diff --git a/CMakeLists.txt b/CMakeLists.txt index 444ac75..8be0dc8 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -63,11 +63,10 @@ add_subdirectory(third_party) add_executable(versioned_map_main VersionedMap.cpp) target_include_directories(versioned_map_main PUBLIC ${CMAKE_SOURCE_DIR}/include) -target_link_libraries(versioned_map_main PRIVATE nanobench roaring) +target_link_libraries(versioned_map_main PRIVATE nanobench) target_compile_definitions(versioned_map_main PRIVATE ENABLE_MAIN) add_library(versioned_map VersionedMap.cpp) target_compile_options(versioned_map PRIVATE -fno-exceptions) target_include_directories(versioned_map PUBLIC ${CMAKE_SOURCE_DIR}/include) -target_link_libraries(versioned_map PRIVATE roaring) set_target_properties(versioned_map PROPERTIES LINKER_LANGUAGE C) diff --git a/third_party/CMakeLists.txt b/third_party/CMakeLists.txt index 8c0be7f..86f88df 100644 --- a/third_party/CMakeLists.txt +++ b/third_party/CMakeLists.txt @@ -1,7 +1,3 @@ -add_library(roaring ${CMAKE_CURRENT_SOURCE_DIR}/roaring.c) -target_include_directories(roaring - PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/include/roaring) - add_library(nanobench ${CMAKE_CURRENT_SOURCE_DIR}/nanobench.cpp) target_include_directories(nanobench PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/include/nanobench) diff --git a/third_party/include/roaring/roaring.h b/third_party/include/roaring/roaring.h deleted file mode 100644 index ffef052..0000000 --- a/third_party/include/roaring/roaring.h +++ /dev/null @@ -1,2908 +0,0 @@ -// !!! DO NOT EDIT - THIS IS AN AUTO-GENERATED FILE !!! -// Created by amalgamation.sh on 2024-04-02T13:42:32Z - -/* - * The CRoaring project is under a dual license (Apache/MIT). - * Users of the library may choose one or the other license. - */ -/* - * Copyright 2016-2022 The CRoaring authors - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - * SPDX-License-Identifier: Apache-2.0 - */ -/* - * MIT License - * - * Copyright 2016-2022 The CRoaring authors - * - * Permission is hereby granted, free of charge, to any - * person obtaining a copy of this software and associated - * documentation files (the "Software"), to deal in the - * Software without restriction, including without - * limitation the rights to use, copy, modify, merge, - * publish, distribute, sublicense, and/or sell copies of - * the Software, and to permit persons to whom the Software - * is furnished to do so, subject to the following - * conditions: - * - * The above copyright notice and this permission notice - * shall be included in all copies or substantial portions - * of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF - * ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED - * TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A - * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT - * SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY - * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION - * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR - * IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - * DEALINGS IN THE SOFTWARE. - * - * SPDX-License-Identifier: MIT - */ - -/* begin file include/roaring/roaring_version.h */ -// clang-format off -// /include/roaring/roaring_version.h automatically generated by release.py, do not change by hand -#ifndef ROARING_INCLUDE_ROARING_VERSION -#define ROARING_INCLUDE_ROARING_VERSION -#define ROARING_VERSION "3.0.1" -enum { - ROARING_VERSION_MAJOR = 3, - ROARING_VERSION_MINOR = 0, - ROARING_VERSION_REVISION = 1 -}; -#endif // ROARING_INCLUDE_ROARING_VERSION -// clang-format on/* end file include/roaring/roaring_version.h */ -/* begin file include/roaring/roaring_types.h */ -/* - Typedefs used by various components -*/ - -#ifndef ROARING_TYPES_H -#define ROARING_TYPES_H - -#include -#include - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace api { -#endif - -/** - * When building .c files as C++, there's added compile-time checking if the - * container types are derived from a `container_t` base class. So long as - * such a base class is empty, the struct will behave compatibly with C structs - * despite the derivation. This is due to the Empty Base Class Optimization: - * - * https://en.cppreference.com/w/cpp/language/ebo - * - * But since C isn't namespaced, taking `container_t` globally might collide - * with other projects. So roaring.h uses ROARING_CONTAINER_T, while internal - * code #undefs that after declaring `typedef ROARING_CONTAINER_T container_t;` - */ -#if defined(__cplusplus) -extern "C++" { -struct container_s {}; -} -#define ROARING_CONTAINER_T ::roaring::api::container_s -#else -#define ROARING_CONTAINER_T void // no compile-time checking -#endif - -#define ROARING_FLAG_COW UINT8_C(0x1) -#define ROARING_FLAG_FROZEN UINT8_C(0x2) - -/** - * Roaring arrays are array-based key-value pairs having containers as values - * and 16-bit integer keys. A roaring bitmap might be implemented as such. - */ - -// parallel arrays. Element sizes quite different. -// Alternative is array -// of structs. Which would have better -// cache performance through binary searches? - -typedef struct roaring_array_s { - int32_t size; - int32_t allocation_size; - ROARING_CONTAINER_T **containers; // Use container_t in non-API files! - uint16_t *keys; - uint8_t *typecodes; - uint8_t flags; -} roaring_array_t; - -typedef bool (*roaring_iterator)(uint32_t value, void *param); -typedef bool (*roaring_iterator64)(uint64_t value, void *param); - -/** - * (For advanced users.) - * The roaring_statistics_t can be used to collect detailed statistics about - * the composition of a roaring bitmap. - */ -typedef struct roaring_statistics_s { - uint32_t n_containers; /* number of containers */ - - uint32_t n_array_containers; /* number of array containers */ - uint32_t n_run_containers; /* number of run containers */ - uint32_t n_bitset_containers; /* number of bitmap containers */ - - uint32_t - n_values_array_containers; /* number of values in array containers */ - uint32_t n_values_run_containers; /* number of values in run containers */ - uint32_t - n_values_bitset_containers; /* number of values in bitmap containers */ - - uint32_t n_bytes_array_containers; /* number of allocated bytes in array - containers */ - uint32_t n_bytes_run_containers; /* number of allocated bytes in run - containers */ - uint32_t n_bytes_bitset_containers; /* number of allocated bytes in bitmap - containers */ - - uint32_t - max_value; /* the maximal value, undefined if cardinality is zero */ - uint32_t - min_value; /* the minimal value, undefined if cardinality is zero */ - uint64_t sum_value; /* the sum of all values (could be used to compute - average) */ - - uint64_t cardinality; /* total number of values stored in the bitmap */ - - // and n_values_arrays, n_values_rle, n_values_bitmap -} roaring_statistics_t; - -/** - * Roaring-internal type used to iterate within a roaring container. - */ -typedef struct roaring_container_iterator_s { - // For bitset and array containers this is the index of the bit / entry. - // For run containers this points at the run. - int32_t index; -} roaring_container_iterator_t; - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace api { -#endif - -#endif /* ROARING_TYPES_H */ -/* end file include/roaring/roaring_types.h */ -/* begin file include/roaring/portability.h */ -/* - * portability.h - * - */ - -/** - * All macros should be prefixed with either CROARING or ROARING. - * The library uses both ROARING_... - * as well as CROAIRING_ as prefixes. The ROARING_ prefix is for - * macros that are provided by the build system or that are closely - * related to the format. The header macros may also use ROARING_. - * The CROARING_ prefix is for internal macros that a user is unlikely - * to ever interact with. - */ - -#ifndef CROARING_INCLUDE_PORTABILITY_H_ -#define CROARING_INCLUDE_PORTABILITY_H_ - -#ifndef _GNU_SOURCE -#define _GNU_SOURCE 1 -#endif // _GNU_SOURCE -#ifndef __STDC_FORMAT_MACROS -#define __STDC_FORMAT_MACROS 1 -#endif // __STDC_FORMAT_MACROS - -#ifdef _MSC_VER -#define CROARING_VISUAL_STUDIO 1 -/** - * We want to differentiate carefully between - * clang under visual studio and regular visual - * studio. - */ -#ifdef __clang__ -// clang under visual studio -#define CROARING_CLANG_VISUAL_STUDIO 1 -#else -// just regular visual studio (best guess) -#define CROARING_REGULAR_VISUAL_STUDIO 1 -#endif // __clang__ -#endif // _MSC_VER -#ifndef CROARING_VISUAL_STUDIO -#define CROARING_VISUAL_STUDIO 0 -#endif -#ifndef CROARING_CLANG_VISUAL_STUDIO -#define CROARING_CLANG_VISUAL_STUDIO 0 -#endif -#ifndef CROARING_REGULAR_VISUAL_STUDIO -#define CROARING_REGULAR_VISUAL_STUDIO 0 -#endif - -#if defined(_POSIX_C_SOURCE) && (_POSIX_C_SOURCE < 200809L) -#undef _POSIX_C_SOURCE -#endif - -#ifndef _POSIX_C_SOURCE -#define _POSIX_C_SOURCE 200809L -#endif // !(defined(_POSIX_C_SOURCE)) || (_POSIX_C_SOURCE < 200809L) -#if !(defined(_XOPEN_SOURCE)) || (_XOPEN_SOURCE < 700) -#define _XOPEN_SOURCE 700 -#endif // !(defined(_XOPEN_SOURCE)) || (_XOPEN_SOURCE < 700) - -#ifdef __illumos__ -#define __EXTENSIONS__ -#endif - -#include -#include -#include // will provide posix_memalign with _POSIX_C_SOURCE as defined above -#ifdef __GLIBC__ -#include // this should never be needed but there are some reports that it is needed. -#endif - -#ifdef __cplusplus -extern "C" { // portability definitions are in global scope, not a namespace -#endif - -#if defined(__SIZEOF_LONG_LONG__) && __SIZEOF_LONG_LONG__ != 8 -#error This code assumes 64-bit long longs (by use of the GCC intrinsics). Your system is not currently supported. -#endif - -#if CROARING_REGULAR_VISUAL_STUDIO -#ifndef __restrict__ -#define __restrict__ __restrict -#endif // __restrict__ -#endif // CROARING_REGULAR_VISUAL_STUDIO - -#if defined(__x86_64__) || defined(_M_X64) -// we have an x64 processor -#define CROARING_IS_X64 1 - -#if defined(_MSC_VER) && (_MSC_VER < 1910) -// Old visual studio systems won't support AVX2 well. -#undef CROARING_IS_X64 -#endif - -#if defined(__clang_major__) && (__clang_major__ <= 8) && !defined(__AVX2__) -// Older versions of clang have a bug affecting us -// https://stackoverflow.com/questions/57228537/how-does-one-use-pragma-clang-attribute-push-with-c-namespaces -#undef CROARING_IS_X64 -#endif - -#ifdef ROARING_DISABLE_X64 -#undef CROARING_IS_X64 -#endif -// we include the intrinsic header -#if !CROARING_REGULAR_VISUAL_STUDIO -/* Non-Microsoft C/C++-compatible compiler */ -#include // on some recent GCC, this will declare posix_memalign - -#if CROARING_CLANG_VISUAL_STUDIO - -/** - * You are not supposed, normally, to include these - * headers directly. Instead you should either include intrin.h - * or x86intrin.h. However, when compiling with clang - * under Windows (i.e., when _MSC_VER is set), these headers - * only get included *if* the corresponding features are detected - * from macros: - * e.g., if __AVX2__ is set... in turn, we normally set these - * macros by compiling against the corresponding architecture - * (e.g., arch:AVX2, -mavx2, etc.) which compiles the whole - * software with these advanced instructions. These headers would - * normally guard against such usage, but we carefully included - * (or ) before, so the headers - * are fooled. - */ -// To avoid reordering imports: -// clang-format off -#include // for _blsr_u64 -#include // for __lzcnt64 -#include // for most things (AVX2, AVX512, _popcnt64) -#include -#include -#include -#include -#include -#if _MSC_VER >= 1920 -// Important: we need the AVX-512 headers: -#include -#include -#include -#include -#include -#include -#include -#include -// clang-format on -#endif // _MSC_VER >= 1920 -// unfortunately, we may not get _blsr_u64, but, thankfully, clang -// has it as a macro. -#ifndef _blsr_u64 -// we roll our own -#define _blsr_u64(n) ((n - 1) & n) -#endif // _blsr_u64 -#endif // SIMDJSON_CLANG_VISUAL_STUDIO - -#endif // CROARING_REGULAR_VISUAL_STUDIO -#endif // defined(__x86_64__) || defined(_M_X64) - -#if !defined(CROARING_USENEON) && !defined(DISABLENEON) && defined(__ARM_NEON) -#define CROARING_USENEON -#endif -#if defined(CROARING_USENEON) -#include -#endif - -#if !CROARING_REGULAR_VISUAL_STUDIO -/* Non-Microsoft C/C++-compatible compiler, assumes that it supports inline - * assembly */ -#define CROARING_INLINE_ASM 1 -#endif // _MSC_VER - -#if CROARING_REGULAR_VISUAL_STUDIO -/* Microsoft C/C++-compatible compiler */ -#include - -#ifndef __clang__ // if one compiles with MSVC *with* clang, then these - // intrinsics are defined!!! -#define CROARING_INTRINSICS 1 -// sadly there is no way to check whether we are missing these intrinsics -// specifically. - -/* wrappers for Visual Studio built-ins that look like gcc built-ins - * __builtin_ctzll */ -/** result might be undefined when input_num is zero */ -inline int roaring_trailing_zeroes(unsigned long long input_num) { - unsigned long index; -#ifdef _WIN64 // highly recommended!!! - _BitScanForward64(&index, input_num); -#else // if we must support 32-bit Windows - if ((uint32_t)input_num != 0) { - _BitScanForward(&index, (uint32_t)input_num); - } else { - _BitScanForward(&index, (uint32_t)(input_num >> 32)); - index += 32; - } -#endif // _WIN64 - return index; -} - -/* wrappers for Visual Studio built-ins that look like gcc built-ins - * __builtin_clzll */ -/** result might be undefined when input_num is zero */ -inline int roaring_leading_zeroes(unsigned long long input_num) { - unsigned long index; -#ifdef _WIN64 // highly recommended!!! - _BitScanReverse64(&index, input_num); -#else // if we must support 32-bit Windows - if (input_num > 0xFFFFFFFF) { - _BitScanReverse(&index, (uint32_t)(input_num >> 32)); - index += 32; - } else { - _BitScanReverse(&index, (uint32_t)(input_num)); - } -#endif // _WIN64 - return 63 - index; -} - -/* Use #define so this is effective even under /Ob0 (no inline) */ -#define roaring_unreachable __assume(0) -#endif // __clang__ - -#endif // CROARING_REGULAR_VISUAL_STUDIO - -#ifndef CROARING_INTRINSICS -#define CROARING_INTRINSICS 1 -#define roaring_unreachable __builtin_unreachable() -/** result might be undefined when input_num is zero */ -inline int roaring_trailing_zeroes(unsigned long long input_num) { - return __builtin_ctzll(input_num); -} -/** result might be undefined when input_num is zero */ -inline int roaring_leading_zeroes(unsigned long long input_num) { - return __builtin_clzll(input_num); -} -#endif - -#if CROARING_REGULAR_VISUAL_STUDIO -#define ALIGNED(x) __declspec(align(x)) -#elif defined(__GNUC__) || defined(__clang__) -#define ALIGNED(x) __attribute__((aligned(x))) -#else -#warning "Warning. Unrecognized compiler." -#define ALIGNED(x) -#endif - -#if defined(__GNUC__) || defined(__clang__) -#define CROARING_WARN_UNUSED __attribute__((warn_unused_result)) -#else -#define CROARING_WARN_UNUSED -#endif - -#define IS_BIG_ENDIAN (*(uint16_t *)"\0\xff" < 0x100) - -#ifdef CROARING_USENEON -// we can always compute the popcount fast. -#elif (defined(_M_ARM) || defined(_M_ARM64)) && \ - ((defined(_WIN64) || defined(_WIN32)) && \ - defined(CROARING_REGULAR_VISUAL_STUDIO) && \ - CROARING_REGULAR_VISUAL_STUDIO) -// we will need this function: -static inline int roaring_hamming_backup(uint64_t x) { - uint64_t c1 = UINT64_C(0x5555555555555555); - uint64_t c2 = UINT64_C(0x3333333333333333); - uint64_t c4 = UINT64_C(0x0F0F0F0F0F0F0F0F); - x -= (x >> 1) & c1; - x = ((x >> 2) & c2) + (x & c2); - x = (x + (x >> 4)) & c4; - x *= UINT64_C(0x0101010101010101); - return x >> 56; -} -#endif - -static inline int roaring_hamming(uint64_t x) { -#if defined(_WIN64) && defined(CROARING_REGULAR_VISUAL_STUDIO) && \ - CROARING_REGULAR_VISUAL_STUDIO -#ifdef CROARING_USENEON - return vaddv_u8(vcnt_u8(vcreate_u8(input_num))); -#elif defined(_M_ARM64) - return roaring_hamming_backup(x); - // (int) _CountOneBits64(x); is unavailable -#else // _M_ARM64 - return (int)__popcnt64(x); -#endif // _M_ARM64 -#elif defined(_WIN32) && defined(CROARING_REGULAR_VISUAL_STUDIO) && \ - CROARING_REGULAR_VISUAL_STUDIO -#ifdef _M_ARM - return roaring_hamming_backup(x); - // _CountOneBits is unavailable -#else // _M_ARM - return (int)__popcnt((unsigned int)x) + - (int)__popcnt((unsigned int)(x >> 32)); -#endif // _M_ARM -#else - return __builtin_popcountll(x); -#endif -} - -#ifndef UINT64_C -#define UINT64_C(c) (c##ULL) -#endif // UINT64_C - -#ifndef UINT32_C -#define UINT32_C(c) (c##UL) -#endif // UINT32_C - -#ifdef __cplusplus -} // extern "C" { -#endif // __cplusplus - -// this is almost standard? -#undef STRINGIFY_IMPLEMENTATION_ -#undef STRINGIFY -#define STRINGIFY_IMPLEMENTATION_(a) #a -#define STRINGIFY(a) STRINGIFY_IMPLEMENTATION_(a) - -// Our fast kernels require 64-bit systems. -// -// On 32-bit x86, we lack 64-bit popcnt, lzcnt, blsr instructions. -// Furthermore, the number of SIMD registers is reduced. -// -// On 32-bit ARM, we would have smaller registers. -// -// The library should still have the fallback kernel. It is -// slower, but it should run everywhere. - -// -// Enable valid runtime implementations, and select -// CROARING_BUILTIN_IMPLEMENTATION -// - -// We are going to use runtime dispatch. -#if CROARING_IS_X64 -#ifdef __clang__ -// clang does not have GCC push pop -// warning: clang attribute push can't be used within a namespace in clang up -// til 8.0 so CROARING_TARGET_REGION and CROARING_UNTARGET_REGION must be -// *outside* of a namespace. -#define CROARING_TARGET_REGION(T) \ - _Pragma(STRINGIFY(clang attribute push(__attribute__((target(T))), \ - apply_to = function))) -#define CROARING_UNTARGET_REGION _Pragma("clang attribute pop") -#elif defined(__GNUC__) -// GCC is easier -#define CROARING_TARGET_REGION(T) \ - _Pragma("GCC push_options") _Pragma(STRINGIFY(GCC target(T))) -#define CROARING_UNTARGET_REGION _Pragma("GCC pop_options") -#endif // clang then gcc - -#endif // CROARING_IS_X64 - -// Default target region macros don't do anything. -#ifndef CROARING_TARGET_REGION -#define CROARING_TARGET_REGION(T) -#define CROARING_UNTARGET_REGION -#endif - -#define CROARING_TARGET_AVX2 \ - CROARING_TARGET_REGION("avx2,bmi,pclmul,lzcnt,popcnt") -#define CROARING_TARGET_AVX512 \ - CROARING_TARGET_REGION( \ - "avx2,bmi,bmi2,pclmul,lzcnt,popcnt,avx512f,avx512dq,avx512bw," \ - "avx512vbmi2,avx512bitalg,avx512vpopcntdq") -#define CROARING_UNTARGET_AVX2 CROARING_UNTARGET_REGION -#define CROARING_UNTARGET_AVX512 CROARING_UNTARGET_REGION - -#ifdef __AVX2__ -// No need for runtime dispatching. -// It is unnecessary and harmful to old clang to tag regions. -#undef CROARING_TARGET_AVX2 -#define CROARING_TARGET_AVX2 -#undef CROARING_UNTARGET_AVX2 -#define CROARING_UNTARGET_AVX2 -#endif - -#if defined(__AVX512F__) && defined(__AVX512DQ__) && defined(__AVX512BW__) && \ - defined(__AVX512VBMI2__) && defined(__AVX512BITALG__) && \ - defined(__AVX512VPOPCNTDQ__) -// No need for runtime dispatching. -// It is unnecessary and harmful to old clang to tag regions. -#undef CROARING_TARGET_AVX512 -#define CROARING_TARGET_AVX512 -#undef CROARING_UNTARGET_AVX512 -#define CROARING_UNTARGET_AVX512 -#endif - -// Allow unaligned memory access -#if defined(__GNUC__) || defined(__clang__) -#define ALLOW_UNALIGNED __attribute__((no_sanitize("alignment"))) -#else -#define ALLOW_UNALIGNED -#endif - -#if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) -#define CROARING_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) -#elif defined(_WIN32) -#define CROARING_IS_BIG_ENDIAN 0 -#else -#if defined(__APPLE__) || \ - defined(__FreeBSD__) // defined __BYTE_ORDER__ && defined - // __ORDER_BIG_ENDIAN__ -#include -#elif defined(sun) || \ - defined(__sun) // defined(__APPLE__) || defined(__FreeBSD__) -#include -#else // defined(__APPLE__) || defined(__FreeBSD__) - -#ifdef __has_include -#if __has_include() -#include -#endif //__has_include() -#endif //__has_include - -#endif // defined(__APPLE__) || defined(__FreeBSD__) - -#ifndef !defined(__BYTE_ORDER__) || !defined(__ORDER_LITTLE_ENDIAN__) -#define CROARING_IS_BIG_ENDIAN 0 -#endif - -#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ -#define CROARING_IS_BIG_ENDIAN 0 -#else // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ -#define CROARING_IS_BIG_ENDIAN 1 -#endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ -#endif - -// Host <-> big endian conversion. -#if CROARING_IS_BIG_ENDIAN -#define croaring_htobe64(x) (x) - -#elif defined(_WIN32) || defined(_WIN64) // CROARING_IS_BIG_ENDIAN -#include -#define croaring_htobe64(x) _byteswap_uint64(x) - -#elif defined(__APPLE__) // CROARING_IS_BIG_ENDIAN -#include -#define croaring_htobe64(x) OSSwapInt64(x) - -#elif defined(__has_include) && \ - __has_include( \ - ) && (defined(__linux__) || defined(__FreeBSD__)) // CROARING_IS_BIG_ENDIAN -#include -#if defined(__linux__) -#define croaring_htobe64(x) bswap_64(x) -#elif defined(__FreeBSD__) -#define croaring_htobe64(x) bswap64(x) -#else -#warning "Unknown platform, report as an error" -#endif - -#else // CROARING_IS_BIG_ENDIAN -// Gets compiled to bswap or equivalent on most compilers. -#define croaring_htobe64(x) \ - (((x & 0x00000000000000FFULL) << 56) | \ - ((x & 0x000000000000FF00ULL) << 40) | \ - ((x & 0x0000000000FF0000ULL) << 24) | \ - ((x & 0x00000000FF000000ULL) << 8) | ((x & 0x000000FF00000000ULL) >> 8) | \ - ((x & 0x0000FF0000000000ULL) >> 24) | \ - ((x & 0x00FF000000000000ULL) >> 40) | \ - ((x & 0xFF00000000000000ULL) >> 56)) -#endif // CROARING_IS_BIG_ENDIAN -#define croaring_be64toh(x) croaring_htobe64(x) -// End of host <-> big endian conversion. - -// Defines for the possible CROARING atomic implementations -#define CROARING_ATOMIC_IMPL_NONE 1 -#define CROARING_ATOMIC_IMPL_CPP 2 -#define CROARING_ATOMIC_IMPL_C 3 -#define CROARING_ATOMIC_IMPL_C_WINDOWS 4 - -// If the use has forced a specific implementation, use that, otherwise, -// figure out the best implementation we can use. -#if !defined(CROARING_ATOMIC_IMPL) -#if defined(__cplusplus) && __cplusplus >= 201103L -#ifdef __has_include -#if __has_include() -#define CROARING_ATOMIC_IMPL CROARING_ATOMIC_IMPL_CPP -#endif //__has_include() -#else - // We lack __has_include to check: -#define CROARING_ATOMIC_IMPL CROARING_ATOMIC_IMPL_CPP -#endif //__has_include -#elif __STDC_VERSION__ >= 201112L && !defined(__STDC_NO_ATOMICS__) -#define CROARING_ATOMIC_IMPL CROARING_ATOMIC_IMPL_C -#elif CROARING_REGULAR_VISUAL_STUDIO - // https://www.technetworkhub.com/c11-atomics-in-visual-studio-2022-version-17/ -#define CROARING_ATOMIC_IMPL CROARING_ATOMIC_IMPL_C_WINDOWS -#endif -#endif // !defined(CROARING_ATOMIC_IMPL) - -#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C -#include -typedef _Atomic(uint32_t) croaring_refcount_t; - -static inline void croaring_refcount_inc(croaring_refcount_t *val) { - // Increasing the reference counter can always be done with - // memory_order_relaxed: New references to an object can only be formed from - // an existing reference, and passing an existing reference from one thread - // to another must already provide any required synchronization. - atomic_fetch_add_explicit(val, 1, memory_order_relaxed); -} - -static inline bool croaring_refcount_dec(croaring_refcount_t *val) { - // It is important to enforce any possible access to the object in one - // thread (through an existing reference) to happen before deleting the - // object in a different thread. This is achieved by a "release" operation - // after dropping a reference (any access to the object through this - // reference must obviously happened before), and an "acquire" operation - // before deleting the object. - bool is_zero = atomic_fetch_sub_explicit(val, 1, memory_order_release) == 1; - if (is_zero) { - atomic_thread_fence(memory_order_acquire); - } - return is_zero; -} - -static inline uint32_t croaring_refcount_get(const croaring_refcount_t *val) { - return atomic_load_explicit(val, memory_order_relaxed); -} -#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_CPP -#include -typedef std::atomic croaring_refcount_t; - -static inline void croaring_refcount_inc(croaring_refcount_t *val) { - val->fetch_add(1, std::memory_order_relaxed); -} - -static inline bool croaring_refcount_dec(croaring_refcount_t *val) { - // See above comments on the c11 atomic implementation for memory ordering - bool is_zero = val->fetch_sub(1, std::memory_order_release) == 1; - if (is_zero) { - std::atomic_thread_fence(std::memory_order_acquire); - } - return is_zero; -} - -static inline uint32_t croaring_refcount_get(const croaring_refcount_t *val) { - return val->load(std::memory_order_relaxed); -} -#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C_WINDOWS -#include -#pragma intrinsic(_InterlockedIncrement) -#pragma intrinsic(_InterlockedDecrement) - -// _InterlockedIncrement and _InterlockedDecrement take a (signed) long, and -// overflow is defined to wrap, so we can pretend it is a uint32_t for our case -typedef volatile long croaring_refcount_t; - -static inline void croaring_refcount_inc(croaring_refcount_t *val) { - _InterlockedIncrement(val); -} - -static inline bool croaring_refcount_dec(croaring_refcount_t *val) { - return _InterlockedDecrement(val) == 0; -} - -static inline uint32_t croaring_refcount_get(const croaring_refcount_t *val) { - // Per - // https://learn.microsoft.com/en-us/windows/win32/sync/interlocked-variable-access - // > Simple reads and writes to properly-aligned 32-bit variables are atomic - // > operations. In other words, you will not end up with only one portion - // > of the variable updated; all bits are updated in an atomic fashion. - return *val; -} -#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_NONE -#include -typedef uint32_t croaring_refcount_t; - -static inline void croaring_refcount_inc(croaring_refcount_t *val) { - *val += 1; -} - -static inline bool croaring_refcount_dec(croaring_refcount_t *val) { - assert(*val > 0); - *val -= 1; - return val == 0; -} - -static inline uint32_t croaring_refcount_get(const croaring_refcount_t *val) { - return *val; -} -#else -#error "Unknown atomic implementation" -#endif - -#if defined(__GNUC__) || defined(__clang__) -#define CROARING_DEPRECATED __attribute__((deprecated)) -#else -#define CROARING_DEPRECATED -#endif // defined(__GNUC__) || defined(__clang__) - -// We need portability.h to be included first, -// but we also always want isadetection.h to be -// included (right after). -// See https://github.com/RoaringBitmap/CRoaring/issues/394 -// There is no scenario where we want portability.h to -// be included, but not isadetection.h: the latter is a -// strict requirement. -#endif /* INCLUDE_PORTABILITY_H_ */ -/* end file include/roaring/portability.h */ -/* begin file include/roaring/bitset/bitset.h */ -#ifndef CROARING_CBITSET_BITSET_H -#define CROARING_CBITSET_BITSET_H - -// For compatibility with MSVC with the use of `restrict` -#if (__STDC_VERSION__ >= 199901L) || \ - (defined(__GNUC__) && defined(__STDC_VERSION__)) -#define CROARING_CBITSET_RESTRICT restrict -#else -#define CROARING_CBITSET_RESTRICT -#endif // (__STDC_VERSION__ >= 199901L) || (defined(__GNUC__) && - // defined(__STDC_VERSION__ )) - -#include -#include -#include -#include -#include - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace api { -#endif - -struct bitset_s { - uint64_t *CROARING_CBITSET_RESTRICT array; - /* For simplicity and performance, we prefer to have a size and a capacity - * that is a multiple of 64 bits. Thus we only track the size and the - * capacity in terms of 64-bit words allocated */ - size_t arraysize; - size_t capacity; -}; - -typedef struct bitset_s bitset_t; - -/* Create a new bitset. Return NULL in case of failure. */ -bitset_t *bitset_create(void); - -/* Create a new bitset able to contain size bits. Return NULL in case of - * failure. */ -bitset_t *bitset_create_with_capacity(size_t size); - -/* Free memory. */ -void bitset_free(bitset_t *bitset); - -/* Set all bits to zero. */ -void bitset_clear(bitset_t *bitset); - -/* Set all bits to one. */ -void bitset_fill(bitset_t *bitset); - -/* Create a copy */ -bitset_t *bitset_copy(const bitset_t *bitset); - -/* For advanced users: Resize the bitset so that it can support newarraysize * - * 64 bits. Return true in case of success, false for failure. Pad with zeroes - * new buffer areas if requested. */ -bool bitset_resize(bitset_t *bitset, size_t newarraysize, bool padwithzeroes); - -/* returns how many bytes of memory the backend buffer uses */ -inline size_t bitset_size_in_bytes(const bitset_t *bitset) { - return bitset->arraysize * sizeof(uint64_t); -} - -/* returns how many bits can be accessed */ -inline size_t bitset_size_in_bits(const bitset_t *bitset) { - return bitset->arraysize * 64; -} - -/* returns how many words (64-bit) of memory the backend buffer uses */ -inline size_t bitset_size_in_words(const bitset_t *bitset) { - return bitset->arraysize; -} - -/* For advanced users: Grow the bitset so that it can support newarraysize * 64 - * bits with padding. Return true in case of success, false for failure. */ -bool bitset_grow(bitset_t *bitset, size_t newarraysize); - -/* attempts to recover unused memory, return false in case of - * roaring_reallocation failure */ -bool bitset_trim(bitset_t *bitset); - -/* shifts all bits by 's' positions so that the bitset representing values - * 1,2,10 would represent values 1+s, 2+s, 10+s */ -void bitset_shift_left(bitset_t *bitset, size_t s); - -/* shifts all bits by 's' positions so that the bitset representing values - * 1,2,10 would represent values 1-s, 2-s, 10-s, negative values are deleted */ -void bitset_shift_right(bitset_t *bitset, size_t s); - -/* Set the ith bit. Attempts to resize the bitset if needed (may silently fail) - */ -inline void bitset_set(bitset_t *bitset, size_t i) { - size_t shiftedi = i / 64; - if (shiftedi >= bitset->arraysize) { - if (!bitset_grow(bitset, shiftedi + 1)) { - return; - } - } - bitset->array[shiftedi] |= ((uint64_t)1) << (i % 64); -} - -/* Set the ith bit to the specified value. Attempts to resize the bitset if - * needed (may silently fail) */ -inline void bitset_set_to_value(bitset_t *bitset, size_t i, bool flag) { - size_t shiftedi = i / 64; - uint64_t mask = ((uint64_t)1) << (i % 64); - uint64_t dynmask = ((uint64_t)flag) << (i % 64); - if (shiftedi >= bitset->arraysize) { - if (!bitset_grow(bitset, shiftedi + 1)) { - return; - } - } - uint64_t w = bitset->array[shiftedi]; - w &= ~mask; - w |= dynmask; - bitset->array[shiftedi] = w; -} - -/* Get the value of the ith bit. */ -inline bool bitset_get(const bitset_t *bitset, size_t i) { - size_t shiftedi = i / 64; - if (shiftedi >= bitset->arraysize) { - return false; - } - return (bitset->array[shiftedi] & (((uint64_t)1) << (i % 64))) != 0; -} - -/* Count number of bits set. */ -size_t bitset_count(const bitset_t *bitset); - -/* Find the index of the first bit set. Or zero if the bitset is empty. */ -size_t bitset_minimum(const bitset_t *bitset); - -/* Find the index of the last bit set. Or zero if the bitset is empty. */ -size_t bitset_maximum(const bitset_t *bitset); - -/* compute the union in-place (to b1), returns true if successful, to generate a - * new bitset first call bitset_copy */ -bool bitset_inplace_union(bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2); - -/* report the size of the union (without materializing it) */ -size_t bitset_union_count(const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2); - -/* compute the intersection in-place (to b1), to generate a new bitset first - * call bitset_copy */ -void bitset_inplace_intersection(bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2); - -/* report the size of the intersection (without materializing it) */ -size_t bitset_intersection_count(const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2); - -/* returns true if the bitsets contain no common elements */ -bool bitsets_disjoint(const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2); - -/* returns true if the bitsets contain any common elements */ -bool bitsets_intersect(const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2); - -/* returns true if b1 contains all of the set bits of b2 */ -bool bitset_contains_all(const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2); - -/* compute the difference in-place (to b1), to generate a new bitset first call - * bitset_copy */ -void bitset_inplace_difference(bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2); - -/* compute the size of the difference */ -size_t bitset_difference_count(const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2); - -/* compute the symmetric difference in-place (to b1), return true if successful, - * to generate a new bitset first call bitset_copy */ -bool bitset_inplace_symmetric_difference( - bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2); - -/* compute the size of the symmetric difference */ -size_t bitset_symmetric_difference_count( - const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2); - -/* iterate over the set bits - like so : - for(size_t i = 0; bitset_next_set_bit(b,&i) ; i++) { - //..... - } - */ -inline bool bitset_next_set_bit(const bitset_t *bitset, size_t *i) { - size_t x = *i / 64; - if (x >= bitset->arraysize) { - return false; - } - uint64_t w = bitset->array[x]; - w >>= (*i & 63); - if (w != 0) { - *i += roaring_trailing_zeroes(w); - return true; - } - x++; - while (x < bitset->arraysize) { - w = bitset->array[x]; - if (w != 0) { - *i = x * 64 + roaring_trailing_zeroes(w); - return true; - } - x++; - } - return false; -} - -/* iterate over the set bits - like so : - size_t buffer[256]; - size_t howmany = 0; - for(size_t startfrom = 0; (howmany = bitset_next_set_bits(b,buffer,256, - &startfrom)) > 0 ; startfrom++) { - //..... - } - */ -inline size_t bitset_next_set_bits(const bitset_t *bitset, size_t *buffer, - size_t capacity, size_t *startfrom) { - if (capacity == 0) return 0; // sanity check - size_t x = *startfrom / 64; - if (x >= bitset->arraysize) { - return 0; // nothing more to iterate over - } - uint64_t w = bitset->array[x]; - w >>= (*startfrom & 63); - size_t howmany = 0; - size_t base = x << 6; - while (howmany < capacity) { - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = roaring_trailing_zeroes(w); - buffer[howmany++] = r + base; - if (howmany == capacity) goto end; - w ^= t; - } - x += 1; - if (x == bitset->arraysize) { - break; - } - base += 64; - w = bitset->array[x]; - } -end: - if (howmany > 0) { - *startfrom = buffer[howmany - 1]; - } - return howmany; -} - -typedef bool (*bitset_iterator)(size_t value, void *param); - -// return true if uninterrupted -inline bool bitset_for_each(const bitset_t *b, bitset_iterator iterator, - void *ptr) { - size_t base = 0; - for (size_t i = 0; i < b->arraysize; ++i) { - uint64_t w = b->array[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = roaring_trailing_zeroes(w); - if (!iterator(r + base, ptr)) return false; - w ^= t; - } - base += 64; - } - return true; -} - -inline void bitset_print(const bitset_t *b) { - printf("{"); - for (size_t i = 0; bitset_next_set_bit(b, &i); i++) { - printf("%zu, ", i); - } - printf("}"); -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace api { -#endif - -#endif -/* end file include/roaring/bitset/bitset.h */ -/* begin file include/roaring/roaring.h */ -/* - * An implementation of Roaring Bitmaps in C. - */ - -#ifndef ROARING_H -#define ROARING_H - -#include -#include // for `size_t` -#include - - -// Include other headers after roaring_types.h - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace api { -#endif - -typedef struct roaring_bitmap_s { - roaring_array_t high_low_container; -} roaring_bitmap_t; - -/** - * Dynamically allocates a new bitmap (initially empty). - * Returns NULL if the allocation fails. - * Capacity is a performance hint for how many "containers" the data will need. - * Client is responsible for calling `roaring_bitmap_free()`. - */ -roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap); - -/** - * Dynamically allocates a new bitmap (initially empty). - * Returns NULL if the allocation fails. - * Client is responsible for calling `roaring_bitmap_free()`. - */ -inline roaring_bitmap_t *roaring_bitmap_create(void) { - return roaring_bitmap_create_with_capacity(0); -} - -/** - * Initialize a roaring bitmap structure in memory controlled by client. - * Capacity is a performance hint for how many "containers" the data will need. - * Can return false if auxiliary allocations fail when capacity greater than 0. - */ -bool roaring_bitmap_init_with_capacity(roaring_bitmap_t *r, uint32_t cap); - -/** - * Initialize a roaring bitmap structure in memory controlled by client. - * The bitmap will be in a "clear" state, with no auxiliary allocations. - * Since this performs no allocations, the function will not fail. - */ -inline void roaring_bitmap_init_cleared(roaring_bitmap_t *r) { - roaring_bitmap_init_with_capacity(r, 0); -} - -/** - * Add all the values between min (included) and max (excluded) that are at a - * distance k*step from min. - */ -roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max, - uint32_t step); - -/** - * Creates a new bitmap from a pointer of uint32_t integers - */ -roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals); - -/* - * Whether you want to use copy-on-write. - * Saves memory and avoids copies, but needs more care in a threaded context. - * Most users should ignore this flag. - * - * Note: If you do turn this flag to 'true', enabling COW, then ensure that you - * do so for all of your bitmaps, since interactions between bitmaps with and - * without COW is unsafe. - */ -inline bool roaring_bitmap_get_copy_on_write(const roaring_bitmap_t *r) { - return r->high_low_container.flags & ROARING_FLAG_COW; -} -inline void roaring_bitmap_set_copy_on_write(roaring_bitmap_t *r, bool cow) { - if (cow) { - r->high_low_container.flags |= ROARING_FLAG_COW; - } else { - r->high_low_container.flags &= ~ROARING_FLAG_COW; - } -} - -roaring_bitmap_t *roaring_bitmap_add_offset(const roaring_bitmap_t *bm, - int64_t offset); -/** - * Describe the inner structure of the bitmap. - */ -void roaring_bitmap_printf_describe(const roaring_bitmap_t *r); - -/** - * Creates a new bitmap from a list of uint32_t integers - * - * This function is deprecated, use `roaring_bitmap_from` instead, which - * doesn't require the number of elements to be passed in. - * - * @see roaring_bitmap_from - */ -CROARING_DEPRECATED roaring_bitmap_t *roaring_bitmap_of(size_t n, ...); - -#ifdef __cplusplus -/** - * Creates a new bitmap which contains all values passed in as arguments. - * - * To create a bitmap from a variable number of arguments, use the - * `roaring_bitmap_of_ptr` function instead. - */ -// Use an immediately invoked closure, capturing by reference -// (in case __VA_ARGS__ refers to context outside the closure) -// Include a 0 at the beginning of the array to make the array length > 0 -// (zero sized arrays are not valid in standard c/c++) -#define roaring_bitmap_from(...) \ - [&]() { \ - const uint32_t roaring_bitmap_from_array[] = {0, __VA_ARGS__}; \ - return roaring_bitmap_of_ptr((sizeof(roaring_bitmap_from_array) / \ - sizeof(roaring_bitmap_from_array[0])) - \ - 1, \ - &roaring_bitmap_from_array[1]); \ - }() -#else -/** - * Creates a new bitmap which contains all values passed in as arguments. - * - * To create a bitmap from a variable number of arguments, use the - * `roaring_bitmap_of_ptr` function instead. - */ -// While __VA_ARGS__ occurs twice in expansion, one of the times is in a sizeof -// expression, which is an unevaluated context, so it's even safe in the case -// where expressions passed have side effects (roaring64_bitmap_from(my_func(), -// ++i)) -// Include a 0 at the beginning of the array to make the array length > 0 -// (zero sized arrays are not valid in standard c/c++) -#define roaring_bitmap_from(...) \ - roaring_bitmap_of_ptr( \ - (sizeof((const uint32_t[]){0, __VA_ARGS__}) / sizeof(uint32_t)) - 1, \ - &((const uint32_t[]){0, __VA_ARGS__})[1]) -#endif - -/** - * Copies a bitmap (this does memory allocation). - * The caller is responsible for memory management. - */ -roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r); - -/** - * Copies a bitmap from src to dest. It is assumed that the pointer dest - * is to an already allocated bitmap. The content of the dest bitmap is - * freed/deleted. - * - * It might be preferable and simpler to call roaring_bitmap_copy except - * that roaring_bitmap_overwrite can save on memory allocations. - * - * Returns true if successful, or false if there was an error. On failure, - * the dest bitmap is left in a valid, empty state (even if it was not empty - * before). - */ -bool roaring_bitmap_overwrite(roaring_bitmap_t *dest, - const roaring_bitmap_t *src); - -/** - * Print the content of the bitmap. - */ -void roaring_bitmap_printf(const roaring_bitmap_t *r); - -/** - * Computes the intersection between two bitmaps and returns new bitmap. The - * caller is responsible for memory management. - * - * Performance hint: if you are computing the intersection between several - * bitmaps, two-by-two, it is best to start with the smallest bitmap. - * You may also rely on roaring_bitmap_and_inplace to avoid creating - * many temporary bitmaps. - */ -roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Computes the size of the intersection between two bitmaps. - */ -uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Check whether two bitmaps intersect. - */ -bool roaring_bitmap_intersect(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Check whether a bitmap and an open range intersect. - */ -bool roaring_bitmap_intersect_with_range(const roaring_bitmap_t *bm, uint64_t x, - uint64_t y); - -/** - * Computes the Jaccard index between two bitmaps. (Also known as the Tanimoto - * distance, or the Jaccard similarity coefficient) - * - * The Jaccard index is undefined if both bitmaps are empty. - */ -double roaring_bitmap_jaccard_index(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Computes the size of the union between two bitmaps. - */ -uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Computes the size of the difference (andnot) between two bitmaps. - */ -uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Computes the size of the symmetric difference (xor) between two bitmaps. - */ -uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Inplace version of `roaring_bitmap_and()`, modifies r1 - * r1 == r2 is allowed. - * - * Performance hint: if you are computing the intersection between several - * bitmaps, two-by-two, it is best to start with the smallest bitmap. - */ -void roaring_bitmap_and_inplace(roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Computes the union between two bitmaps and returns new bitmap. The caller is - * responsible for memory management. - */ -roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Inplace version of `roaring_bitmap_or(), modifies r1. - * TODO: decide whether r1 == r2 ok - */ -void roaring_bitmap_or_inplace(roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Compute the union of 'number' bitmaps. - * Caller is responsible for freeing the result. - * See also `roaring_bitmap_or_many_heap()` - */ -roaring_bitmap_t *roaring_bitmap_or_many(size_t number, - const roaring_bitmap_t **rs); - -/** - * Compute the union of 'number' bitmaps using a heap. This can sometimes be - * faster than `roaring_bitmap_or_many() which uses a naive algorithm. - * Caller is responsible for freeing the result. - */ -roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number, - const roaring_bitmap_t **rs); - -/** - * Computes the symmetric difference (xor) between two bitmaps - * and returns new bitmap. The caller is responsible for memory management. - */ -roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Inplace version of roaring_bitmap_xor, modifies r1, r1 != r2. - */ -void roaring_bitmap_xor_inplace(roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Compute the xor of 'number' bitmaps. - * Caller is responsible for freeing the result. - */ -roaring_bitmap_t *roaring_bitmap_xor_many(size_t number, - const roaring_bitmap_t **rs); - -/** - * Computes the difference (andnot) between two bitmaps and returns new bitmap. - * Caller is responsible for freeing the result. - */ -roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Inplace version of roaring_bitmap_andnot, modifies r1, r1 != r2. - */ -void