390 lines
12 KiB
C++
390 lines
12 KiB
C++
#include "ConflictSet.h"
|
|
|
|
#include <cassert>
|
|
#include <compare>
|
|
#include <memory>
|
|
#include <span>
|
|
#include <utility>
|
|
|
|
using Key = ConflictSet::Key;
|
|
|
|
auto operator<=>(const Key &lhs, const Key &rhs) {
|
|
const int minLen = std::min(lhs.len, rhs.len);
|
|
const int c = memcmp(lhs.p, rhs.p, minLen);
|
|
return c != 0 ? c <=> 0 : lhs.len <=> rhs.len;
|
|
}
|
|
|
|
namespace {
|
|
// A node in the tree representing write conflict history. This tree maintains
|
|
// several invariants:
|
|
|
|
// 1. BST invariant: all keys in the tree rooted at the left child of a node
|
|
// compare less than that node's key, and all keys in the tree rooted at the
|
|
// right child of a node compare greater than that node's key.
|
|
// 2. Heap invariant: the priority of a node is greater than all the priorities
|
|
// of its children (transitively)
|
|
// 3. Max invariant: `maxVersion` is the max among all values of `pointVersion`
|
|
// and `beyondVersion` for this node and its children (transitively)
|
|
// 4. The lowest key (an empty byte sequence) is always physically present in
|
|
// the tree so that "last less than or equal" queries are always well-defined.
|
|
|
|
// Logically, the contents of the tree represent a "range map" where all of the
|
|
// infinitely many points in the key space are associated with a writeVersion.
|
|
// If a point is physically present in the tree, then its writeVersion is its
|
|
// node's `pointVersion`. Otherwise, its writeVersion is the `rangeVersion` of
|
|
// the node with the last key less than point.
|
|
struct Node {
|
|
// See "Max invariant" above
|
|
int64_t maxVersion;
|
|
// The write version of the point in the key space represented by this node's
|
|
// key
|
|
int64_t pointVersion;
|
|
// The write version of the range immediately after this node's key, until
|
|
// just before the next key in the tree. I.e. (this key, next key)
|
|
int64_t rangeVersion;
|
|
// child[0] is the left child or nullptr. child[1] is the right child or
|
|
// nullptr
|
|
Node *child[2];
|
|
// The parent of this node in the tree, or nullptr if this node is the root
|
|
Node *parent;
|
|
// As a treap, this tree satisfies the heap invariant on each node's priority
|
|
uint32_t priority;
|
|
// The length of this node's key
|
|
int len;
|
|
// The contents of this node's key
|
|
// uint8_t[len];
|
|
|
|
auto operator<=>(const Node &other) const {
|
|
const int minLen = std::min(len, other.len);
|
|
const int c = memcmp(this + 1, &other + 1, minLen);
|
|
return c != 0 ? c <=> 0 : len <=> other.len;
|
|
}
|
|
auto operator<=>(const ConflictSet::Key &other) const {
|
|
const int minLen = std::min<int>(len, other.len);
|
|
const int c = memcmp(this + 1, other.p, minLen);
|
|
return c != 0 ? c <=> 0 : len <=> other.len;
|
|
}
|
|
};
|
|
|
|
// TODO: use a better prng. This is technically vulnerable to a
|
|
// denial-of-service attack that can make conflict-checking linear in the
|
|
// number of nodes in the tree.
|
|
thread_local uint32_t gSeed = 1013904223L;
|
|
uint32_t fastRand() {
|
|
auto result = gSeed;
|
|
gSeed = gSeed * 1664525L + 1013904223L;
|
|
return result;
|
|
}
|
|
|
|
// Note: `rangeVersion` is left uninitialized.
