (int i = 0; i < 2; ++i) {
|
|
auto *c = std::exchange(n->child[i], nullptr);
|
|
if (c != nullptr) {
|
|
toFree.push_back(c);
|
|
}
|
|
}
|
|
destroyNode(n);
|
|
}
|
|
}
|
|
};
|
|
|
|
void ConflictSet::check(const ReadRange *reads, Result *results,
|
|
int count) const {
|
|
return impl->check(reads, results, count);
|
|
}
|
|
|
|
void ConflictSet::addWrites(const WriteRange *writes, int count) {
|
|
return impl->addWrites(writes, count);
|
|
}
|
|
|
|
void ConflictSet::setOldestVersion(int64_t oldestVersion) {
|
|
return impl->setOldestVersion(oldestVersion);
|
|
}
|
|
|
|
ConflictSet::ConflictSet(int64_t oldestVersion)
|
|
: impl(new Impl{oldestVersion}) {}
|
|
|
|
ConflictSet::~ConflictSet() { delete impl; }
|
|
|
|
ConflictSet::ConflictSet(ConflictSet &&other) noexcept
|
|
: impl(std::exchange(other.impl, nullptr)) {}
|
|
|
|
ConflictSet &ConflictSet::operator=(ConflictSet &&other) noexcept {
|
|
impl = std::exchange(other.impl, nullptr);
|
|
return *this;
|
|
}
|
|
|
|
#ifdef ENABLE_TESTS
|
|
int main(void) {
|
|
int64_t writeVersion = 0;
|
|
ConflictSet::Impl cs{writeVersion};
|
|
constexpr int kNumKeys = 5;
|
|
ConflictSet::WriteRange write[kNumKeys];
|
|
for (int i = 0; i < kNumKeys; ++i) {
|
|
write[i].begin = toKey(i);
|
|
write[i].end.len = 0;
|
|
write[i].writeVersion = ++writeVersion;
|
|
}
|
|
cs.addWrites(write, kNumKeys);
|
|
debugPrintDot(stdout, cs.root);
|
|
checkInvariants(cs.root);
|
|
}
|
|
#endif |