roaring_bitmap_andnot_inplace(roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * TODO: consider implementing: - * - * "Compute the xor of 'number' bitmaps using a heap. This can sometimes be - * faster than roaring_bitmap_xor_many which uses a naive algorithm. Caller is - * responsible for freeing the result."" - * - * roaring_bitmap_t *roaring_bitmap_xor_many_heap(uint32_t number, - * const roaring_bitmap_t **rs); - */ - -/** - * Frees the memory. - */ -void roaring_bitmap_free(const roaring_bitmap_t *r); - -/** - * A bit of context usable with `roaring_bitmap_*_bulk()` functions - * - * Should be initialized with `{0}` (or `memset()` to all zeros). - * Callers should treat it as an opaque type. - * - * A context may only be used with a single bitmap - * (unless re-initialized to zero), and any modification to a bitmap - * (other than modifications performed with `_bulk()` functions with the context - * passed) will invalidate any contexts associated with that bitmap. - */ -typedef struct roaring_bulk_context_s { - ROARING_CONTAINER_T *container; - int idx; - uint16_t key; - uint8_t typecode; -} roaring_bulk_context_t; - -/** - * Add an item, using context from a previous insert for speed optimization. - * - * `context` will be used to store information between calls to make bulk - * operations faster. `*context` should be zero-initialized before the first - * call to this function. - * - * Modifying the bitmap in any way (other than `-bulk` suffixed functions) - * will invalidate the stored context, calling this function with a non-zero - * context after doing any modification invokes undefined behavior. - * - * In order to exploit this optimization, the caller should call this function - * with values with the same "key" (high 16 bits of the value) consecutively. - */ -void roaring_bitmap_add_bulk(roaring_bitmap_t *r, - roaring_bulk_context_t *context, uint32_t val); - -/** - * Add value n_args from pointer vals, faster than repeatedly calling - * `roaring_bitmap_add()` - * - * In order to exploit this optimization, the caller should attempt to keep - * values with the same "key" (high 16 bits of the value) as consecutive - * elements in `vals` - */ -void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args, - const uint32_t *vals); - -/** - * Add value x - */ -void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t x); - -/** - * Add value x - * Returns true if a new value was added, false if the value already existed. - */ -bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t x); - -/** - * Add all values in range [min, max] - */ -void roaring_bitmap_add_range_closed(roaring_bitmap_t *r, uint32_t min, - uint32_t max); - -/** - * Add all values in range [min, max) - */ -inline void roaring_bitmap_add_range(roaring_bitmap_t *r, uint64_t min, - uint64_t max) { - if (max <= min) return; - roaring_bitmap_add_range_closed(r, (uint32_t)min, (uint32_t)(max - 1)); -} - -/** - * Remove value x - */ -void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t x); - -/** - * Remove all values in range [min, max] - */ -void roaring_bitmap_remove_range_closed(roaring_bitmap_t *r, uint32_t min, - uint32_t max); - -/** - * Remove all values in range [min, max) - */ -inline void roaring_bitmap_remove_range(roaring_bitmap_t *r, uint64_t min, - uint64_t max) { - if (max <= min) return; - roaring_bitmap_remove_range_closed(r, (uint32_t)min, (uint32_t)(max - 1)); -} - -/** - * Remove multiple values - */ -void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args, - const uint32_t *vals); - -/** - * Remove value x - * Returns true if a new value was removed, false if the value was not existing. - */ -bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t x); - -/** - * Check if value is present - */ -bool roaring_bitmap_contains(const roaring_bitmap_t *r, uint32_t val); - -/** - * Check whether a range of values from range_start (included) - * to range_end (excluded) is present - */ -bool roaring_bitmap_contains_range(const roaring_bitmap_t *r, - uint64_t range_start, uint64_t range_end); - -/** - * Check if an items is present, using context from a previous insert or search - * for speed optimization. - * - * `context` will be used to store information between calls to make bulk - * operations faster. `*context` should be zero-initialized before the first - * call to this function. - * - * Modifying the bitmap in any way (other than `-bulk` suffixed functions) - * will invalidate the stored context, calling this function with a non-zero - * context after doing any modification invokes undefined behavior. - * - * In order to exploit this optimization, the caller should call this function - * with values with the same "key" (high 16 bits of the value) consecutively. - */ -bool roaring_bitmap_contains_bulk(const roaring_bitmap_t *r, - roaring_bulk_context_t *context, - uint32_t val); - -/** - * Get the cardinality of the bitmap (number of elements). - */ -uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *r); - -/** - * Returns the number of elements in the range [range_start, range_end). - */ -uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *r, - uint64_t range_start, - uint64_t range_end); - -/** - * Returns true if the bitmap is empty (cardinality is zero). - */ -bool roaring_bitmap_is_empty(const roaring_bitmap_t *r); - -/** - * Empties the bitmap. It will have no auxiliary allocations (so if the bitmap - * was initialized in client memory via roaring_bitmap_init(), then a call to - * roaring_bitmap_clear() would be enough to "free" it) - */ -void roaring_bitmap_clear(roaring_bitmap_t *r); - -/** - * Convert the bitmap to a sorted array, output in `ans`. - * - * Caller is responsible to ensure that there is enough memory allocated, e.g. - * - * ans = malloc(roaring_bitmap_get_cardinality(bitmap) * sizeof(uint32_t)); - */ -void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *r, uint32_t *ans); - -/** - * Store the bitmap to a bitset. This can be useful for people - * who need the performance and simplicity of a standard bitset. - * We assume that the input bitset is originally empty (does not - * have any set bit). - * - * bitset_t * out = bitset_create(); - * // if the bitset has content in it, call "bitset_clear(out)" - * bool success = roaring_bitmap_to_bitset(mybitmap, out); - * // on failure, success will be false. - * // You can then query the bitset: - * bool is_present = bitset_get(out, 10011 ); - * // you must free the memory: - * bitset_free(out); - * - */ -bool roaring_bitmap_to_bitset(const roaring_bitmap_t *r, bitset_t *bitset); - -/** - * Convert the bitmap to a sorted array from `offset` by `limit`, output in - * `ans`. - * - * Caller is responsible to ensure that there is enough memory allocated, e.g. - * - * ans = malloc(roaring_bitmap_get_cardinality(limit) * sizeof(uint32_t)); - * - * Return false in case of failure (e.g., insufficient memory) - */ -bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *r, size_t offset, - size_t limit, uint32_t *ans); - -/** - * Remove run-length encoding even when it is more space efficient. - * Return whether a change was applied. - */ -bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r); - -/** - * Convert array and bitmap containers to run containers when it is more - * efficient; also convert from run containers when more space efficient. - * - * Returns true if the result has at least one run container. - * Additional savings might be possible by calling `shrinkToFit()`. - */ -bool roaring_bitmap_run_optimize(roaring_bitmap_t *r); - -/** - * If needed, reallocate memory to shrink the memory usage. - * Returns the number of bytes saved. - */ -size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r); - -/** - * Write the bitmap to an output pointer, this output buffer should refer to - * at least `roaring_bitmap_size_in_bytes(r)` allocated bytes. - * - * See `roaring_bitmap_portable_serialize()` if you want a format that's - * compatible with Java and Go implementations. This format can sometimes be - * more space efficient than the portable form, e.g. when the data is sparse. - * - * Returns how many bytes written, should be `roaring_bitmap_size_in_bytes(r)`. - * - * This function is endian-sensitive. If you have a big-endian system (e.g., a - * mainframe IBM s390x), the data format is going to be big-endian and not - * compatible with little-endian systems. - */ -size_t roaring_bitmap_serialize(const roaring_bitmap_t *r, char *buf); - -/** - * Use with `roaring_bitmap_serialize()`. - * - * (See `roaring_bitmap_portable_deserialize()` if you want a format that's - * compatible with Java and Go implementations). - * - * This function is endian-sensitive. If you have a big-endian system (e.g., a - * mainframe IBM s390x), the data format is going to be big-endian and not - * compatible with little-endian systems. - */ -roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf); - -/** - * Use with `roaring_bitmap_serialize()`. - * - * (See `roaring_bitmap_portable_deserialize_safe()` if you want a format that's - * compatible with Java and Go implementations). - * - * This function is endian-sensitive. If you have a big-endian system (e.g., a - * mainframe IBM s390x), the data format is going to be big-endian and not - * compatible with little-endian systems. - * - * The difference with `roaring_bitmap_deserialize()` is that this function - * checks that the input buffer is a valid bitmap. If the buffer is too small, - * NULL is returned. - */ -roaring_bitmap_t *roaring_bitmap_deserialize_safe(const void *buf, - size_t maxbytes); - -/** - * How many bytes are required to serialize this bitmap (NOT compatible - * with Java and Go versions) - */ -size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *r); - -/** - * Read bitmap from a serialized buffer. - * In case of failure, NULL is returned. - * - * This function is unsafe in the sense that if there is no valid serialized - * bitmap at the pointer, then many bytes could be read, possibly causing a - * buffer overflow. See also roaring_bitmap_portable_deserialize_safe(). - * - * This is meant to be compatible with the Java and Go versions: - * https://github.com/RoaringBitmap/RoaringFormatSpec - * - * This function is endian-sensitive. If you have a big-endian system (e.g., a - * mainframe IBM s390x), the data format is going to be big-endian and not - * compatible with little-endian systems. - */ -roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf); - -/** - * Read bitmap from a serialized buffer safely (reading up to maxbytes). - * In case of failure, NULL is returned. - * - * This is meant to be compatible with the Java and Go versions: - * https://github.com/RoaringBitmap/RoaringFormatSpec - * - * The function itself is safe in the sense that it will not cause buffer - * overflows. However, for correct operations, it is assumed that the bitmap - * read was once serialized from a valid bitmap (i.e., it follows the format - * specification). If you provided an incorrect input (garbage), then the bitmap - * read may not be in a valid state and following operations may not lead to - * sensible results. In particular, the serialized array containers need to be - * in sorted order, and the run containers should be in sorted non-overlapping - * order. This is is guaranteed to happen when serializing an existing bitmap, - * but not for random inputs. - * - * You may use roaring_bitmap_internal_validate to check the validity of the - * bitmap prior to using it. You may also use other strategies to check for - * corrupted inputs (e.g., checksums). - * - * This function is endian-sensitive. If you have a big-endian system (e.g., a - * mainframe IBM s390x), the data format is going to be big-endian and not - * compatible with little-endian systems. - */ -roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf, - size_t maxbytes); - -/** - * Read bitmap from a serialized buffer. - * In case of failure, NULL is returned. - * - * Bitmap returned by this function can be used in all readonly contexts. - * Bitmap must be freed as usual, by calling roaring_bitmap_free(). - * Underlying buffer must not be freed or modified while it backs any bitmaps. - * - * The function is unsafe in the following ways: - * 1) It may execute unaligned memory accesses. - * 2) A buffer overflow may occur if buf does not point to a valid serialized - * bitmap. - * - * This is meant to be compatible with the Java and Go versions: - * https://github.com/RoaringBitmap/RoaringFormatSpec - * - * This function is endian-sensitive. If you have a big-endian system (e.g., a - * mainframe IBM s390x), the data format is going to be big-endian and not - * compatible with little-endian systems. - */ -roaring_bitmap_t *roaring_bitmap_portable_deserialize_frozen(const char *buf); - -/** - * Check how many bytes would be read (up to maxbytes) at this pointer if there - * is a bitmap, returns zero if there is no valid bitmap. - * - * This is meant to be compatible with the Java and Go versions: - * https://github.com/RoaringBitmap/RoaringFormatSpec - */ -size_t roaring_bitmap_portable_deserialize_size(const char *buf, - size_t maxbytes); - -/** - * How many bytes are required to serialize this bitmap. - * - * This is meant to be compatible with the Java and Go versions: - * https://github.com/RoaringBitmap/RoaringFormatSpec - */ -size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *r); - -/** - * Write a bitmap to a char buffer. The output buffer should refer to at least - * `roaring_bitmap_portable_size_in_bytes(r)` bytes of allocated memory. - * - * Returns how many bytes were written which should match - * `roaring_bitmap_portable_size_in_bytes(r)`. - * - * This is meant to be compatible with the Java and Go versions: - * https://github.com/RoaringBitmap/RoaringFormatSpec - * - * This function is endian-sensitive. If you have a big-endian system (e.g., a - * mainframe IBM s390x), the data format is going to be big-endian and not - * compatible with little-endian systems. - */ -size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *r, char *buf); - -/* - * "Frozen" serialization format imitates memory layout of roaring_bitmap_t. - * Deserialized bitmap is a constant view of the underlying buffer. - * This significantly reduces amount of allocations and copying required during - * deserialization. - * It can be used with memory mapped files. - * Example can be found in benchmarks/frozen_benchmark.c - * - * [#####] const roaring_bitmap_t * - * | | | - * +----+ | +-+ - * | | | - * [#####################################] underlying buffer - * - * Note that because frozen serialization format imitates C memory layout - * of roaring_bitmap_t, it is not fixed. It is different on big/little endian - * platforms and can be changed in future. - */ - -/** - * Returns number of bytes required to serialize bitmap using frozen format. - */ -size_t roaring_bitmap_frozen_size_in_bytes(const roaring_bitmap_t *r); - -/** - * Serializes bitmap using frozen format. - * Buffer size must be at least roaring_bitmap_frozen_size_in_bytes(). - * - * This function is endian-sensitive. If you have a big-endian system (e.g., a - * mainframe IBM s390x), the data format is going to be big-endian and not - * compatible with little-endian systems. - */ -void roaring_bitmap_frozen_serialize(const roaring_bitmap_t *r, char *buf); - -/** - * Creates constant bitmap that is a view of a given buffer. - * Buffer data should have been written by `roaring_bitmap_frozen_serialize()` - * Its beginning must also be aligned by 32 bytes. - * Length must be equal exactly to `roaring_bitmap_frozen_size_in_bytes()`. - * In case of failure, NULL is returned. - * - * Bitmap returned by this function can be used in all readonly contexts. - * Bitmap must be freed as usual, by calling roaring_bitmap_free(). - * Underlying buffer must not be freed or modified while it backs any bitmaps. - * - * This function is endian-sensitive. If you have a big-endian system (e.g., a - * mainframe IBM s390x), the data format is going to be big-endian and not - * compatible with little-endian systems. - */ -const roaring_bitmap_t *roaring_bitmap_frozen_view(const char *buf, - size_t length); - -/** - * Iterate over the bitmap elements. The function iterator is called once for - * all the values with ptr (can be NULL) as the second parameter of each call. - * - * `roaring_iterator` is simply a pointer to a function that returns bool - * (true means that the iteration should continue while false means that it - * should stop), and takes (uint32_t,void*) as inputs. - * - * Returns true if the roaring_iterator returned true throughout (so that all - * data points were necessarily visited). - * - * Iteration is ordered: from the smallest to the largest elements. - */ -bool roaring_iterate(const roaring_bitmap_t *r, roaring_iterator iterator, - void *ptr); - -bool roaring_iterate64(const roaring_bitmap_t *r, roaring_iterator64 iterator, - uint64_t high_bits, void *ptr); - -/** - * Return true if the two bitmaps contain the same elements. - */ -bool roaring_bitmap_equals(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Return true if all the elements of r1 are also in r2. - */ -bool roaring_bitmap_is_subset(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Return true if all the elements of r1 are also in r2, and r2 is strictly - * greater than r1. - */ -bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * (For expert users who seek high performance.) - * - * Computes the union between two bitmaps and returns new bitmap. The caller is - * responsible for memory management. - * - * The lazy version defers some computations such as the maintenance of the - * cardinality counts. Thus you must call `roaring_bitmap_repair_after_lazy()` - * after executing "lazy" computations. - * - * It is safe to repeatedly call roaring_bitmap_lazy_or_inplace on the result. - * - * `bitsetconversion` is a flag which determines whether container-container - * operations force a bitset conversion. - */ -roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2, - const bool bitsetconversion); - -/** - * (For expert users who seek high performance.) - * - * Inplace version of roaring_bitmap_lazy_or, modifies r1. - * - * `bitsetconversion` is a flag which determines whether container-container - * operations force a bitset conversion. - */ -void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *r1, - const roaring_bitmap_t *r2, - const bool bitsetconversion); - -/** - * (For expert users who seek high performance.) - * - * Execute maintenance on a bitmap created from `roaring_bitmap_lazy_or()` - * or modified with `roaring_bitmap_lazy_or_inplace()`. - */ -void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *r1); - -/** - * Computes the symmetric difference between two bitmaps and returns new bitmap. - * The caller is responsible for memory management. - * - * The lazy version defers some computations such as the maintenance of the - * cardinality counts. Thus you must call `roaring_bitmap_repair_after_lazy()` - * after executing "lazy" computations. - * - * It is safe to repeatedly call `roaring_bitmap_lazy_xor_inplace()` on - * the result. - */ -roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * (For expert users who seek high performance.) - * - * Inplace version of roaring_bitmap_lazy_xor, modifies r1. r1 != r2 - */ -void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *r1, - const roaring_bitmap_t *r2); - -/** - * Compute the negation of the bitmap in the interval [range_start, range_end). - * The number of negated values is range_end - range_start. - * Areas outside the range are passed through unchanged. - */ -roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *r1, - uint64_t range_start, uint64_t range_end); - -/** - * compute (in place) the negation of the roaring bitmap within a specified - * interval: [range_start, range_end). The number of negated values is - * range_end - range_start. - * Areas outside the range are passed through unchanged. - */ -void roaring_bitmap_flip_inplace(roaring_bitmap_t *r1, uint64_t range_start, - uint64_t range_end); - -/** - * Selects the element at index 'rank' where the smallest element is at index 0. - * If the size of the roaring bitmap is strictly greater than rank, then this - * function returns true and sets element to the element of given rank. - * Otherwise, it returns false. - */ -bool roaring_bitmap_select(const roaring_bitmap_t *r, uint32_t rank, - uint32_t *element); - -/** - * roaring_bitmap_rank returns the number of integers that are smaller or equal - * to x. Thus if x is the first element, this function will return 1. If - * x is smaller than the smallest element, this function will return 0. - * - * The indexing convention differs between roaring_bitmap_select and - * roaring_bitmap_rank: roaring_bitmap_select refers to the smallest value - * as having index 0, whereas roaring_bitmap_rank returns 1 when ranking - * the smallest value. - */ -uint64_t roaring_bitmap_rank(const roaring_bitmap_t *r, uint32_t x); - -/** - * roaring_bitmap_rank_many is an `Bulk` version of `roaring_bitmap_rank` - * it puts rank value of each element in `[begin .. end)` to `ans[]` - * - * the values in `[begin .. end)` must be sorted in Ascending order; - * Caller is responsible to ensure that there is enough memory allocated, e.g. - * - * ans = malloc((end-begin) * sizeof(uint64_t)); - */ -void roaring_bitmap_rank_many(const roaring_bitmap_t *r, const uint32_t *begin, - const uint32_t *end, uint64_t *ans); - -/** - * Returns the index of x in the given roaring bitmap. - * If the roaring bitmap doesn't contain x , this function will return -1. - * The difference with rank function is that this function will return -1 when x - * is not the element of roaring bitmap, but the rank function will return a - * non-negative number. - */ -int64_t roaring_bitmap_get_index(const roaring_bitmap_t *r, uint32_t x); - -/** - * Returns the smallest value in the set, or UINT32_MAX if the set is empty. - */ -uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *r); - -/** - * Returns the greatest value in the set, or 0 if the set is empty. - */ -uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *r); - -/** - * (For