|
|
Node *createNode(const Key &key, Node *parent, int64_t pointVersion) {
|
|
assert(key.len <= std::numeric_limits<int>::max());
|
|
Node *result = (Node *)malloc(sizeof(Node) + key.len);
|
|
result->maxVersion = pointVersion;
|
|
result->pointVersion = pointVersion;
|
|
result->child[0] = nullptr;
|
|
result->child[1] = nullptr;
|
|
result->parent = parent;
|
|
result->priority = 0xff & fastRand();
|
|
result->len = key.len;
|
|
memcpy(result + 1, key.p, key.len);
|
|
return result;
|
|
}
|
|
|
|
void destroyNode(Node *node) {
|
|
assert(node->child[0] == nullptr);
|
|
assert(node->child[1] == nullptr);
|
|
free(node);
|
|
}
|
|
|
|
struct Iterator {
|
|
Node *node;
|
|
int cmp;
|
|
};
|
|
|
|
void lastLeqMulti(Node *root, std::span<Key> keys, Iterator *results) {
|
|
assert(std::is_sorted(keys.begin(), keys.end()));
|
|
|
|
if (keys.size() == 0) {
|
|
return;
|
|
}
|
|
|
|
struct Coro {
|
|
Node *current;
|
|
Node *result;
|
|
const Key *key;
|
|
int resultC = -1;
|
|
int index;
|
|
int lcp[2]{};
|
|
std::strong_ordering c = std::strong_ordering::equal;
|
|
|
|
Coro() {}
|
|
Coro(Node *current, Node *result, const Key &key, int index)
|
|
: current(current), result(result), key(&key), index(index) {}
|
|
|
|
bool step() {
|
|
if (current == nullptr) {
|
|
return true;
|
|
}
|
|
c = *current <=> *key;
|
|
if (c == 0) {
|
|
result = current;
|
|
resultC = 0;
|
|
return true;
|
|
}
|
|
result = c < 0 ? current : result;
|
|
current = current->child[c < 0];
|
|
return false;
|
|
}
|
|
};
|
|
|
|
auto coros = std::unique_ptr<Coro[]>{new Coro[keys.size()]};
|
|
|
|
// Descend until queries for front and back diverge
|
|
Node *current = root;
|
|
Node *resultP = nullptr;
|
|
auto coroBegin = Coro(current, resultP, keys.front(), -1);
|
|
auto coroEnd = Coro(current, resultP, keys.back(), -1);
|
|
for (;;) {
|
|
bool done1 = coroBegin.step();
|
|
bool done2 = coroEnd.step();
|
|
if (!done1 && !done2 && coroBegin.c == coroEnd.c) {
|
|
assert(coroBegin.current == coroEnd.current);
|
|
assert(coroBegin.result == coroEnd.result);
|
|
current = coroBegin.current;
|
|
resultP = coroBegin.result;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
int index = 0;
|
|
{
|
|
auto iter = coros.get();
|
|
for (const auto &k : keys) {
|
|
*iter++ = Coro(current, resultP, k, index++);
|
|
}
|
|
}
|
|
auto remaining = std::span<Coro>(coros.get(), keys.size());
|
|
while (remaining.size() > 0) {
|
|
for (int i = 0; i < int(remaining.size());) {
|
|
bool done = remaining[i].step();
|
|
if (done) {
|
|
const auto &c = remaining[i];
|
|
results[c.index] = Iterator{c.result, c.resultC};
|
|
if (i != int(remaining.size()) - 1) {
|
|
remaining[i] = remaining.back();
|
|
}
|
|
remaining = remaining.subspan(0, remaining.size() - 1);
|
|
} else {
|
|
++i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return a pointer to the node whose key immediately follows `n`'s key (if
|
|
// `dir` is false, precedes). Return nullptr if none exists.