advanced users.) - * - * Collect statistics about the bitmap, see roaring_types.h for - * a description of roaring_statistics_t - */ -void roaring_bitmap_statistics(const roaring_bitmap_t *r, - roaring_statistics_t *stat); - -/** - * Perform internal consistency checks. Returns true if the bitmap is - * consistent. It may be useful to call this after deserializing bitmaps from - * untrusted sources. If roaring_bitmap_internal_validate returns true, then the - * bitmap should be consistent and can be trusted not to cause crashes or memory - * corruption. - * - * Note that some operations intentionally leave bitmaps in an inconsistent - * state temporarily, for example, `roaring_bitmap_lazy_*` functions, until - * `roaring_bitmap_repair_after_lazy` is called. - * - * If reason is non-null, it will be set to a string describing the first - * inconsistency found if any. - */ -bool roaring_bitmap_internal_validate(const roaring_bitmap_t *r, - const char **reason); - -/********************* -* What follows is code use to iterate through values in a roaring bitmap - -roaring_bitmap_t *r =... -roaring_uint32_iterator_t i; -roaring_iterator_create(r, &i); -while(i.has_value) { - printf("value = %d\n", i.current_value); - roaring_uint32_iterator_advance(&i); -} - -Obviously, if you modify the underlying bitmap, the iterator -becomes invalid. So don't. -*/ - -/** - * A struct used to keep iterator state. Users should only access - * `current_value` and `has_value`, the rest of the type should be treated as - * opaque. - */ -typedef struct roaring_uint32_iterator_s { - const roaring_bitmap_t *parent; // Owner - const ROARING_CONTAINER_T *container; // Current container - uint8_t typecode; // Typecode of current container - int32_t container_index; // Current container index - uint32_t highbits; // High 16 bits of the current value - roaring_container_iterator_t container_it; - - uint32_t current_value; - bool has_value; -} roaring_uint32_iterator_t; - -/** - * Initialize an iterator object that can be used to iterate through the values. - * If there is a value, then this iterator points to the first value and - * `it->has_value` is true. The value is in `it->current_value`. - */ -void roaring_iterator_init(const roaring_bitmap_t *r, - roaring_uint32_iterator_t *newit); - -/** DEPRECATED, use `roaring_iterator_init`. */ -CROARING_DEPRECATED static inline void roaring_init_iterator( - const roaring_bitmap_t *r, roaring_uint32_iterator_t *newit) { - roaring_iterator_init(r, newit); -} - -/** - * Initialize an iterator object that can be used to iterate through the values. - * If there is a value, then this iterator points to the last value and - * `it->has_value` is true. The value is in `it->current_value`. - */ -void roaring_iterator_init_last(const roaring_bitmap_t *r, - roaring_uint32_iterator_t *newit); - -/** DEPRECATED, use `roaring_iterator_init_last`. */ -CROARING_DEPRECATED static inline void roaring_init_iterator_last( - const roaring_bitmap_t *r, roaring_uint32_iterator_t *newit) { - roaring_iterator_init_last(r, newit); -} - -/** - * Create an iterator object that can be used to iterate through the values. - * Caller is responsible for calling `roaring_free_iterator()`. - * - * The iterator is initialized (this function calls `roaring_iterator_init()`) - * If there is a value, then this iterator points to the first value and - * `it->has_value` is true. The value is in `it->current_value`. - */ -roaring_uint32_iterator_t *roaring_iterator_create(const roaring_bitmap_t *r); - -/** DEPRECATED, use `roaring_iterator_create`. */ -CROARING_DEPRECATED static inline roaring_uint32_iterator_t * -roaring_create_iterator(const roaring_bitmap_t *r) { - return roaring_iterator_create(r); -} - -/** - * Advance the iterator. If there is a new value, then `it->has_value` is true. - * The new value is in `it->current_value`. Values are traversed in increasing - * orders. For convenience, returns `it->has_value`. - * - * Once `it->has_value` is false, `roaring_uint32_iterator_advance` should not - * be called on the iterator again. Calling `roaring_uint32_iterator_previous` - * is allowed. - */ -bool roaring_uint32_iterator_advance(roaring_uint32_iterator_t *it); - -/** DEPRECATED, use `roaring_uint32_iterator_advance`. */ -CROARING_DEPRECATED static inline bool roaring_advance_uint32_iterator( - roaring_uint32_iterator_t *it) { - return roaring_uint32_iterator_advance(it); -} - -/** - * Decrement the iterator. If there's a new value, then `it->has_value` is true. - * The new value is in `it->current_value`. Values are traversed in decreasing - * order. For convenience, returns `it->has_value`. - * - * Once `it->has_value` is false, `roaring_uint32_iterator_previous` should not - * be called on the iterator again. Calling `roaring_uint32_iterator_advance` is - * allowed. - */ -bool roaring_uint32_iterator_previous(roaring_uint32_iterator_t *it); - -/** DEPRECATED, use `roaring_uint32_iterator_previous`. */ -CROARING_DEPRECATED static inline bool roaring_previous_uint32_iterator( - roaring_uint32_iterator_t *it) { - return roaring_uint32_iterator_previous(it); -} - -/** - * Move the iterator to the first value >= `val`. If there is a such a value, - * then `it->has_value` is true. The new value is in `it->current_value`. - * For convenience, returns `it->has_value`. - */ -bool roaring_uint32_iterator_move_equalorlarger(roaring_uint32_iterator_t *it, - uint32_t val); - -/** DEPRECATED, use `roaring_uint32_iterator_move_equalorlarger`. */ -CROARING_DEPRECATED static inline bool -roaring_move_uint32_iterator_equalorlarger(roaring_uint32_iterator_t *it, - uint32_t val) { - return roaring_uint32_iterator_move_equalorlarger(it, val); -} - -/** - * Creates a copy of an iterator. - * Caller must free it. - */ -roaring_uint32_iterator_t *roaring_uint32_iterator_copy( - const roaring_uint32_iterator_t *it); - -/** DEPRECATED, use `roaring_uint32_iterator_copy`. */ -CROARING_DEPRECATED static inline roaring_uint32_iterator_t * -roaring_copy_uint32_iterator(const roaring_uint32_iterator_t *it) { - return roaring_uint32_iterator_copy(it); -} - -/** - * Free memory following `roaring_iterator_create()` - */ -void roaring_uint32_iterator_free(roaring_uint32_iterator_t *it); - -/** DEPRECATED, use `roaring_uint32_iterator_free`. */ -CROARING_DEPRECATED static inline void roaring_free_uint32_iterator( - roaring_uint32_iterator_t *it) { - roaring_uint32_iterator_free(it); -} - -/* - * Reads next ${count} values from iterator into user-supplied ${buf}. - * Returns the number of read elements. - * This number can be smaller than ${count}, which means that iterator is - * drained. - * - * This function satisfies semantics of iteration and can be used together with - * other iterator functions. - * - first value is copied from ${it}->current_value - * - after function returns, iterator is positioned at the next element - */ -uint32_t roaring_uint32_iterator_read(roaring_uint32_iterator_t *it, - uint32_t *buf, uint32_t count); - -/** DEPRECATED, use `roaring_uint32_iterator_read`. */ -CROARING_DEPRECATED static inline uint32_t roaring_read_uint32_iterator( - roaring_uint32_iterator_t *it, uint32_t *buf, uint32_t count) { - return roaring_uint32_iterator_read(it, buf, count); -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace api { -#endif - -#endif /* ROARING_H */ - -#ifdef __cplusplus -/** - * Best practices for C++ headers is to avoid polluting global scope. - * But for C compatibility when just `roaring.h` is included building as - * C++, default to global access for the C public API. - * - * BUT when `roaring.hh` is included instead, it sets this flag. That way - * explicit namespacing must be used to get the C functions. - * - * This is outside the include guard so that if you include BOTH headers, - * the order won't matter; you still get the global definitions. - */ -#if !defined(ROARING_API_NOT_IN_GLOBAL_NAMESPACE) -using namespace ::roaring::api; -#endif -#endif -/* end file include/roaring/roaring.h */ -/* begin file include/roaring/memory.h */ -#ifndef INCLUDE_ROARING_MEMORY_H_ -#define INCLUDE_ROARING_MEMORY_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -#include // for size_t - -typedef void* (*roaring_malloc_p)(size_t); -typedef void* (*roaring_realloc_p)(void*, size_t); -typedef void* (*roaring_calloc_p)(size_t, size_t); -typedef void (*roaring_free_p)(void*); -typedef void* (*roaring_aligned_malloc_p)(size_t, size_t); -typedef void (*roaring_aligned_free_p)(void*); - -typedef struct roaring_memory_s { - roaring_malloc_p malloc; - roaring_realloc_p realloc; - roaring_calloc_p calloc; - roaring_free_p free; - roaring_aligned_malloc_p aligned_malloc; - roaring_aligned_free_p aligned_free; -} roaring_memory_t; - -void roaring_init_memory_hook(roaring_memory_t memory_hook); - -void* roaring_malloc(size_t); -void* roaring_realloc(void*, size_t); -void* roaring_calloc(size_t, size_t); -void roaring_free(void*); -void* roaring_aligned_malloc(size_t, size_t); -void roaring_aligned_free(void*); - -#ifdef __cplusplus -} -#endif - -#endif // INCLUDE_ROARING_MEMORY_H_ -/* end file include/roaring/memory.h */ -/* begin file include/roaring/roaring64.h */ -#ifndef ROARING64_H -#define ROARING64_H - -#include -#include -#include - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace api { -#endif - -typedef struct roaring64_bitmap_s roaring64_bitmap_t; -typedef struct roaring64_leaf_s roaring64_leaf_t; -typedef struct roaring64_iterator_s roaring64_iterator_t; - -/** - * A bit of context usable with `roaring64_bitmap_*_bulk()` functions. - * - * Should be initialized with `{0}` (or `memset()` to all zeros). - * Callers should treat it as an opaque type. - * - * A context may only be used with a single bitmap (unless re-initialized to - * zero), and any modification to a bitmap (other than modifications performed - * with `_bulk()` functions with the context passed) will invalidate any - * contexts associated with that bitmap. - */ -typedef struct roaring64_bulk_context_s { - uint8_t high_bytes[6]; - roaring64_leaf_t *leaf; -} roaring64_bulk_context_t; - -/** - * Dynamically allocates a new bitmap (initially empty). - * Client is responsible for calling `roaring64_bitmap_free()`. - */ -roaring64_bitmap_t *roaring64_bitmap_create(void); -void roaring64_bitmap_free(roaring64_bitmap_t *r); - -/** - * Returns a copy of a bitmap. - */ -roaring64_bitmap_t *roaring64_bitmap_copy(const roaring64_bitmap_t *r); - -/** - * Creates a new bitmap of a pointer to N 64-bit integers. - */ -roaring64_bitmap_t *roaring64_bitmap_of_ptr(size_t n_args, - const uint64_t *vals); - -#ifdef __cplusplus -/** - * Creates a new bitmap which contains all values passed in as arguments. - * - * To create a bitmap from a variable number of arguments, use the - * `roaring64_bitmap_of_ptr` function instead. - */ -// Use an immediately invoked closure, capturing by reference -// (in case __VA_ARGS__ refers to context outside the closure) -// Include a 0 at the beginning of the array to make the array length > 0 -// (zero sized arrays are not valid in standard c/c++) -#define roaring64_bitmap_from(...) \ - [&]() { \ - const uint64_t roaring64_bitmap_from_array[] = {0, __VA_ARGS__}; \ - return roaring64_bitmap_of_ptr( \ - (sizeof(roaring64_bitmap_from_array) / \ - sizeof(roaring64_bitmap_from_array[0])) - \ - 1, \ - &roaring64_bitmap_from_array[1]); \ - }() -#else -/** - * Creates a new bitmap which contains all values passed in as arguments. - * - * To create a bitmap from a variable number of arguments, use the - * `roaring64_bitmap_of_ptr` function instead. - */ -// While __VA_ARGS__ occurs twice in expansion, one of the times is in a sizeof -// expression, which is an unevaluated context, so it's even safe in the case -// where expressions passed have side effects (roaring64_bitmap_from(my_func(), -// ++i)) -// Include a 0 at the beginning of the array to make the array length > 0 -// (zero sized arrays are not valid in standard c/c++) -#define roaring64_bitmap_from(...) \ - roaring64_bitmap_of_ptr( \ - (sizeof((const uint64_t[]){0, __VA_ARGS__}) / sizeof(uint64_t)) - 1, \ - &((const uint64_t[]){0, __VA_ARGS__})[1]) -#endif - -/** - * Create a new bitmap containing all the values in [min, max) that are at a - * distance k*step from min. - */ -roaring64_bitmap_t *roaring64_bitmap_from_range(uint64_t min, uint64_t max, - uint64_t step); - -/** - * Adds the provided value to the bitmap. - */ -void roaring64_bitmap_add(roaring64_bitmap_t *r, uint64_t val); - -/** - * Adds the provided value to the bitmap. - * Returns true if a new value was added, false if the value already existed. - */ -bool roaring64_bitmap_add_checked(roaring64_bitmap_t *r, uint64_t val); - -/** - * Add an item, using context from a previous insert for faster insertion. - * - * `context` will be used to store information between calls to make bulk - * operations faster. `*context` should be zero-initialized before the first - * call to this function. - * - * Modifying the bitmap in any way (other than `-bulk` suffixed functions) - * will invalidate the stored context, calling this function with a non-zero - * context after doing any modification invokes undefined behavior. - * - * In order to exploit this optimization, the caller should call this function - * with values with the same high 48 bits of the value consecutively. - */ -void roaring64_bitmap_add_bulk(roaring64_bitmap_t *r, - roaring64_bulk_context_t *context, uint64_t val); - -/** - * Add `n_args` values from `vals`, faster than repeatedly calling - * `roaring64_bitmap_add()` - * - * In order to exploit this optimization, the caller should attempt to keep - * values with the same high 48 bits of the value as consecutive elements in - * `vals`. - */ -void roaring64_bitmap_add_many(roaring64_bitmap_t *r, size_t n_args, - const uint64_t *vals); - -/** - * Add all values in range [min, max). - */ -void roaring64_bitmap_add_range(roaring64_bitmap_t *r, uint64_t min, - uint64_t max); - -/** - * Add all values in range [min, max]. - */ -void roaring64_bitmap_add_range_closed(roaring64_bitmap_t *r, uint64_t min, - uint64_t max); - -/** - * Removes a value from the bitmap if present. - */ -void roaring64_bitmap_remove(roaring64_bitmap_t *r, uint64_t val); - -/** - * Removes a value from the bitmap if present, returns true if the value was - * removed and false if the value was not present. - */ -bool roaring64_bitmap_remove_checked(roaring64_bitmap_t *r, uint64_t val); - -/** - * Remove an item, using context from a previous insert for faster removal. - * - * `context` will be used to store information between calls to make bulk - * operations faster. `*context` should be zero-initialized before the first - * call to this function. - * - * Modifying the bitmap in any way (other than `-bulk` suffixed functions) - * will invalidate the stored context, calling this function with a non-zero - * context after doing any modification invokes undefined behavior. - * - * In order to exploit this optimization, the caller should call this function - * with values with the same high 48 bits of the value consecutively. - */ -void roaring64_bitmap_remove_bulk(roaring64_bitmap_t *r, - roaring64_bulk_context_t *context, - uint64_t val); - -/** - * Remove `n_args` values from `vals`, faster than repeatedly calling - * `roaring64_bitmap_remove()` - * - * In order to exploit this optimization, the caller should attempt to keep - * values with the same high 48 bits of the value as consecutive elements in - * `vals`. - */ -void roaring64_bitmap_remove_many(roaring64_bitmap_t *r, size_t n_args, - const uint64_t *vals); - -/** - * Remove all values in range [min, max). - */ -void roaring64_bitmap_remove_range(roaring64_bitmap_t *r, uint64_t min, - uint64_t max); - -/** - * Remove all values in range [min, max]. - */ -void roaring64_bitmap_remove_range_closed(roaring64_bitmap_t *r, uint64_t min, - uint64_t max); - -/** - * Returns true if the provided value is present. - */ -bool roaring64_bitmap_contains(const roaring64_bitmap_t *r, uint64_t val); - -/** - * Returns true if all values in the range [min, max) are present. - */ -bool roaring64_bitmap_contains_range(const roaring64_bitmap_t *r, uint64_t min, - uint64_t max); - -/** - * Check if an item is present using context from a previous insert or search - * for faster search. - * - * `context` will be used to store information between calls to make bulk - * operations faster. `*context` should be zero-initialized before the first - * call to this function. - * - * Modifying the bitmap in any way (other than `-bulk` suffixed functions) - * will invalidate the stored context, calling this function with a non-zero - * context after doing any modification invokes undefined behavior. - * - * In order to exploit this optimization, the caller should call this function - * with values with the same high 48 bits of the value consecutively. - */ -bool roaring64_bitmap_contains_bulk(const roaring64_bitmap_t *r, - roaring64_bulk_context_t *context, - uint64_t val); - -/** - * Selects the element at index 'rank' where the smallest element is at index 0. - * If the size of the bitmap is strictly greater than rank, then this function - * returns true and sets element to the element of given rank. Otherwise, it - * returns false. - */ -bool roaring64_bitmap_select(const roaring64_bitmap_t *r, uint64_t rank, - uint64_t *element); - -/** - * Returns the number of integers that are smaller or equal to x. Thus if x is - * the first element, this function will return 1. If x is smaller than the - * smallest element, this function will return 0. - * - * The indexing convention differs between roaring64_bitmap_select and - * roaring64_bitmap_rank: roaring_bitmap64_select refers to the smallest value - * as having index 0, whereas roaring64_bitmap_rank returns 1 when ranking - * the smallest value. - */ -uint64_t roaring64_bitmap_rank(const roaring64_bitmap_t *r, uint64_t val); - -/** - * Returns true if the given value is in the bitmap, and sets `out_index` to the - * (0-based) index of the value in the bitmap. Returns false if the value is not - * in the bitmap. - */ -bool roaring64_bitmap_get_index(const roaring64_bitmap_t *r, uint64_t val, - uint64_t *out_index); - -/** - * Returns the number of values in the bitmap. - */ -uint64_t roaring64_bitmap_get_cardinality(const roaring64_bitmap_t *r); - -/** - * Returns the number of elements in the range [min, max). - */ -uint64_t roaring64_bitmap_range_cardinality(const roaring64_bitmap_t *r, - uint64_t min, uint64_t max); - -/** - * Returns true if the bitmap is empty (cardinality is zero). - */ -bool roaring64_bitmap_is_empty(const roaring64_bitmap_t *r); - -/** - * Returns the smallest value in the set, or UINT64_MAX if the set is empty. - */ -uint64_t roaring64_bitmap_minimum(const roaring64_bitmap_t *r); - -/** - * Returns the largest value in the set, or 0 if empty. - */ -uint64_t roaring64_bitmap_maximum(const roaring64_bitmap_t *r); - -/** - * Returns true if the result has at least one run container. - */ -bool roaring64_bitmap_run_optimize(roaring64_bitmap_t *r); - -/** - * Perform internal consistency checks. - * - * Returns true if the bitmap is consistent. It may be useful to call this - * after deserializing bitmaps from untrusted sources. If - * roaring64_bitmap_internal_validate returns true, then the bitmap is - * consistent and can be trusted not to cause crashes or memory corruption. - * - * If reason is non-null, it will be set to a string describing the first - * inconsistency found if any. - */ -bool roaring64_bitmap_internal_validate(const roaring64_bitmap_t *r, - const char **reason); - -/** - * Return true if the two bitmaps contain the same elements. - */ -bool roaring64_bitmap_equals(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Return true if all the elements of r1 are also in r2. - */ -bool roaring64_bitmap_is_subset(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Return true if all the elements of r1 are also in r2, and r2 is strictly - * greater than r1. - */ -bool roaring64_bitmap_is_strict_subset(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Computes the intersection between two bitmaps and returns new bitmap. The - * caller is responsible for free-ing the result. - * - * Performance hint: if you are computing the intersection between several - * bitmaps, two-by-two, it is best to start with the smallest bitmaps. You may - * also rely on roaring64_bitmap_and_inplace to avoid creating many temporary - * bitmaps. - */ -roaring64_bitmap_t *roaring64_bitmap_and(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Computes the size of the intersection between two bitmaps. - */ -uint64_t roaring64_bitmap_and_cardinality(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * In-place version of `roaring64_bitmap_and()`, modifies `r1`. `r1` and `r2` - * are allowed to be equal. - * - * Performance hint: if you are computing the intersection between several - * bitmaps, two-by-two, it is best to start with the smallest bitmaps. - */ -void roaring64_bitmap_and_inplace(roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Check whether two bitmaps intersect. - */ -bool roaring64_bitmap_intersect(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Check whether a bitmap intersects the range [min, max). - */ -bool roaring64_bitmap_intersect_with_range(const roaring64_bitmap_t *r, - uint64_t min, uint64_t max); - -/** - * Computes the Jaccard index between two bitmaps. (Also known as the Tanimoto - * distance, or the Jaccard similarity coefficient) - * - * The Jaccard index is undefined if both bitmaps are empty. - */ -double roaring64_bitmap_jaccard_index(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Computes the union between two bitmaps and returns new bitmap. The caller is - * responsible for free-ing the result. - */ -roaring64_bitmap_t *roaring64_bitmap_or(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Computes the size of the union between two bitmaps. - */ -uint64_t roaring64_bitmap_or_cardinality(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * In-place version of `roaring64_bitmap_or(), modifies `r1`. - */ -void