|
|
[[maybe_unused]] Node *next(Node *n, bool dir) {
|
|
// Traverse left spine of right child (when moving right, i.e. dir = true)
|
|
if (n->child[dir]) {
|
|
n = n->child[dir];
|
|
while (n->child[!dir]) {
|
|
n = n->child[!dir];
|
|
}
|
|
} else {
|
|
// Search upward for a node such that we're the left child (when moving
|
|
// right, i.e. dir = true)
|
|
while (n->parent && n == n->parent->child[dir]) {
|
|
n = n->parent;
|
|
}
|
|
n = n->parent;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
// Return a pointer to the node whose key is greatest among keys in the tree
|
|
// rooted at `n` (if dir = false, least). Return nullptr if none exists (i.e.
|
|
// `n` is null).
|
|
[[maybe_unused]] Node *extrema(Node *n, bool dir) {
|
|
if (n == nullptr) {
|
|
return nullptr;
|
|
}
|
|
while (n->child[dir] != nullptr) {
|
|
n = n->child[dir];
|
|
}
|
|
return n;
|
|
}
|
|
|
|
[[maybe_unused]] void debugPrintDot(FILE *file, Node *node) {
|
|
|
|
struct DebugDotPrinter {
|
|
|
|
explicit DebugDotPrinter(FILE *file) : file(file) {}
|
|
|
|
void print(Node *node) {
|
|
for (int i = 0; i < 2; ++i) {
|
|
if (node->child[i] != nullptr) {
|
|
fprintf(file, " k_%.*s -> k_%.*s;\n", node->len,
|
|
(const char *)(node + 1), node->child[i]->len,
|
|
(const char *)(node->child[i] + 1));
|
|
print(node->child[i]);
|
|
} else {
|
|
fprintf(file, " k_%.*s -> null%d;\n", node->len,
|
|
(const char *)(node + 1), id);
|
|
++id;
|
|
}
|
|
}
|
|
}
|
|
int id = 0;
|
|
FILE *file;
|
|
};
|
|
|
|
fprintf(file, "digraph TreeSet {\n");
|
|
fprintf(file, " node [fontname=\"Scientifica\"];\n");
|
|
if (node != nullptr) {
|
|
DebugDotPrinter printer{file};
|
|
fprintf(file, "\n");
|
|
printer.print(node);
|
|
fprintf(file, "\n");
|
|
for (auto iter = extrema(node, false); iter != nullptr;
|
|
iter = next(iter, true)) {
|
|
fprintf(file, " k_%.*s [label=\"k=%.*s;p=%u;m=%d;v=%d,r=%d\"];\n",
|
|
iter->len, (const char *)(iter + 1), iter->len,
|
|
(const char *)(iter + 1), iter->priority, int(iter->maxVersion),
|
|
int(iter->pointVersion), int(iter->rangeVersion));
|
|
}
|
|
for (int i = 0; i < printer.id; ++i) {
|
|
fprintf(file, " null%d [shape=point];\n", i);
|
|
}
|
|
}
|
|
fprintf(file, "}\n");
|
|
}
|
|
|
|
} // namespace
|
|
|
|
struct ConflictSet::Impl {
|
|
Node *root;
|
|
int64_t oldestVersion;
|
|
explicit Impl(int64_t oldestVersion) noexcept
|
|
: root(createNode({nullptr, 0}, nullptr, oldestVersion)),
|
|
oldestVersion(oldestVersion) {
|
|
root->rangeVersion = oldestVersion;
|
|
}
|
|
|
|
void check(const ReadRange *reads, Result *results, int count) const {
|
|
auto iters = std::unique_ptr<Iterator[]>{new Iterator[count]};
|
|
auto begins = std::unique_ptr<Key[]>{new Key[count]};
|
|
for (int i = 0; i < count; ++i) {
|
|
begins.get()[i] = reads[i].begin;
|
|
}
|
|
lastLeqMulti(root, std::span<Key>(begins.get(), count), iters.get());
|
|
// TODO check non-singleton reads lol
|
|
for (int i = 0; i < count; ++i) {
|
|
assert(reads[i].end.len == 0);
|
|
assert(iters[i].node != nullptr);
|
|
if ((iters[i].cmp == 0
|
|
? iters[i].node->pointVersion
|
|
: iters[i].node->rangeVersion) > reads[i].readVersion) {
|
|
results[i] = ConflictSet::Conflict;
|
|
}
|
|
}
|
|
}
|
|
|
|
void addWriteNaive(const WriteRange &write) {
|
|
// TODO handle non-singleton writes lol
|
|
Node **current = &root;
|
|
Node *parent = nullptr;
|
|
const auto &key = write.begin;
|
|
for (;;) {
|
|
if (*current == nullptr) {
|
|
auto *newNode = createNode(key, parent, write.writeVersion);
|
|
*current = newNode;
|
|
auto *prev = ::next(newNode, false);
|
|
assert(prev != nullptr);
|
|
assert(prev->rangeVersion <= write.writeVersion);
|
|
newNode->rangeVersion = prev->rangeVersion;
|
|
break;
|
|
} else {
|
|
// TODO this assert won't be valid in the final design
|
|
assert((*current)->maxVersion <= write.writeVersion);
|
|
(*current)->maxVersion = write.writeVersion;
|
|
auto c = key <=> **current;
|
|
if (c == 0) {
|
|
(*current)->pointVersion = write.writeVersion;
|
|
break;
|
|
}
|
|
parent = *current;
|
|
current = &((*current)->child[c > 0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void addWrites(const WriteRange *writes, int count) {
|
|
for (const auto &w : std::span<const WriteRange>(writes, count)) {
|
|
addWriteNaive(w);
|
|
}
|
|
}
|
|
|
|
void setOldestVersion(int64_t oldestVersion) {
|
|
assert(oldestVersion > this->oldestVersion);
|
|
this->oldestVersion = oldestVersion;
|
|
}
|
|
|
|
~Impl() {
|
|
std::vector<Node *> toFree;
|
|
if (root != nullptr) {
|
|
toFree.push_back(root);
|
|
}
|
|
while (toFree.size() > 0) {
|
|
Node *n = toFree.back();
|
|
toFree.pop_back();
|
|
for (int i = 0; i < 2; ++i) {
|
|
auto *c = std::exchange(n->child[i], nullptr);
|
|
if (c != nullptr) {
|
|
toFree.push_back(c);
|
|
}
|
|
}
|
|
destroyNode(n);
|
|
}
|
|
}
|
|
};
|
|
|
|
void ConflictSet::check(const ReadRange *reads, Result *results,
|
|
int count) const {
|
|
return impl->check(reads, results, count);
|
|
}
|
|
|
|
void ConflictSet::addWrites(const WriteRange *writes, int count) {
|
|
return impl->addWrites(writes, count);
|
|
}
|
|
|
|
void ConflictSet::setOldestVersion(int64_t oldestVersion) {
|
|
return impl->setOldestVersion(oldestVersion);
|
|
}
|
|
|
|
ConflictSet::ConflictSet(int64_t oldestVersion)
|
|
: impl(new Impl{oldestVersion}) {}
|
|
|
|
ConflictSet::~ConflictSet() { delete impl; }
|
|
|
|
ConflictSet::ConflictSet(ConflictSet &&other) noexcept
|
|
: impl(std::exchange(other.impl, nullptr)) {}
|
|
|
|
ConflictSet &ConflictSet::operator=(ConflictSet &&other) noexcept {
|
|
impl = std::exchange(other.impl, nullptr);
|
|
return *this;
|
|
}
|
|
|
|
#ifdef ENABLE_TESTS
|
|
int main(void) {
|
|
ConflictSet::Impl cs{0};
|
|
ConflictSet::WriteRange write;
|
|
write.begin.p = (const uint8_t *)"0000";
|
|
write.begin.len = 4;
|
|
write.end.len = 0;
|
|
write.writeVersion = 1;
|
|
cs.addWrites(&write, 1);
|
|
debugPrintDot(stdout, cs.root);
|
|
}
|
|
#endif |