roaring64_bitmap_or_inplace(roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Computes the symmetric difference (xor) between two bitmaps and returns a new - * bitmap. The caller is responsible for free-ing the result. - */ -roaring64_bitmap_t *roaring64_bitmap_xor(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Computes the size of the symmetric difference (xor) between two bitmaps. - */ -uint64_t roaring64_bitmap_xor_cardinality(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * In-place version of `roaring64_bitmap_xor()`, modifies `r1`. `r1` and `r2` - * are not allowed to be equal (that would result in an empty bitmap). - */ -void roaring64_bitmap_xor_inplace(roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Computes the difference (andnot) between two bitmaps and returns a new - * bitmap. The caller is responsible for free-ing the result. - */ -roaring64_bitmap_t *roaring64_bitmap_andnot(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Computes the size of the difference (andnot) between two bitmaps. - */ -uint64_t roaring64_bitmap_andnot_cardinality(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * In-place version of `roaring64_bitmap_andnot()`, modifies `r1`. `r1` and `r2` - * are not allowed to be equal (that would result in an empty bitmap). - */ -void roaring64_bitmap_andnot_inplace(roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2); - -/** - * Compute the negation of the bitmap in the interval [min, max). - * The number of negated values is `max - min`. Areas outside the range are - * passed through unchanged. - */ -roaring64_bitmap_t *roaring64_bitmap_flip(const roaring64_bitmap_t *r, - uint64_t min, uint64_t max); - -/** - * Compute the negation of the bitmap in the interval [min, max]. - * The number of negated values is `max - min + 1`. Areas outside the range are - * passed through unchanged. - */ -roaring64_bitmap_t *roaring64_bitmap_flip_closed(const roaring64_bitmap_t *r, - uint64_t min, uint64_t max); - -/** - * In-place version of `roaring64_bitmap_flip`. Compute the negation of the - * bitmap in the interval [min, max). The number of negated values is `max - - * min`. Areas outside the range are passed through unchanged. - */ -void roaring64_bitmap_flip_inplace(roaring64_bitmap_t *r, uint64_t min, - uint64_t max); -/** - * In-place version of `roaring64_bitmap_flip_closed`. Compute the negation of - * the bitmap in the interval [min, max]. The number of negated values is `max - - * min + 1`. Areas outside the range are passed through unchanged. - */ -void roaring64_bitmap_flip_closed_inplace(roaring64_bitmap_t *r, uint64_t min, - uint64_t max); -/** - * How many bytes are required to serialize this bitmap. - * - * This is meant to be compatible with other languages: - * https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations - */ -size_t roaring64_bitmap_portable_size_in_bytes(const roaring64_bitmap_t *r); - -/** - * Write a bitmap to a buffer. The output buffer should refer to at least - * `roaring64_bitmap_portable_size_in_bytes(r)` bytes of allocated memory. - * - * Returns how many bytes were written, which should match - * `roaring64_bitmap_portable_size_in_bytes(r)`. - * - * This is meant to be compatible with other languages: - * https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations - * - * This function is endian-sensitive. If you have a big-endian system (e.g., a - * mainframe IBM s390x), the data format is going to be big-endian and not - * compatible with little-endian systems. - */ -size_t roaring64_bitmap_portable_serialize(const roaring64_bitmap_t *r, - char *buf); -/** - * Check how many bytes would be read (up to maxbytes) at this pointer if there - * is a valid bitmap, returns zero if there is no valid bitmap. - * - * This is meant to be compatible with other languages - * https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations - */ -size_t roaring64_bitmap_portable_deserialize_size(const char *buf, - size_t maxbytes); - -/** - * Read a bitmap from a serialized buffer safely (reading up to maxbytes). - * In case of failure, NULL is returned. - * - * This is meant to be compatible with other languages - * https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations - * - * The function itself is safe in the sense that it will not cause buffer - * overflows. However, for correct operations, it is assumed that the bitmap - * read was once serialized from a valid bitmap (i.e., it follows the format - * specification). If you provided an incorrect input (garbage), then the bitmap - * read may not be in a valid state and following operations may not lead to - * sensible results. In particular, the serialized array containers need to be - * in sorted order, and the run containers should be in sorted non-overlapping - * order. This is is guaranteed to happen when serializing an existing bitmap, - * but not for random inputs. - * - * This function is endian-sensitive. If you have a big-endian system (e.g., a - * mainframe IBM s390x), the data format is going to be big-endian and not - * compatible with little-endian systems. - */ -roaring64_bitmap_t *roaring64_bitmap_portable_deserialize_safe(const char *buf, - size_t maxbytes); - -/** - * Iterate over the bitmap elements. The function `iterator` is called once for - * all the values with `ptr` (can be NULL) as the second parameter of each call. - * - * `roaring_iterator64` is simply a pointer to a function that returns a bool - * and takes `(uint64_t, void*)` as inputs. True means that the iteration should - * continue, while false means that it should stop. - * - * Returns true if the `roaring64_iterator` returned true throughout (so that - * all data points were necessarily visited). - * - * Iteration is ordered from the smallest to the largest elements. - */ -bool roaring64_bitmap_iterate(const roaring64_bitmap_t *r, - roaring_iterator64 iterator, void *ptr); - -/** - * Convert the bitmap to a sorted array `out`. - * - * Caller is responsible to ensure that there is enough memory allocated, e.g. - * ``` - * out = malloc(roaring64_bitmap_get_cardinality(bitmap) * sizeof(uint64_t)); - * ``` - */ -void roaring64_bitmap_to_uint64_array(const roaring64_bitmap_t *r, - uint64_t *out); - -/** - * Create an iterator object that can be used to iterate through the values. - * Caller is responsible for calling `roaring64_iterator_free()`. - * - * The iterator is initialized. If there is a value, then this iterator points - * to the first value and `roaring64_iterator_has_value()` returns true. The - * value can be retrieved with `roaring64_iterator_value()`. - */ -roaring64_iterator_t *roaring64_iterator_create(const roaring64_bitmap_t *r); - -/** - * Create an iterator object that can be used to iterate through the values. - * Caller is responsible for calling `roaring64_iterator_free()`. - * - * The iterator is initialized. If there is a value, then this iterator points - * to the last value and `roaring64_iterator_has_value()` returns true. The - * value can be retrieved with `roaring64_iterator_value()`. - */ -roaring64_iterator_t *roaring64_iterator_create_last( - const roaring64_bitmap_t *r); - -/** - * Re-initializes an existing iterator. Functionally the same as - * `roaring64_iterator_create` without a allocation. - */ -void roaring64_iterator_reinit(const roaring64_bitmap_t *r, - roaring64_iterator_t *it); - -/** - * Re-initializes an existing iterator. Functionally the same as - * `roaring64_iterator_create_last` without a allocation. - */ -void roaring64_iterator_reinit_last(const roaring64_bitmap_t *r, - roaring64_iterator_t *it); - -/** - * Creates a copy of the iterator. Caller is responsible for calling - * `roaring64_iterator_free()` on the resulting iterator. - */ -roaring64_iterator_t *roaring64_iterator_copy(const roaring64_iterator_t *it); - -/** - * Free the iterator. - */ -void roaring64_iterator_free(roaring64_iterator_t *it); - -/** - * Returns true if the iterator currently points to a value. If so, calling - * `roaring64_iterator_value()` returns the value. - */ -bool roaring64_iterator_has_value(const roaring64_iterator_t *it); - -/** - * Returns the value the iterator currently points to. Should only be called if - * `roaring64_iterator_has_value()` returns true. - */ -uint64_t roaring64_iterator_value(const roaring64_iterator_t *it); - -/** - * Advance the iterator. If there is a new value, then - * `roaring64_iterator_has_value()` returns true. Values are traversed in - * increasing order. For convenience, returns the result of - * `roaring64_iterator_has_value()`. - * - * Once this returns false, `roaring64_iterator_advance` should not be called on - * the iterator again. Calling `roaring64_iterator_previous` is allowed. - */ -bool roaring64_iterator_advance(roaring64_iterator_t *it); - -/** - * Decrement the iterator. If there is a new value, then - * `roaring64_iterator_has_value()` returns true. Values are traversed in - * decreasing order. For convenience, returns the result of - * `roaring64_iterator_has_value()`. - * - * Once this returns false, `roaring64_iterator_previous` should not be called - * on the iterator again. Calling `roaring64_iterator_advance` is allowed. - */ -bool roaring64_iterator_previous(roaring64_iterator_t *it); - -/** - * Move the iterator to the first value greater than or equal to `val`, if it - * exists at or after the current position of the iterator. If there is a new - * value, then `roaring64_iterator_has_value()` returns true. Values are - * traversed in increasing order. For convenience, returns the result of - * `roaring64_iterator_has_value()`. - */ -bool roaring64_iterator_move_equalorlarger(roaring64_iterator_t *it, - uint64_t val); - -/** - * Reads up to `count` values from the iterator into the given `buf`. Returns - * the number of elements read. The number of elements read can be smaller than - * `count`, which means that there are no more elements in the bitmap. - * - * This function can be used together with other iterator functions. - */ -uint64_t roaring64_iterator_read(roaring64_iterator_t *it, uint64_t *buf, - uint64_t count); - -#ifdef __cplusplus -} // extern "C" -} // namespace roaring -} // namespace api -#endif - -#endif /* ROARING64_H */ -/* end file include/roaring/roaring64.h */ diff --git a/third_party/roaring.c b/third_party/roaring.c deleted file mode 100644 index 7385cff..0000000 --- a/third_party/roaring.c +++ /dev/null @@ -1,25883 +0,0 @@ -// !!! DO NOT EDIT - THIS IS AN AUTO-GENERATED FILE !!! -// Created by amalgamation.sh on 2024-04-02T13:42:32Z - -/* - * The CRoaring project is under a dual license (Apache/MIT). - * Users of the library may choose one or the other license. - */ -/* - * Copyright 2016-2022 The CRoaring authors - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - * SPDX-License-Identifier: Apache-2.0 - */ -/* - * MIT License - * - * Copyright 2016-2022 The CRoaring authors - * - * Permission is hereby granted, free of charge, to any - * person obtaining a copy of this software and associated - * documentation files (the "Software"), to deal in the - * Software without restriction, including without - * limitation the rights to use, copy, modify, merge, - * publish, distribute, sublicense, and/or sell copies of - * the Software, and to permit persons to whom the Software - * is furnished to do so, subject to the following - * conditions: - * - * The above copyright notice and this permission notice - * shall be included in all copies or substantial portions - * of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF - * ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED - * TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A - * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT - * SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY - * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION - * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR - * IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - * DEALINGS IN THE SOFTWARE. - * - * SPDX-License-Identifier: MIT - */ - -#include "roaring.h" - -/* used for http://dmalloc.com/ Dmalloc - Debug Malloc Library */ -#ifdef DMALLOC -#include "dmalloc.h" -#endif - -#include "roaring.h" /* include public API definitions */ -/* begin file include/roaring/isadetection.h */ -#ifndef ROARING_ISADETECTION_H -#define ROARING_ISADETECTION_H -#if defined(__x86_64__) || defined(_M_AMD64) // x64 - -#ifndef CROARING_COMPILER_SUPPORTS_AVX512 -#ifdef __has_include -// We want to make sure that the AVX-512 functions are only built on compilers -// fully supporting AVX-512. -#if __has_include() -#define CROARING_COMPILER_SUPPORTS_AVX512 1 -#endif // #if __has_include() -#endif // #ifdef __has_include - -// Visual Studio 2019 and up support AVX-512 -#ifdef _MSC_VER -#if _MSC_VER >= 1920 -#define CROARING_COMPILER_SUPPORTS_AVX512 1 -#endif // #if _MSC_VER >= 1920 -#endif // #ifdef _MSC_VER - -#ifndef CROARING_COMPILER_SUPPORTS_AVX512 -#define CROARING_COMPILER_SUPPORTS_AVX512 0 -#endif // #ifndef CROARING_COMPILER_SUPPORTS_AVX512 -#endif // #ifndef CROARING_COMPILER_SUPPORTS_AVX512 - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif -enum { - ROARING_SUPPORTS_AVX2 = 1, - ROARING_SUPPORTS_AVX512 = 2, -}; -int croaring_hardware_support(void); -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -#endif // x64 -#endif // ROARING_ISADETECTION_H -/* end file include/roaring/isadetection.h */ -/* begin file include/roaring/containers/perfparameters.h */ -#ifndef PERFPARAMETERS_H_ -#define PERFPARAMETERS_H_ - -#include - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/** -During lazy computations, we can transform array containers into bitset -containers as -long as we can expect them to have ARRAY_LAZY_LOWERBOUND values. -*/ -enum { ARRAY_LAZY_LOWERBOUND = 1024 }; - -/* default initial size of a run container - setting it to zero delays the malloc.*/ -enum { RUN_DEFAULT_INIT_SIZE = 0 }; - -/* default initial size of an array container - setting it to zero delays the malloc */ -enum { ARRAY_DEFAULT_INIT_SIZE = 0 }; - -/* automatic bitset conversion during lazy or */ -#ifndef LAZY_OR_BITSET_CONVERSION -#define LAZY_OR_BITSET_CONVERSION true -#endif - -/* automatically attempt to convert a bitset to a full run during lazy - * evaluation */ -#ifndef LAZY_OR_BITSET_CONVERSION_TO_FULL -#define LAZY_OR_BITSET_CONVERSION_TO_FULL true -#endif - -/* automatically attempt to convert a bitset to a full run */ -#ifndef OR_BITSET_CONVERSION_TO_FULL -#define OR_BITSET_CONVERSION_TO_FULL true -#endif - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif -/* end file include/roaring/containers/perfparameters.h */ -/* begin file include/roaring/containers/container_defs.h */ -/* - * container_defs.h - * - * Unlike containers.h (which is a file aggregating all the container includes, - * like array.h, bitset.h, and run.h) this is a file included BY those headers - * to do things like define the container base class `container_t`. - */ - -#ifndef INCLUDE_CONTAINERS_CONTAINER_DEFS_H_ -#define INCLUDE_CONTAINERS_CONTAINER_DEFS_H_ - -#ifdef __cplusplus -#include // used by casting helper for compile-time check -#endif - -// The preferences are a separate file to separate out tweakable parameters - -#ifdef __cplusplus -namespace roaring { -namespace internal { // No extern "C" (contains template) -#endif - -/* - * Since roaring_array_t's definition is not opaque, the container type is - * part of the API. If it's not going to be `void*` then it needs a name, and - * expectations are to prefix C library-exported names with `roaring_` etc. - * - * Rather than force the whole codebase to use the name `roaring_container_t`, - * the few API appearances use the macro ROARING_CONTAINER_T. Those includes - * are prior to containers.h, so make a short private alias of `container_t`. - * Then undefine the awkward macro so it's not used any more than it has to be. - */ -typedef ROARING_CONTAINER_T container_t; -#undef ROARING_CONTAINER_T - -/* - * See ROARING_CONTAINER_T for notes on using container_t as a base class. - * This macro helps make the following pattern look nicer: - * - * #ifdef __cplusplus - * struct roaring_array_s : public container_t { - * #else - * struct roaring_array_s { - * #endif - * int32_t cardinality; - * int32_t capacity; - * uint16_t *array; - * } - */ -#if defined(__cplusplus) -#define STRUCT_CONTAINER(name) struct name : public container_t /* { ... } */ -#else -#define STRUCT_CONTAINER(name) struct name /* { ... } */ -#endif - -/** - * Since container_t* is not void* in C++, "dangerous" casts are not needed to - * downcast; only a static_cast<> is needed. Define a macro for static casting - * which helps make casts more visible, and catches problems at compile-time - * when building the C sources in C++ mode: - * - * void some_func(container_t **c, ...) { // double pointer, not single - * array_container_t *ac1 = (array_container_t *)(c); // uncaught!! - * - * array_container_t *ac2 = CAST(array_container_t *, c) // C++ errors - * array_container_t *ac3 = CAST_array(c); // shorthand for #2, errors - * } - * - * Trickier to do is a cast from `container**` to `array_container_t**`. This - * needs a reinterpret_cast<>, which sacrifices safety...so a template is used - * leveraging to make sure it's legal in the C++ build. - */ -#ifdef __cplusplus -#define CAST(type, value) static_cast(value) -#define movable_CAST(type, value) movable_CAST_HELPER(value) - -template -PPDerived movable_CAST_HELPER(Base **ptr_to_ptr) { - typedef typename std::remove_pointer::type PDerived; - typedef typename std::remove_pointer::type Derived; - static_assert(std::is_base_of::value, - "use movable_CAST() for container_t** => xxx_container_t**"); - return reinterpret_cast(ptr_to_ptr); -} -#else -#define CAST(type, value) ((type)value) -#define movable_CAST(type, value) ((type)value) -#endif - -// Use for converting e.g. an `array_container_t**` to a `container_t**` -// -#define movable_CAST_base(c) movable_CAST(container_t **, c) - -#ifdef __cplusplus -} -} // namespace roaring { namespace internal { -#endif - -#endif /* INCLUDE_CONTAINERS_CONTAINER_DEFS_H_ */ -/* end file include/roaring/containers/container_defs.h */ -/* begin file include/roaring/array_util.h */ -#ifndef CROARING_ARRAY_UTIL_H -#define CROARING_ARRAY_UTIL_H - -#include // for size_t -#include - - -#if CROARING_IS_X64 -#ifndef CROARING_COMPILER_SUPPORTS_AVX512 -#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined." -#endif // CROARING_COMPILER_SUPPORTS_AVX512 -#endif -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wuninitialized" -#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" -#endif -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/* - * Good old binary search. - * Assumes that array is sorted, has logarithmic complexity. - * if the result is x, then: - * if ( x>0 ) you have array[x] = ikey - * if ( x<0 ) then inserting ikey at position -x-1 in array (insuring that - * array[-x-1]=ikey) keys the array sorted. - */ -inline int32_t binarySearch(const uint16_t *array, int32_t lenarray, - uint16_t ikey) { - int32_t low = 0; - int32_t high = lenarray - 1; - while (low <= high) { - int32_t middleIndex = (low + high) >> 1; - uint16_t middleValue = array[middleIndex]; - if (middleValue < ikey) { - low = middleIndex + 1; - } else if (middleValue > ikey) { - high = middleIndex - 1; - } else { - return middleIndex; - } - } - return -(low + 1); -} - -/** - * Galloping search - * Assumes that array is sorted, has logarithmic complexity. - * if the result is x, then if x = length, you have that all values in array - * between pos and length are smaller than min. otherwise returns the first - * index x such that array[x] >= min. - */ -static inline int32_t advanceUntil(const uint16_t *array, int32_t pos, - int32_t length, uint16_t min) { - int32_t lower = pos + 1; - - if ((lower >= length) || (array[lower] >= min)) { - return lower; - } - - int32_t spansize = 1; - - while ((lower + spansize < length) && (array[lower + spansize] < min)) { - spansize <<= 1; - } - int32_t upper = (lower + spansize < length) ? lower + spansize : length - 1; - - if (array[upper] == min) { - return upper; - } - if (array[upper] < min) { - // means - // array - // has no - // item - // >= min - // pos = array.length; - return length; - } - - // we know that the next-smallest span was too small - lower += (spansize >> 1); - - int32_t mid = 0; - while (lower + 1 != upper) { - mid = (lower + upper) >> 1; - if (array[mid] == min) { - return mid; - } else if (array[mid] < min) { - lower = mid; - } else { - upper = mid; - } - } - return upper; -} - -/** - * Returns number of elements which are less than ikey. - * Array elements must be unique and sorted. - */ -static inline int32_t count_less(const uint16_t *array, int32_t lenarray, - uint16_t ikey) { - if (lenarray == 0) return 0; - int32_t pos = binarySearch(array, lenarray, ikey); - return pos >= 0 ? pos : -(pos + 1); -} - -/** - * Returns number of elements which are greater than ikey. - * Array elements must be unique and sorted. - */ -static inline int32_t count_greater(const uint16_t *array, int32_t lenarray, - uint16_t ikey) { - if (lenarray == 0) return 0; - int32_t pos = binarySearch(array, lenarray, ikey); - if (pos >= 0) { - return lenarray - (pos + 1); - } else { - return lenarray - (-pos - 1); - } -} - -/** - * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions - * Optimized by D. Lemire on May 3rd 2013 - * - * C should have capacity greater than the minimum of s_1 and s_b + 8 - * where 8 is sizeof(__m128i)/sizeof(uint16_t). - */ -int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a, - const uint16_t *__restrict__ B, size_t s_b, - uint16_t *C); - -int32_t intersect_vector16_inplace(uint16_t *__restrict__ A, size_t s_a, - const uint16_t *__restrict__ B, size_t s_b); - -/** - * Take an array container and write it out to a 32-bit array, using base - * as the offset. - */ -int array_container_to_uint32_array_vector16(void *vout, const uint16_t *array, - size_t cardinality, uint32_t base); -#if CROARING_COMPILER_SUPPORTS_AVX512 -int avx512_array_container_to_uint32_array(void *vout, const uint16_t *array, - size_t cardinality, uint32_t base); -#endif -/** - * Compute the cardinality of the intersection using SSE4 instructions - */ -int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A, - size_t s_a, - const uint16_t *__restrict__ B, - size_t s_b); - -/* Computes the intersection between one small and one large set of uint16_t. - * Stores the result into buffer and return the number of elements. */ -int32_t intersect_skewed_uint16(const uint16_t *smallarray, size_t size_s, - const uint16_t *largearray, size_t size_l, - uint16_t *buffer); - -/* Computes the size of the intersection between one small and one large set of - * uint16_t. */ -int32_t intersect_skewed_uint16_cardinality(const uint16_t *smallarray, - size_t size_s, - const uint16_t *largearray, - size_t size_l); - -/* Check whether the size of the intersection between one small and one large - * set of uint16_t is non-zero. */ -bool intersect_skewed_uint16_nonempty(const uint16_t *smallarray, size_t size_s, - const uint16_t *largearray, - size_t size_l); -/** - * Generic intersection function. - */ -int32_t intersect_uint16(const uint16_t *A, const size_t lenA, - const uint16_t *B, const size_t lenB, uint16_t *out); -/** - * Compute the size of the intersection (generic). - */ -int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA, - const uint16_t *B, const size_t lenB); - -/** - * Checking whether the size of the intersection is non-zero. - */ -bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA, - const uint16_t *B, const size_t lenB); -/** - * Generic union function. - */ -size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2, - size_t size_2, uint16_t *buffer); - -/** - * Generic XOR function. - */ -int32_t xor_uint16(const uint16_t *array_1, int32_t card_1, - const uint16_t *array_2, int32_t card_2, uint16_t *out); - -/** - * Generic difference function (ANDNOT). - */ -int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2, - int length2, uint16_t *a_out); - -/** - * Generic intersection function. - */ -size_t intersection_uint32(const uint32_t *A, const size_t lenA, - const uint32_t *B, const size_t lenB, uint32_t *out); - -/** - * Generic intersection function, returns just the cardinality. - */ -size_t intersection_uint32_card(const uint32_t *A, const size_t lenA, - const uint32_t *B, const size_t lenB); - -/** - * Generic union function. - */ -size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t *set_2, - size_t size_2, uint32_t *buffer); - -/** - * A fast SSE-based union function. - */ -uint32_t union_vector16(const uint16_t *__restrict__ set_1, uint32_t size_1, - const uint16_t *__restrict__ set_2, uint32_t size_2, - uint16_t *__restrict__ buffer); -/** - * A fast SSE-based XOR function. - */ -uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1, - const uint16_t *__restrict__ array2, uint32_t length2, - uint16_t *__restrict__ output); - -/** - * A fast SSE-based difference function. - */ -int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a, - const uint16_t *__restrict__ B, size_t s_b, - uint16_t *C); - -/** - * Generic union function, returns just the cardinality. - */ -size_t union_uint32_card(const uint32_t *set_1, size_t size_1, - const uint32_t *set_2, size_t size_2); - -/** - * combines union_uint16 and union_vector16 optimally - */ -size_t fast_union_uint16(const uint16_t *set_1, size_t size_1, - const uint16_t *set_2, size_t size_2, - uint16_t *buffer); - -bool memequals(const void *s1, const void *s2, size_t n); - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC diagnostic pop -#endif -#endif -/* end file include/roaring/array_util.h */ -/* begin file include/roaring/utilasm.h */ -/* - * utilasm.h - * - */ - -#ifndef INCLUDE_UTILASM_H_ -#define INCLUDE_UTILASM_H_ - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -#endif - -#if defined(CROARING_INLINE_ASM) -#define CROARING_ASMBITMANIPOPTIMIZATION // optimization flag - -#define ASM_SHIFT_RIGHT(srcReg, bitsReg, destReg) \ - __asm volatile("shrx %1, %2, %0" \ - : "=r"(destReg) \ - : /* write */ \ - "r"(bitsReg), /* read only */ \ - "r"(srcReg) /* read only */ \ - ) - -#define ASM_INPLACESHIFT_RIGHT(srcReg, bitsReg) \ - __asm volatile("shrx %1, %0, %0" \ - : "+r"(srcReg) \ - : /* read/write */ \ - "r"(bitsReg) /* read only */ \ - ) - -#define ASM_SHIFT_LEFT(srcReg, bitsReg, destReg) \ - __asm volatile("shlx %1, %2, %0" \ - : "=r"(destReg) \ - : /* write */ \ - "r"(bitsReg), /* read only */ \ - "r"(srcReg) /* read only */ \ - ) -// set bit at position testBit within testByte to 1 and -// copy cmovDst to cmovSrc if that bit was previously clear -#define ASM_SET_BIT_INC_WAS_CLEAR(testByte, testBit, count) \ - __asm volatile( \ - "bts %2, %0\n" \ - "sbb $-1, %1\n" \ - : "+r"(testByte), /* read/write */ \ - "+r"(count) \ - : /* read/write */ \ - "r"(testBit) /* read only */ \ - ) - -#define ASM_CLEAR_BIT_DEC_WAS_SET(testByte, testBit, count) \ - __asm volatile( \ - "btr %2, %0\n" \ - "sbb $0, %1\n" \ - : "+r"(testByte), /* read/write */ \ - "+r"(count) \ - : /* read/write */ \ - "r"(testBit) /* read only */ \ - ) - -#define ASM_BT64(testByte, testBit, count) \ - __asm volatile( \ - "bt %2,%1\n" \ - "sbb %0,%0" /*could use setb */ \ - : "=r"(count) \ - : /* write */ \ - "r"(testByte), /* read only */ \ - "r"(testBit) /* read only */ \ - ) - -#endif - -#ifdef __cplusplus -} -} // extern "C" { namespace roaring { -#endif - -#endif /* INCLUDE_UTILASM_H_ */ -/* end file include/roaring/utilasm.h */ -/* begin file include/roaring/bitset_util.h */ -#ifndef CROARING_BITSET_UTIL_H -#define CROARING_BITSET_UTIL_H - -#include - - -#if CROARING_IS_X64 -#ifndef CROARING_COMPILER_SUPPORTS_AVX512 -#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined." -#endif // CROARING_COMPILER_SUPPORTS_AVX512 -#endif -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wuninitialized" -#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" -#endif -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/* - * Set all bits in indexes [begin,end) to true. - */ -static inline void bitset_set_range(uint64_t *words, uint32_t start, - uint32_t end) { - if (start == end) return; - uint32_t firstword = start / 64; - uint32_t endword = (end - 1) / 64; - if (firstword == endword) { - words[firstword] |= ((~UINT64_C(0)) << (start % 64)) & - ((~UINT64_C(0)) >> ((~end + 1) % 64)); - return; - } - words[firstword] |= (~UINT64_C(0)) << (start % 64); - for (uint32_t i = firstword + 1; i < endword; i++) { - words[i] = ~UINT64_C(0); - } - words[endword] |= (~UINT64_C(0)) >> ((~end + 1) % 64); -} - -/* - * Find the cardinality of the bitset in [begin,begin+lenminusone] - */ -static inline int bitset_lenrange_cardinality(const uint64_t *words, - uint32_t start, - uint32_t lenminusone) { - uint32_t firstword = start / 64; - uint32_t endword = (start + lenminusone) / 64; - if (firstword == endword) { - return roaring_hamming(words[firstword] & - ((~UINT64_C(0)) >> ((63 - lenminusone) % 64)) - << (start % 64)); - } - int answer = - roaring_hamming(words[firstword] & ((~UINT64_C(0)) << (start % 64))); - for (uint32_t i = firstword + 1; i < endword; i++) { - answer += roaring_hamming(words[i]); - } - answer += roaring_hamming(words[endword] & - (~UINT64_C(0)) >> - (((~start + 1) - lenminusone - 1) % 64)); - return answer; -} - -/* - * Check whether the cardinality of the bitset in [begin,begin+lenminusone] is 0 - */ -static inline bool bitset_lenrange_empty(const uint64_t *words, uint32_t start, - uint32_t lenminusone) { - uint32_t firstword = start / 64; - uint32_t endword = (start + lenminusone) / 64; - if (firstword == endword) { - return (words[firstword] & ((~UINT64_C(0)) >> ((63 - lenminusone) % 64)) - << (start % 64)) == 0; - } - if (((words[firstword] & ((~UINT64_C(0)) << (start % 64)))) != 0) { - return false; - } - for (uint32_t i = firstword + 1; i < endword; i++) { - if (words[i] != 0) { - return false; - } - } - if ((words[endword] & - (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64)) != 0) { - return false; - } - return true; -} - -/* - * Set all bits in indexes [begin,begin+lenminusone] to true. - */ -static inline void bitset_set_lenrange(uint64_t *words, uint32_t start, - uint32_t lenminusone) { - uint32_t firstword = start / 64; - uint32_t endword = (start + lenminusone) / 64; - if (firstword == endword) { - words[firstword] |= ((~UINT64_C(0)) >> ((63 - lenminusone) % 64)) - << (start % 64); - return; - } - uint64_t temp = words[endword]; - words[firstword] |= (~UINT64_C(0)) << (start % 64); - for (uint32_t i = firstword + 1; i < endword; i += 2) - words[i] = words[i + 1] = ~UINT64_C(0); - words[endword] = - temp | (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64); -} - -/* - * Flip all the bits in indexes [begin,end). - */ -static inline void bitset_flip_range(uint64_t *words, uint32_t start, - uint32_t end) { - if (start == end) return; - uint32_t firstword = start / 64; - uint32_t endword = (end - 1) / 64; - words[firstword] ^= ~((~UINT64_C(0)) << (start % 64)); - for (uint32_t i = firstword; i < endword; i++) { - words[i] = ~words[i]; - } - words[endword] ^= ((~UINT64_C(0)) >> ((~end + 1) % 64)); -} - -/* - * Set all bits in indexes [begin,end) to false. - */ -static inline void bitset_reset_range(uint64_t *words, uint32_t start, - uint32_t end) { - if (start == end) return; - uint32_t firstword = start / 64; - uint32_t endword = (end - 1) / 64; - if (firstword == endword) { - words[firstword] &= ~(((~UINT64_C(0)) << (start % 64)) & - ((~UINT64_C(0)) >> ((~end + 1) % 64))); - return; - } - words[firstword] &= ~((~UINT64_C(0)) << (start % 64)); - for (uint32_t i = firstword + 1; i < endword; i++) { - words[i] = UINT64_C(0); - } - words[endword] &= ~((~UINT64_C(0)) >> ((~end + 1) % 64)); -} - -/* - * Given a bitset containing "length" 64-bit words, write out the position - * of all the set bits to "out", values start at "base". - * - * The "out" pointer should be sufficient to store the actual number of bits - * set. - * - * Returns how many values were actually decoded. - * - * This function should only be expected to be faster than - * bitset_extract_setbits - * when the density of the bitset is high. - * - * This function uses AVX2 decoding. - */ -size_t bitset_extract_setbits_avx2(const uint64_t *words, size_t length, - uint32_t *out, size_t outcapacity, - uint32_t base); - -size_t bitset_extract_setbits_avx512(const uint64_t *words, size_t length, - uint32_t *out, size_t outcapacity, - uint32_t base); -/* - * Given a bitset containing "length" 64-bit words, write out the position - * of all the set bits to "out", values start at "base". - * - * The "out" pointer should be sufficient to store the actual number of bits - *set. - * - * Returns how many values were actually decoded. - */ -size_t bitset_extract_setbits(const uint64_t *words, size_t length, - uint32_t *out, uint32_t base); - -/* - * Given a bitset containing "length" 64-bit words, write out the position - * of all the set bits to "out" as 16-bit integers, values start at "base" (can - *be set to zero) - * - * The "out" pointer should be sufficient to store the actual number of bits - *set. - * - * Returns how many values were actually decoded. - * - * This function should only be expected to be faster than - *bitset_extract_setbits_uint16 - * when the density of the bitset is high. - * - * This function uses SSE decoding. - */ -size_t bitset_extract_setbits_sse_uint16(const uint64_t *words, size_t length, - uint16_t *out, size_t outcapacity, - uint16_t base); - -size_t bitset_extract_setbits_avx512_uint16(const uint64_t *words, - size_t length, uint16_t *out, - size_t outcapacity, uint16_t base); - -/* - * Given a bitset containing "length" 64-bit words, write out the position - * of all the set bits to "out", values start at "base" - * (can be set to zero) - * - * The "out" pointer should be sufficient to store the actual number of bits - *set. - * - * Returns how many values were actually decoded. - */ -size_t bitset_extract_setbits_uint16(const uint64_t *words, size_t length, - uint16_t *out, uint16_t base); - -/* - * Given two bitsets containing "length" 64-bit words, write out the position - * of all the common set bits to "out", values start at "base" - * (can be set to zero) - * - * The "out" pointer should be sufficient to store the actual number of bits - * set. - * - * Returns how many values were actually decoded. - */ -size_t bitset_extract_intersection_setbits_uint16( - const uint64_t *__restrict__ words1, const uint64_t *__restrict__ words2, - size_t length, uint16_t *out, uint16_t base); - -/* - * Given a bitset having cardinality card, set all bit values in the list (there - * are length of them) - * and return the updated cardinality. This evidently assumes that the bitset - * already contained data. - */ -uint64_t bitset_set_list_withcard(uint64_t *words, uint64_t card, - const uint16_t *list, uint64_t length); -/* - * Given a bitset, set all bit values in the list (there - * are length of them). - */ -void bitset_set_list(uint64_t *words, const uint16_t *list, uint64_t length); - -/* - * Given a bitset having cardinality card, unset all bit values in the list - * (there are length of them) - * and return the updated cardinality. This evidently assumes that the bitset - * already contained data. - */ -uint64_t bitset_clear_list(uint64_t *words, uint64_t card, const uint16_t *list, - uint64_t length); - -/* - * Given a bitset having cardinality card, toggle all bit values in the list - * (there are length of them) - * and return the updated cardinality. This evidently assumes that the bitset - * already contained data. - */ - -uint64_t bitset_flip_list_withcard(uint64_t *words, uint64_t card, - const uint16_t *list, uint64_t length); - -void bitset_flip_list(uint64_t *words, const uint16_t *list, uint64_t length); - -#if CROARING_IS_X64 -/*** - * BEGIN Harley-Seal popcount functions. - */ -CROARING_TARGET_AVX2 -/** - * Compute the population count of a 256-bit word - * This is not especially fast, but it is convenient as part of other functions. - */ -static inline __m256i popcount256(__m256i v) { - const __m256i lookuppos = _mm256_setr_epi8( - /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2, - /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3, - /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3, - /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4, - - /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2, - /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3, - /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3, - /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4); - const __m256i lookupneg = _mm256_setr_epi8( - /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2, - /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3, - /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3, - /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4, - - /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2, - /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3, - /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3, - /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4); - const __m256i low_mask = _mm256_set1_epi8(0x0f); - - const __m256i lo = _mm256_and_si256(v, low_mask); - const __m256i hi = _mm256_and_si256(_mm256_srli_epi16(v, 4), low_mask); - const __m256i popcnt1 = _mm256_shuffle_epi8(lookuppos, lo); - const __m256i popcnt2 = _mm256_shuffle_epi8(lookupneg, hi); - return _mm256_sad_epu8(popcnt1, popcnt2); -} -CROARING_UNTARGET_AVX2 - -CROARING_TARGET_AVX2 -/** - * Simple CSA over 256 bits - */ -static inline void CSA(__m256i *h, __m256i *l, __m256i a, __m256i b, - __m256i c) { - const __m256i u = _mm256_xor_si256(a, b); - *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c)); - *l = _mm256_xor_si256(u, c); -} -CROARING_UNTARGET_AVX2 - -CROARING_TARGET_AVX2 -/** - * Fast Harley-Seal AVX population count function - */ -inline static uint64_t avx2_harley_seal_popcount256(const __m256i *data, - const uint64_t size) { - __m256i total = _mm256_setzero_si256(); - __m256i ones = _mm256_setzero_si256(); - __m256i twos = _mm256_setzero_si256(); - __m256i fours = _mm256_setzero_si256(); - __m256i eights = _mm256_setzero_si256(); - __m256i sixteens = _mm256_setzero_si256(); - __m256i twosA, twosB, foursA, foursB, eightsA, eightsB; - - const uint64_t limit = size - size % 16; - uint64_t i = 0; - - for (; i < limit; i += 16) { - CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i), - _mm256_lddqu_si256(data + i + 1)); - CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 2), - _mm256_lddqu_si256(data + i + 3)); - CSA(&foursA, &twos, twos, twosA, twosB); - CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 4), - _mm256_lddqu_si256(data + i + 5)); - CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 6), - _mm256_lddqu_si256(data + i + 7)); - CSA(&foursB, &twos, twos, twosA, twosB); - CSA(&eightsA, &fours, fours, foursA, foursB); - CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 8), - _mm256_lddqu_si256(data + i + 9)); - CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 10), - _mm256_lddqu_si256(data + i + 11)); - CSA(&foursA, &twos, twos, twosA, twosB); - CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 12), - _mm256_lddqu_si256(data + i + 13)); - CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 14), - _mm256_lddqu_si256(data + i + 15)); - CSA(&foursB, &twos, twos, twosA, twosB); - CSA(&eightsB, &fours, fours, foursA, foursB); - CSA(&sixteens, &eights, eights, eightsA, eightsB); - - total = _mm256_add_epi64(total, popcount256(sixteens)); - } - - total = _mm256_slli_epi64(total, 4); // * 16 - total = _mm256_add_epi64( - total, _mm256_slli_epi64(popcount256(eights), 3)); // += 8 * ... - total = _mm256_add_epi64( - total, _mm256_slli_epi64(popcount256(fours), 2)); // += 4 * ... - total = _mm256_add_epi64( - total, _mm256_slli_epi64(popcount256(twos), 1)); // += 2 * ... - total = _mm256_add_epi64(total, popcount256(ones)); - for (; i < size; i++) - total = - _mm256_add_epi64(total, popcount256(_mm256_lddqu_si256(data + i))); - - return (uint64_t)(_mm256_extract_epi64(total, 0)) + - (uint64_t)(_mm256_extract_epi64(total, 1)) + - (uint64_t)(_mm256_extract_epi64(total, 2)) + - (uint64_t)(_mm256_extract_epi64(total, 3)); -} -CROARING_UNTARGET_AVX2 - -#define CROARING_AVXPOPCNTFNC(opname, avx_intrinsic) \ - static inline uint64_t avx2_harley_seal_popcount256_##opname( \ - const __m256i *data1, const __m256i *data2, const uint64_t size) { \ - __m256i total = _mm256_setzero_si256(); \ - __m256i ones = _mm256_setzero_si256(); \ - __m256i twos = _mm256_setzero_si256(); \ - __m256i fours = _mm256_setzero_si256(); \ - __m256i eights = _mm256_setzero_si256(); \ - __m256i sixteens = _mm256_setzero_si256(); \ - __m256i twosA, twosB, foursA, foursB, eightsA, eightsB; \ - __m256i A1, A2; \ - const uint64_t limit = size - size % 16; \ - uint64_t i = 0; \ - for (; i < limit; i += 16) { \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i), \ - _mm256_lddqu_si256(data2 + i)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1), \ - _mm256_lddqu_si256(data2 + i + 1)); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2), \ - _mm256_lddqu_si256(data2 + i + 2)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3), \ - _mm256_lddqu_si256(data2 + i + 3)); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursA, &twos, twos, twosA, twosB); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4), \ - _mm256_lddqu_si256(data2 + i + 4)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5), \ - _mm256_lddqu_si256(data2 + i + 5)); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6), \ - _mm256_lddqu_si256(data2 + i + 6)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7), \ - _mm256_lddqu_si256(data2 + i + 7)); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursB, &twos, twos, twosA, twosB); \ - CSA(&eightsA, &fours, fours, foursA, foursB); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8), \ - _mm256_lddqu_si256(data2 + i + 8)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9), \ - _mm256_lddqu_si256(data2 + i + 9)); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10), \ - _mm256_lddqu_si256(data2 + i + 10)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11), \ - _mm256_lddqu_si256(data2 + i + 11)); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursA, &twos, twos, twosA, twosB); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12), \ - _mm256_lddqu_si256(data2 + i + 12)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13), \ - _mm256_lddqu_si256(data2 + i + 13)); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14), \ - _mm256_lddqu_si256(data2 + i + 14)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15), \ - _mm256_lddqu_si256(data2 + i + 15)); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursB, &twos, twos, twosA, twosB); \ - CSA(&eightsB, &fours, fours, foursA, foursB); \ - CSA(&sixteens, &eights, eights, eightsA, eightsB); \ - total = _mm256_add_epi64(total, popcount256(sixteens)); \ - } \ - total = _mm256_slli_epi64(total, 4); \ - total = _mm256_add_epi64(total, \ - _mm256_slli_epi64(popcount256(eights), 3)); \ - total = \ - _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2)); \ - total = \ - _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1)); \ - total = _mm256_add_epi64(total, popcount256(ones)); \ - for (; i < size; i++) { \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i), \ - _mm256_lddqu_si256(data2 + i)); \ - total = _mm256_add_epi64(total, popcount256(A1)); \ - } \ - return (uint64_t)(_mm256_extract_epi64(total, 0)) + \ - (uint64_t)(_mm256_extract_epi64(total, 1)) + \ - (uint64_t)(_mm256_extract_epi64(total, 2)) + \ - (uint64_t)(_mm256_extract_epi64(total, 3)); \ - } \ - static inline uint64_t avx2_harley_seal_popcount256andstore_##opname( \ - const __m256i *__restrict__ data1, const __m256i *__restrict__ data2, \ - __m256i *__restrict__ out, const uint64_t size) { \ - __m256i total = _mm256_setzero_si256(); \ - __m256i ones = _mm256_setzero_si256(); \ - __m256i twos = _mm256_setzero_si256(); \ - __m256i fours = _mm256_setzero_si256(); \ - __m256i eights = _mm256_setzero_si256(); \ - __m256i sixteens = _mm256_setzero_si256(); \ - __m256i twosA, twosB, foursA, foursB, eightsA, eightsB; \ - __m256i A1, A2; \ - const uint64_t limit = size - size % 16; \ - uint64_t i = 0; \ - for (; i < limit; i += 16) { \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i), \ - _mm256_lddqu_si256(data2 + i)); \ - _mm256_storeu_si256(out + i, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1), \ - _mm256_lddqu_si256(data2 + i + 1)); \ - _mm256_storeu_si256(out + i + 1, A2); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2), \ - _mm256_lddqu_si256(data2 + i + 2)); \ - _mm256_storeu_si256(out + i + 2, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3), \ - _mm256_lddqu_si256(data2 + i + 3)); \ - _mm256_storeu_si256(out + i + 3, A2); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursA, &twos, twos, twosA, twosB); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4), \ - _mm256_lddqu_si256(data2 + i + 4)); \ - _mm256_storeu_si256(out + i + 4, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5), \ - _mm256_lddqu_si256(data2 + i + 5)); \ - _mm256_storeu_si256(out + i + 5, A2); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6), \ - _mm256_lddqu_si256(data2 + i + 6)); \ - _mm256_storeu_si256(out + i + 6, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7), \ - _mm256_lddqu_si256(data2 + i + 7)); \ - _mm256_storeu_si256(out + i + 7, A2); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursB, &twos, twos, twosA, twosB); \ - CSA(&eightsA, &fours, fours, foursA, foursB); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8), \ - _mm256_lddqu_si256(data2 + i + 8)); \ - _mm256_storeu_si256(out + i + 8, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9), \ - _mm256_lddqu_si256(data2 + i + 9)); \ - _mm256_storeu_si256(out + i + 9, A2); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10), \ - _mm256_lddqu_si256(data2 + i + 10)); \ - _mm256_storeu_si256(out + i + 10, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11), \ - _mm256_lddqu_si256(data2 + i + 11)); \ - _mm256_storeu_si256(out + i + 11, A2); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursA, &twos, twos, twosA, twosB); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12), \ - _mm256_lddqu_si256(data2 + i + 12)); \ - _mm256_storeu_si256(out + i + 12, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13), \ - _mm256_lddqu_si256(data2 + i + 13)); \ - _mm256_storeu_si256(out + i + 13, A2); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14), \ - _mm256_lddqu_si256(data2 + i + 14)); \ - _mm256_storeu_si256(out + i + 14, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15), \ - _mm256_lddqu_si256(data2 + i + 15)); \ - _mm256_storeu_si256(out + i + 15, A2); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursB, &twos, twos, twosA, twosB); \ - CSA(&eightsB, &fours, fours, foursA, foursB); \ - CSA(&sixteens, &eights, eights, eightsA, eightsB); \ - total = _mm256_add_epi64(total, popcount256(sixteens)); \ - } \ - total = _mm256_slli_epi64(total, 4); \ - total = _mm256_add_epi64(total, \ - _mm256_slli_epi64(popcount256(eights), 3)); \ - total = \ - _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2)); \ - total = \ - _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1)); \ - total = _mm256_add_epi64(total, popcount256(ones)); \ - for (; i < size; i++) { \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i), \ - _mm256_lddqu_si256(data2 + i)); \ - _mm256_storeu_si256(out + i, A1); \ - total = _mm256_add_epi64(total, popcount256(A1)); \ - } \ - return (uint64_t)(_mm256_extract_epi64(total, 0)) + \ - (uint64_t)(_mm256_extract_epi64(total, 1)) + \ - (uint64_t)(_mm256_extract_epi64(total, 2)) + \ - (uint64_t)(_mm256_extract_epi64(total, 3)); \ - } - -CROARING_TARGET_AVX2 -CROARING_AVXPOPCNTFNC(or, _mm256_or_si256) -CROARING_UNTARGET_AVX2 - -CROARING_TARGET_AVX2 -CROARING_AVXPOPCNTFNC(union, _mm256_or_si256) -CROARING_UNTARGET_AVX2 - -CROARING_TARGET_AVX2 -CROARING_AVXPOPCNTFNC(and, _mm256_and_si256) -CROARING_UNTARGET_AVX2 - -CROARING_TARGET_AVX2 -CROARING_AVXPOPCNTFNC(intersection, _mm256_and_si256) -CROARING_UNTARGET_AVX2 - -CROARING_TARGET_AVX2 -CROARING_AVXPOPCNTFNC(xor, _mm256_xor_si256) -CROARING_UNTARGET_AVX2 - -CROARING_TARGET_AVX2 -CROARING_AVXPOPCNTFNC(andnot, _mm256_andnot_si256) -CROARING_UNTARGET_AVX2 - -#define VPOPCNT_AND_ADD(ptr, i, accu) \ - const __m512i v##i = _mm512_loadu_si512((const __m512i *)ptr + i); \ - const __m512i p##i = _mm512_popcnt_epi64(v##i); \ - accu = _mm512_add_epi64(accu, p##i); - -#if CROARING_COMPILER_SUPPORTS_AVX512 -CROARING_TARGET_AVX512 -static inline uint64_t sum_epu64_256(const __m256i v) { - return (uint64_t)(_mm256_extract_epi64(v, 0)) + - (uint64_t)(_mm256_extract_epi64(v, 1)) + - (uint64_t)(_mm256_extract_epi64(v, 2)) + - (uint64_t)(_mm256_extract_epi64(v, 3)); -} - -static inline uint64_t simd_sum_epu64(const __m512i v) { - __m256i lo = _mm512_extracti64x4_epi64(v, 0); - __m256i hi = _mm512_extracti64x4_epi64(v, 1); - - return sum_epu64_256(lo) + sum_epu64_256(hi); -} - -static inline uint64_t avx512_vpopcount(const __m512i *data, - const uint64_t size) { - const uint64_t limit = size - size % 4; - __m512i total = _mm512_setzero_si512(); - uint64_t i = 0; - - for (; i < limit; i += 4) { - VPOPCNT_AND_ADD(data + i, 0, total); - VPOPCNT_AND_ADD(data + i, 1, total); - VPOPCNT_AND_ADD(data + i, 2, total); - VPOPCNT_AND_ADD(data + i, 3, total); - } - - for (; i < size; i++) { - total = _mm512_add_epi64( - total, _mm512_popcnt_epi64(_mm512_loadu_si512(data + i))); - } - - return simd_sum_epu64(total); -} -CROARING_UNTARGET_AVX512 -#endif - -#define CROARING_AVXPOPCNTFNC512(opname, avx_intrinsic) \ - static inline uint64_t avx512_harley_seal_popcount512_##opname( \ - const __m512i *data1, const __m512i *data2, const uint64_t size) { \ - __m512i total = _mm512_setzero_si512(); \ - const uint64_t limit = size - size % 4; \ - uint64_t i = 0; \ - for (; i < limit; i += 4) { \ - __m512i a1 = avx_intrinsic(_mm512_loadu_si512(data1 + i), \ - _mm512_loadu_si512(data2 + i)); \ - total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a1)); \ - __m512i a2 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 1), \ - _mm512_loadu_si512(data2 + i + 1)); \ - total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a2)); \ - __m512i a3 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 2), \ - _mm512_loadu_si512(data2 + i + 2)); \ - total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a3)); \ - __m512i a4 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 3), \ - _mm512_loadu_si512(data2 + i + 3)); \ - total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a4)); \ - } \ - for (; i < size; i++) { \ - __m512i a = avx_intrinsic(_mm512_loadu_si512(data1 + i), \ - _mm512_loadu_si512(data2 + i)); \ - total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a)); \ - } \ - return simd_sum_epu64(total); \ - } \ - static inline uint64_t avx512_harley_seal_popcount512andstore_##opname( \ - const __m512i *__restrict__ data1, const __m512i *__restrict__ data2, \ - __m512i *__restrict__ out, const uint64_t size) { \ - __m512i total = _mm512_setzero_si512(); \ - const uint64_t limit = size - size % 4; \ - uint64_t i = 0; \ - for (; i < limit; i += 4) { \ - __m512i a1 = avx_intrinsic(_mm512_loadu_si512(data1 + i), \ - _mm512_loadu_si512(data2 + i)); \ - _mm512_storeu_si512(out + i, a1); \ - total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a1)); \ - __m512i a2 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 1), \ - _mm512_loadu_si512(data2 + i + 1)); \ - _mm512_storeu_si512(out + i + 1, a2); \ - total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a2)); \ - __m512i a3 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 2), \ - _mm512_loadu_si512(data2 + i + 2)); \ - _mm512_storeu_si512(out + i + 2, a3); \ - total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a3)); \ - __m512i a4 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 3), \ - _mm512_loadu_si512(data2 + i + 3)); \ - _mm512_storeu_si512(out + i + 3, a4); \ - total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a4)); \ - } \ - for (; i < size; i++) { \ - __m512i a = avx_intrinsic(_mm512_loadu_si512(data1 + i), \ - _mm512_loadu_si512(data2 + i)); \ - _mm512_storeu_si512(out + i, a); \ - total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a)); \ - } \ - return simd_sum_epu64(total); \ - } - -#if CROARING_COMPILER_SUPPORTS_AVX512 -CROARING_TARGET_AVX512 -CROARING_AVXPOPCNTFNC512(or, _mm512_or_si512) -CROARING_AVXPOPCNTFNC512(union, _mm512_or_si512) -CROARING_AVXPOPCNTFNC512(and, _mm512_and_si512) -CROARING_AVXPOPCNTFNC512(intersection, _mm512_and_si512) -CROARING_AVXPOPCNTFNC512(xor, _mm512_xor_si512) -CROARING_AVXPOPCNTFNC512(andnot, _mm512_andnot_si512) -CROARING_UNTARGET_AVX512 -#endif -/*** - * END Harley-Seal popcount functions. - */ - -#endif // CROARING_IS_X64 - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal -#endif -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC diagnostic pop -#endif -#endif -/* end file include/roaring/bitset_util.h */ -/* begin file include/roaring/containers/array.h */ -/* - * array.h - * - */ - -#ifndef INCLUDE_CONTAINERS_ARRAY_H_ -#define INCLUDE_CONTAINERS_ARRAY_H_ - -#include - - -// Include other headers after roaring_types.h - -#ifdef __cplusplus -extern "C" { -namespace roaring { - -// Note: in pure C++ code, you should avoid putting `using` in header files -using api::roaring_iterator; -using api::roaring_iterator64; - -namespace internal { -#endif - -/* Containers with DEFAULT_MAX_SIZE or less integers should be arrays */ -enum { DEFAULT_MAX_SIZE = 4096 }; - -/* struct array_container - sparse representation of a bitmap - * - * @cardinality: number of indices in `array` (and the bitmap) - * @capacity: allocated size of `array` - * @array: sorted list of integers - */ -STRUCT_CONTAINER(array_container_s) { - int32_t cardinality; - int32_t capacity; - uint16_t *array; -}; - -typedef struct array_container_s array_container_t; - -#define CAST_array(c) CAST(array_container_t *, c) // safer downcast -#define const_CAST_array(c) CAST(const array_container_t *, c) -#define movable_CAST_array(c) movable_CAST(array_container_t **, c) - -/* Create a new array with default. Return NULL in case of failure. See also - * array_container_create_given_capacity. */ -array_container_t *array_container_create(void); - -/* Create a new array with a specified capacity size. Return NULL in case of - * failure. */ -array_container_t *array_container_create_given_capacity(int32_t size); - -/* Create a new array containing all values in [min,max). */ -array_container_t *array_container_create_range(uint32_t min, uint32_t max); - -/* - * Shrink the capacity to the actual size, return the number of bytes saved. - */ -int array_container_shrink_to_fit(array_container_t *src); - -/* Free memory owned by `array'. */ -void array_container_free(array_container_t *array); - -/* Duplicate container */ -array_container_t *array_container_clone(const array_container_t *src); - -/* Get the cardinality of `array'. */ -ALLOW_UNALIGNED -static inline int array_container_cardinality(const array_container_t *array) { - return array->cardinality; -} - -static inline bool array_container_nonzero_cardinality( - const array_container_t *array) { - return array->cardinality > 0; -} - -/* Copy one container into another. We assume that they are distinct. */ -void array_container_copy(const array_container_t *src, array_container_t *dst); - -/* Add all the values in [min,max) (included) at a distance k*step from min. - The container must have a size less or equal to DEFAULT_MAX_SIZE after this - addition. */ -void array_container_add_from_range(array_container_t *arr, uint32_t min, - uint32_t max, uint16_t step); - -static inline bool array_container_empty(const array_container_t *array) { - return array->cardinality == 0; -} - -/* check whether the cardinality is equal to the capacity (this does not mean - * that it contains 1<<16 elements) */ -static inline bool array_container_full(const array_container_t *array) { - return array->cardinality == array->capacity; -} - -/* Compute the union of `src_1' and `src_2' and write the result to `dst' - * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ -void array_container_union(const array_container_t *src_1, - const array_container_t *src_2, - array_container_t *dst); - -/* symmetric difference, see array_container_union */ -void array_container_xor(const array_container_t *array_1, - const array_container_t *array_2, - array_container_t *out); - -/* Computes the intersection of src_1 and src_2 and write the result to - * dst. It is assumed that dst is distinct from both src_1 and src_2. */ -void array_container_intersection(const array_container_t *src_1, - const array_container_t *src_2, - array_container_t *dst); - -/* Check whether src_1 and src_2 intersect. */ -bool array_container_intersect(const array_container_t *src_1, - const array_container_t *src_2); - -/* computers the size of the intersection between two arrays. - */ -int array_container_intersection_cardinality(const array_container_t *src_1, - const array_container_t *src_2); - -/* computes the intersection of array1 and array2 and write the result to - * array1. - * */ -void array_container_intersection_inplace(array_container_t *src_1, - const array_container_t *src_2); - -/* - * Write out the 16-bit integers contained in this container as a list of 32-bit - * integers using base - * as the starting value (it might be expected that base has zeros in its 16 - * least significant bits). - * The function returns the number of values written. - * The caller is responsible for allocating enough memory in out. - */ -int array_container_to_uint32_array(void *vout, const array_container_t *cont, - uint32_t base); - -/* Compute the number of runs */ -int32_t array_container_number_of_runs(const array_container_t *ac); - -/* - * Print this container using printf (useful for debugging). - */ -void array_container_printf(const array_container_t *v); - -/* - * Print this container using printf as a comma-separated list of 32-bit - * integers starting at base. - */ -void array_container_printf_as_uint32_array(const array_container_t *v, - uint32_t base); - -bool array_container_validate(const array_container_t *v, const char **reason); - -/** - * Return the serialized size in bytes of a container having cardinality "card". - */ -static inline int32_t array_container_serialized_size_in_bytes(int32_t card) { - return card * 2 + 2; -} - -/** - * Increase capacity to at least min. - * Whether the existing data needs to be copied over depends on the "preserve" - * parameter. If preserve is false, then the new content will be uninitialized, - * otherwise the old content is copied. - */ -void array_container_grow(array_container_t *container, int32_t min, - bool preserve); - -bool array_container_iterate(const array_container_t *cont, uint32_t base, - roaring_iterator iterator, void *ptr); -bool array_container_iterate64(const array_container_t *cont, uint32_t base, - roaring_iterator64 iterator, uint64_t high_bits, - void *ptr); - -/** - * Writes the underlying array to buf, outputs how many bytes were written. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes written should be - * array_container_size_in_bytes(container). - * - */ -int32_t array_container_write(const array_container_t *container, char *buf); -/** - * Reads the instance from buf, outputs how many bytes were read. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes read should be array_container_size_in_bytes(container). - * You need to provide the (known) cardinality. - */ -int32_t array_container_read(int32_t cardinality, array_container_t *container, - const char *buf); - -/** - * Return the serialized size in bytes of a container (see - * bitset_container_write) - * This is meant to be compatible with the Java and Go versions of Roaring and - * assumes - * that the cardinality of the container is already known. - * - */ -ALLOW_UNALIGNED -static inline int32_t array_container_size_in_bytes( - const array_container_t *container) { - return container->cardinality * sizeof(uint16_t); -} - -/** - * Return true if the two arrays have the same content. - */ -ALLOW_UNALIGNED -static inline bool array_container_equals(const array_container_t *container1, - const array_container_t *container2) { - if (container1->cardinality != container2->cardinality) { - return false; - } - return memequals(container1->array, container2->array, - container1->cardinality * 2); -} - -/** - * Return true if container1 is a subset of container2. - */ -bool array_container_is_subset(const array_container_t *container1, - const array_container_t *container2); - -/** - * If the element of given rank is in this container, supposing that the first - * element has rank start_rank, then the function returns true and sets element - * accordingly. - * Otherwise, it returns false and update start_rank. - */ -static inline bool array_container_select(const array_container_t *container, - uint32_t *start_rank, uint32_t rank, - uint32_t *element) { - int card = array_container_cardinality(container); - if (*start_rank + card <= rank) { - *start_rank += card; - return false; - } else { - *element = container->array[rank - *start_rank]; - return true; - } -} - -/* Computes the difference of array1 and array2 and write the result - * to array out. - * Array out does not need to be distinct from array_1 - */ -void array_container_andnot(const array_container_t *array_1, - const array_container_t *array_2, - array_container_t *out); - -/* Append x to the set. Assumes that the value is larger than any preceding - * values. */ -static inline void array_container_append(array_container_t *arr, - uint16_t pos) { - const int32_t capacity = arr->capacity; - - if (array_container_full(arr)) { - array_container_grow(arr, capacity + 1, true); - } - - arr->array[arr->cardinality++] = pos; -} - -/** - * Add value to the set if final cardinality doesn't exceed max_cardinality. - * Return code: - * 1 -- value was added - * 0 -- value was already present - * -1 -- value was not added because cardinality would exceed max_cardinality - */ -static inline int array_container_try_add(array_container_t *arr, - uint16_t value, - int32_t max_cardinality) { - const int32_t cardinality = arr->cardinality; - - // best case, we can append. - if ((array_container_empty(arr) || arr->array[cardinality - 1] < value) && - cardinality < max_cardinality) { - array_container_append(arr, value); - return 1; - } - - const int32_t loc = binarySearch(arr->array, cardinality, value); - - if (loc >= 0) { - return 0; - } else if (cardinality < max_cardinality) { - if (array_container_full(arr)) { - array_container_grow(arr, arr->capacity + 1, true); - } - const int32_t insert_idx = -loc - 1; - memmove(arr->array + insert_idx + 1, arr->array + insert_idx, - (cardinality - insert_idx) * sizeof(uint16_t)); - arr->array[insert_idx] = value; - arr->cardinality++; - return 1; - } else { - return -1; - } -} - -/* Add value to the set. Returns true if x was not already present. */ -static inline bool array_container_add(array_container_t *arr, uint16_t value) { - return array_container_try_add(arr, value, INT32_MAX) == 1; -} - -/* Remove x from the set. Returns true if x was present. */ -static inline bool array_container_remove(array_container_t *arr, - uint16_t pos) { - const int32_t idx = binarySearch(arr->array, arr->cardinality, pos); - const bool is_present = idx >= 0; - if (is_present) { - memmove(arr->array + idx, arr->array + idx + 1, - (arr->cardinality - idx - 1) * sizeof(uint16_t)); - arr->cardinality--; - } - - return is_present; -} - -/* Check whether x is present. */ -inline bool array_container_contains(const array_container_t *arr, - uint16_t pos) { - // return binarySearch(arr->array, arr->cardinality, pos) >= 0; - // binary search with fallback to linear search for short ranges - int32_t low = 0; - const uint16_t *carr = (const uint16_t *)arr->array; - int32_t high = arr->cardinality - 1; - // while (high - low >= 0) { - while (high >= low + 16) { - int32_t middleIndex = (low + high) >> 1; - uint16_t middleValue = carr[middleIndex]; - if (middleValue < pos) { - low = middleIndex + 1; - } else if (middleValue > pos) { - high = middleIndex - 1; - } else { - return true; - } - } - - for (int i = low; i <= high; i++) { - uint16_t v = carr[i]; - if (v == pos) { - return true; - } - if (v > pos) return false; - } - return false; -} - -void array_container_offset(const array_container_t *c, container_t **loc, - container_t **hic, uint16_t offset); - -//* Check whether a range of values from range_start (included) to range_end -//(excluded) is present. */ -static inline bool array_container_contains_range(const array_container_t *arr, - uint32_t range_start, - uint32_t range_end) { - const int32_t range_count = range_end - range_start; - const uint16_t rs_included = (uint16_t)range_start; - const uint16_t re_included = (uint16_t)(range_end - 1); - - // Empty range is always included - if (range_count <= 0) { - return true; - } - if (range_count > arr->cardinality) { - return false; - } - - const int32_t start = - binarySearch(arr->array, arr->cardinality, rs_included); - // If this sorted array contains all items in the range: - // * the start item must be found - // * the last item in range range_count must exist, and be the expected end - // value - return (start >= 0) && (arr->cardinality >= start + range_count) && - (arr->array[start + range_count - 1] == re_included); -} - -/* Returns the smallest value (assumes not empty) */ -inline uint16_t array_container_minimum(const array_container_t *arr) { - if (arr->cardinality == 0) return 0; - return arr->array[0]; -} - -/* Returns the largest value (assumes not empty) */ -inline uint16_t array_container_maximum(const array_container_t *arr) { - if (arr->cardinality == 0) return 0; - return arr->array[arr->cardinality - 1]; -} - -/* Returns the number of values equal or smaller than x */ -inline int array_container_rank(const array_container_t *arr, uint16_t x) { - const int32_t idx = binarySearch(arr->array, arr->cardinality, x); - const bool is_present = idx >= 0; - if (is_present) { - return idx + 1; - } else { - return -idx - 1; - } -} - -/* bulk version of array_container_rank(); return number of consumed elements - */ -inline uint32_t array_container_rank_many(const array_container_t *arr, - uint64_t start_rank, - const uint32_t *begin, - const uint32_t *end, uint64_t *ans) { - const uint16_t high = (uint16_t)((*begin) >> 16); - uint32_t pos = 0; - const uint32_t *iter = begin; - for (; iter != end; iter++) { - uint32_t x = *iter; - uint16_t xhigh = (uint16_t)(x >> 16); - if (xhigh != high) return iter - begin; // stop at next container - - const int32_t idx = - binarySearch(arr->array + pos, arr->cardinality - pos, (uint16_t)x); - const bool is_present = idx >= 0; - if (is_present) { - *(ans++) = start_rank + pos + (idx + 1); - pos = idx + 1; - } else { - *(ans++) = start_rank + pos + (-idx - 1); - } - } - return iter - begin; -} - -/* Returns the index of x , if not exsist return -1 */ -inline int array_container_get_index(const array_container_t *arr, uint16_t x) { - const int32_t idx = binarySearch(arr->array, arr->cardinality, x); - const bool is_present = idx >= 0; - if (is_present) { - return idx; - } else { - return -1; - } -} - -/* Returns the index of the first value equal or larger than x, or -1 */ -inline int array_container_index_equalorlarger(const array_container_t *arr, - uint16_t x) { - const int32_t idx = binarySearch(arr->array, arr->cardinality, x); - const bool is_present = idx >= 0; - if (is_present) { - return idx; - } else { - int32_t candidate = -idx - 1; - if (candidate < arr->cardinality) return candidate; - return -1; - } -} - -/* - * Adds all values in range [min,max] using hint: - * nvals_less is the number of array values less than $min - * nvals_greater is the number of array values greater than $max - */ -static inline void array_container_add_range_nvals(array_container_t *array, - uint32_t min, uint32_t max, - int32_t nvals_less, - int32_t nvals_greater) { - int32_t union_cardinality = nvals_less + (max - min + 1) + nvals_greater; - if (union_cardinality > array->capacity) { - array_container_grow(array, union_cardinality, true); - } - memmove(&(array->array[union_cardinality - nvals_greater]), - &(array->array[array->cardinality - nvals_greater]), - nvals_greater * sizeof(uint16_t)); - for (uint32_t i = 0; i <= max - min; i++) { - array->array[nvals_less + i] = (uint16_t)(min + i); - } - array->cardinality = union_cardinality; -} - -/** - * Adds all values in range [min,max]. This function is currently unused - * and left as a documentation. - */ -/*static inline void array_container_add_range(array_container_t *array, - uint32_t min, uint32_t max) { - int32_t nvals_greater = count_greater(array->array, array->cardinality, -max); int32_t nvals_less = count_less(array->array, array->cardinality - -nvals_greater, min); array_container_add_range_nvals(array, min, max, -nvals_less, nvals_greater); -}*/ - -/* - * Removes all elements array[pos] .. array[pos+count-1] - */ -static inline void array_container_remove_range(array_container_t *array, - uint32_t pos, uint32_t count) { - if (count != 0) { - memmove(&(array->array[pos]), &(array->array[pos + count]), - (array->cardinality - pos - count) * sizeof(uint16_t)); - array->cardinality -= count; - } -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif /* INCLUDE_CONTAINERS_ARRAY_H_ */ -/* end file include/roaring/containers/array.h */ -/* begin file include/roaring/containers/bitset.h */ -/* - * bitset.h - * - */ - -#ifndef INCLUDE_CONTAINERS_BITSET_H_ -#define INCLUDE_CONTAINERS_BITSET_H_ - -#include -#include - - -// Include other headers after roaring_types.h - -#ifdef __cplusplus -extern "C" { -namespace roaring { - -// Note: in pure C++ code, you should avoid putting `using` in header files -using api::roaring_iterator; -using api::roaring_iterator64; - -namespace internal { -#endif - -enum { - BITSET_CONTAINER_SIZE_IN_WORDS = (1 << 16) / 64, - BITSET_UNKNOWN_CARDINALITY = -1 -}; - -STRUCT_CONTAINER(bitset_container_s) { - int32_t cardinality; - uint64_t *words; -}; - -typedef struct bitset_container_s bitset_container_t; - -#define CAST_bitset(c) CAST(bitset_container_t *, c) // safer downcast -#define const_CAST_bitset(c) CAST(const bitset_container_t *, c) -#define movable_CAST_bitset(c) movable_CAST(bitset_container_t **, c) - -/* Create a new bitset. Return NULL in case of failure. */ -bitset_container_t *bitset_container_create(void); - -/* Free memory. */ -void bitset_container_free(bitset_container_t *bitset); - -/* Clear bitset (sets bits to 0). */ -void bitset_container_clear(bitset_container_t *bitset); - -/* Set all bits to 1. */ -void bitset_container_set_all(bitset_container_t *bitset); - -/* Duplicate bitset */ -bitset_container_t *bitset_container_clone(const bitset_container_t *src); - -/* Set the bit in [begin,end). WARNING: as of April 2016, this method is slow - * and - * should not be used in performance-sensitive code. Ever. */ -void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin, - uint32_t end); - -#if defined(CROARING_ASMBITMANIPOPTIMIZATION) && defined(__AVX2__) -/* Set the ith bit. */ -static inline void bitset_container_set(bitset_container_t *bitset, - uint16_t pos) { - uint64_t shift = 6; - uint64_t offset; - uint64_t p = pos; - ASM_SHIFT_RIGHT(p, shift, offset); - uint64_t load = bitset->words[offset]; - ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality); - bitset->words[offset] = load; -} - -/* Unset the ith bit. Currently unused. Could be used for optimization. */ -/*static inline void bitset_container_unset(bitset_container_t *bitset, - uint16_t pos) { - uint64_t shift = 6; - uint64_t offset; - uint64_t p = pos; - ASM_SHIFT_RIGHT(p, shift, offset); - uint64_t load = bitset->words[offset]; - ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality); - bitset->words[offset] = load; -}*/ - -/* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be slower - * than bitset_container_set. */ -static inline bool bitset_container_add(bitset_container_t *bitset, - uint16_t pos) { - uint64_t shift = 6; - uint64_t offset; - uint64_t p = pos; - ASM_SHIFT_RIGHT(p, shift, offset); - uint64_t load = bitset->words[offset]; - // could be possibly slightly further optimized - const int32_t oldcard = bitset->cardinality; - ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality); - bitset->words[offset] = load; - return bitset->cardinality - oldcard; -} - -/* Remove `pos' from `bitset'. Returns true if `pos' was present. Might be - * slower than bitset_container_unset. */ -static inline bool bitset_container_remove(bitset_container_t *bitset, - uint16_t pos) { - uint64_t shift = 6; - uint64_t offset; - uint64_t p = pos; - ASM_SHIFT_RIGHT(p, shift, offset); - uint64_t load = bitset->words[offset]; - // could be possibly slightly further optimized - const int32_t oldcard = bitset->cardinality; - ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality); - bitset->words[offset] = load; - return oldcard - bitset->cardinality; -} - -/* Get the value of the ith bit. */ -inline bool bitset_container_get(const bitset_container_t *bitset, - uint16_t pos) { - uint64_t word = bitset->words[pos >> 6]; - const uint64_t p = pos; - ASM_INPLACESHIFT_RIGHT(word, p); - return word & 1; -} - -#else - -/* Set the ith bit. */ -static inline void bitset_container_set(bitset_container_t *bitset, - uint16_t pos) { - const uint64_t old_word = bitset->words[pos >> 6]; - const int index = pos & 63; - const uint64_t new_word = old_word | (UINT64_C(1) << index); - bitset->cardinality += (uint32_t)((old_word ^ new_word) >> index); - bitset->words[pos >> 6] = new_word; -} - -/* Unset the ith bit. Currently unused. */ -/*static inline void bitset_container_unset(bitset_container_t *bitset, - uint16_t pos) { - const uint64_t old_word = bitset->words[pos >> 6]; - const int index = pos & 63; - const uint64_t new_word = old_word & (~(UINT64_C(1) << index)); - bitset->cardinality -= (uint32_t)((old_word ^ new_word) >> index); - bitset->words[pos >> 6] = new_word; -}*/ - -/* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be slower - * than bitset_container_set. */ -static inline bool bitset_container_add(bitset_container_t *bitset, - uint16_t pos) { - const uint64_t old_word = bitset->words[pos >> 6]; - const int index = pos & 63; - const uint64_t new_word = old_word | (UINT64_C(1) << index); - const uint64_t increment = (old_word ^ new_word) >> index; - bitset->cardinality += (uint32_t)increment; - bitset->words[pos >> 6] = new_word; - return increment > 0; -} - -/* Remove `pos' from `bitset'. Returns true if `pos' was present. Might be - * slower than bitset_container_unset. */ -static inline bool bitset_container_remove(bitset_container_t *bitset, - uint16_t pos) { - const uint64_t old_word = bitset->words[pos >> 6]; - const int index = pos & 63; - const uint64_t new_word = old_word & (~(UINT64_C(1) << index)); - const uint64_t increment = (old_word ^ new_word) >> index; - bitset->cardinality -= (uint32_t)increment; - bitset->words[pos >> 6] = new_word; - return increment > 0; -} - -/* Get the value of the ith bit. */ -inline bool bitset_container_get(const bitset_container_t *bitset, - uint16_t pos) { - const uint64_t word = bitset->words[pos >> 6]; - return (word >> (pos & 63)) & 1; -} - -#endif - -/* - * Check if all bits are set in a range of positions from pos_start (included) - * to pos_end (excluded). - */ -static inline bool bitset_container_get_range(const bitset_container_t *bitset, - uint32_t pos_start, - uint32_t pos_end) { - const uint32_t start = pos_start >> 6; - const uint32_t end = pos_end >> 6; - - const uint64_t first = ~((1ULL << (pos_start & 0x3F)) - 1); - const uint64_t last = (1ULL << (pos_end & 0x3F)) - 1; - - if (start == end) - return ((bitset->words[end] & first & last) == (first & last)); - if ((bitset->words[start] & first) != first) return false; - - if ((end < BITSET_CONTAINER_SIZE_IN_WORDS) && - ((bitset->words[end] & last) != last)) { - return false; - } - - for (uint32_t i = start + 1; - (i < BITSET_CONTAINER_SIZE_IN_WORDS) && (i < end); ++i) { - if (bitset->words[i] != UINT64_C(0xFFFFFFFFFFFFFFFF)) return false; - } - - return true; -} - -/* Check whether `bitset' is present in `array'. Calls bitset_container_get. */ -inline bool bitset_container_contains(const bitset_container_t *bitset, - uint16_t pos) { - return bitset_container_get(bitset, pos); -} - -/* - * Check whether a range of bits from position `pos_start' (included) to - * `pos_end' (excluded) is present in `bitset'. Calls bitset_container_get_all. - */ -static inline bool bitset_container_contains_range( - const bitset_container_t *bitset, uint32_t pos_start, uint32_t pos_end) { - return bitset_container_get_range(bitset, pos_start, pos_end); -} - -/* Get the number of bits set */ -ALLOW_UNALIGNED -static inline int bitset_container_cardinality( - const bitset_container_t *bitset) { - return bitset->cardinality; -} - -/* Copy one container into another. We assume that they are distinct. */ -void bitset_container_copy(const bitset_container_t *source, - bitset_container_t *dest); - -/* Add all the values [min,max) at a distance k*step from min: min, - * min+step,.... */ -void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min, - uint32_t max, uint16_t step); - -/* Get the number of bits set (force computation). This does not modify bitset. - * To update the cardinality, you should do - * bitset->cardinality = bitset_container_compute_cardinality(bitset).*/ -int bitset_container_compute_cardinality(const bitset_container_t *bitset); - -/* Check whether this bitset is empty, - * it never modifies the bitset struct. */ -static inline bool bitset_container_empty(const bitset_container_t *bitset) { - if (bitset->cardinality == BITSET_UNKNOWN_CARDINALITY) { - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) { - if ((bitset->words[i]) != 0) return false; - } - return true; - } - return bitset->cardinality == 0; -} - -/* Get whether there is at least one bit set (see bitset_container_empty for - the reverse), the bitset is never modified */ -static inline bool bitset_container_const_nonzero_cardinality( - const bitset_container_t *bitset) { - return !bitset_container_empty(bitset); -} - -/* - * Check whether the two bitsets intersect - */ -bool bitset_container_intersect(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the union of bitsets `src_1' and `src_2' into `dst' and return the - * cardinality. */ -int bitset_container_or(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the union of bitsets `src_1' and `src_2' and return the cardinality. - */ -int bitset_container_or_justcard(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the union of bitsets `src_1' and `src_2' into `dst' and return the - * cardinality. Same as bitset_container_or. */ -int bitset_container_union(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the union of bitsets `src_1' and `src_2' and return the - * cardinality. Same as bitset_container_or_justcard. */ -int bitset_container_union_justcard(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the union of bitsets `src_1' and `src_2' into `dst', but does - * not update the cardinality. Provided to optimize chained operations. */ -int bitset_container_union_nocard(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the union of bitsets `src_1' and `src_2' into `dst', but does not - * update the cardinality. Provided to optimize chained operations. */ -int bitset_container_or_nocard(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and - * return the cardinality. */ -int bitset_container_and(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the intersection of bitsets `src_1' and `src_2' and return the - * cardinality. */ -int bitset_container_and_justcard(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and - * return the cardinality. Same as bitset_container_and. */ -int bitset_container_intersection(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the intersection of bitsets `src_1' and `src_2' and return the - * cardinality. Same as bitset_container_and_justcard. */ -int bitset_container_intersection_justcard(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the intersection of bitsets `src_1' and `src_2' into `dst', but does - * not update the cardinality. Provided to optimize chained operations. */ -int bitset_container_intersection_nocard(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the intersection of bitsets `src_1' and `src_2' into `dst', but does - * not update the cardinality. Provided to optimize chained operations. */ -int bitset_container_and_nocard(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst' and - * return the cardinality. */ -int bitset_container_xor(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the exclusive or of bitsets `src_1' and `src_2' and return the - * cardinality. */ -int bitset_container_xor_justcard(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst', but does - * not update the cardinality. Provided to optimize chained operations. */ -int bitset_container_xor_nocard(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the and not of bitsets `src_1' and `src_2' into `dst' and return the - * cardinality. */ -int bitset_container_andnot(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the and not of bitsets `src_1' and `src_2' and return the - * cardinality. */ -int bitset_container_andnot_justcard(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the and not or of bitsets `src_1' and `src_2' into `dst', but does - * not update the cardinality. Provided to optimize chained operations. */ -int bitset_container_andnot_nocard(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -void bitset_container_offset(const bitset_container_t *c, container_t **loc, - container_t **hic, uint16_t offset); -/* - * Write out the 16-bit integers contained in this container as a list of 32-bit - * integers using base - * as the starting value (it might be expected that base has zeros in its 16 - * least significant bits). - * The function returns the number of values written. - * The caller is responsible for allocating enough memory in out. - * The out pointer should point to enough memory (the cardinality times 32 - * bits). - */ -int bitset_container_to_uint32_array(uint32_t *out, - const bitset_container_t *bc, - uint32_t base); - -/* - * Print this container using printf (useful for debugging). - */ -void bitset_container_printf(const bitset_container_t *v); - -/* - * Print this container using printf as a comma-separated list of 32-bit - * integers starting at base. - */ -void bitset_container_printf_as_uint32_array(const bitset_container_t *v, - uint32_t base); - -bool bitset_container_validate(const bitset_container_t *v, - const char **reason); - -/** - * Return the serialized size in bytes of a container. - */ -static inline int32_t bitset_container_serialized_size_in_bytes(void) { - return BITSET_CONTAINER_SIZE_IN_WORDS * 8; -} - -/** - * Return the the number of runs. - */ -int bitset_container_number_of_runs(bitset_container_t *bc); - -bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base, - roaring_iterator iterator, void *ptr); -bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base, - roaring_iterator64 iterator, uint64_t high_bits, - void *ptr); - -/** - * Writes the underlying array to buf, outputs how many bytes were written. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes written should be - * bitset_container_size_in_bytes(container). - */ -int32_t bitset_container_write(const bitset_container_t *container, char *buf); - -/** - * Reads the instance from buf, outputs how many bytes were read. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes read should be bitset_container_size_in_bytes(container). - * You need to provide the (known) cardinality. - */ -int32_t bitset_container_read(int32_t cardinality, - bitset_container_t *container, const char *buf); -/** - * Return the serialized size in bytes of a container (see - * bitset_container_write). - * This is meant to be compatible with the Java and Go versions of Roaring and - * assumes - * that the cardinality of the container is already known or can be computed. - */ -static inline int32_t bitset_container_size_in_bytes( - const bitset_container_t *container) { - (void)container; - return BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); -} - -/** - * Return true if the two containers have the same content. - */ -bool bitset_container_equals(const bitset_container_t *container1, - const bitset_container_t *container2); - -/** - * Return true if container1 is a subset of container2. - */ -bool bitset_container_is_subset(const bitset_container_t *container1, - const bitset_container_t *container2); - -/** - * If the element of given rank is in this container, supposing that the first - * element has rank start_rank, then the function returns true and sets element - * accordingly. - * Otherwise, it returns false and update start_rank. - */ -bool bitset_container_select(const bitset_container_t *container, - uint32_t *start_rank, uint32_t rank, - uint32_t *element); - -/* Returns the smallest value (assumes not empty) */ -uint16_t bitset_container_minimum(const bitset_container_t *container); - -/* Returns the largest value (assumes not empty) */ -uint16_t bitset_container_maximum(const bitset_container_t *container); - -/* Returns the number of values equal or smaller than x */ -int bitset_container_rank(const bitset_container_t *container, uint16_t x); - -/* bulk version of bitset_container_rank(); return number of consumed elements - */ -uint32_t bitset_container_rank_many(const bitset_container_t *container, - uint64_t start_rank, const uint32_t *begin, - const uint32_t *end, uint64_t *ans); - -/* Returns the index of x , if not exsist return -1 */ -int bitset_container_get_index(const bitset_container_t *container, uint16_t x); - -/* Returns the index of the first value equal or larger than x, or -1 */ -int bitset_container_index_equalorlarger(const bitset_container_t *container, - uint16_t x); - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif /* INCLUDE_CONTAINERS_BITSET_H_ */ -/* end file include/roaring/containers/bitset.h */ -/* begin file include/roaring/containers/run.h */ -/* - * run.h - * - */ - -#ifndef INCLUDE_CONTAINERS_RUN_H_ -#define INCLUDE_CONTAINERS_RUN_H_ - - -// Include other headers after roaring_types.h -#include -#include -#include -#include - - -#ifdef __cplusplus -extern "C" { -namespace roaring { - -// Note: in pure C++ code, you should avoid putting `using` in header files -using api::roaring_iterator; -using api::roaring_iterator64; - -namespace internal { -#endif - -/* struct rle16_s - run length pair - * - * @value: start position of the run - * @length: length of the run is `length + 1` - * - * An RLE pair {v, l} would represent the integers between the interval - * [v, v+l+1], e.g. {3, 2} = [3, 4, 5]. - */ -struct rle16_s { - uint16_t value; - uint16_t length; -}; - -typedef struct rle16_s rle16_t; - -#ifdef __cplusplus -#define CROARING_MAKE_RLE16(val, len) \ - { (uint16_t)(val), (uint16_t)(len) } // no tagged structs until c++20 -#else -#define CROARING_MAKE_RLE16(val, len) \ - (rle16_t) { .value = (uint16_t)(val), .length = (uint16_t)(len) } -#endif - -/* struct run_container_s - run container bitmap - * - * @n_runs: number of rle_t pairs in `runs`. - * @capacity: capacity in rle_t pairs `runs` can hold. - * @runs: pairs of rle_t. - */ -STRUCT_CONTAINER(run_container_s) { - int32_t n_runs; - int32_t capacity; - rle16_t *runs; -}; - -typedef struct run_container_s run_container_t; - -#define CAST_run(c) CAST(run_container_t *, c) // safer downcast -#define const_CAST_run(c) CAST(const run_container_t *, c) -#define movable_CAST_run(c) movable_CAST(run_container_t **, c) - -/* Create a new run container. Return NULL in case of failure. */ -run_container_t *run_container_create(void); - -/* Create a new run container with given capacity. Return NULL in case of - * failure. */ -run_container_t *run_container_create_given_capacity(int32_t size); - -/* - * Shrink the capacity to the actual size, return the number of bytes saved. - */ -int run_container_shrink_to_fit(run_container_t *src); - -/* Free memory owned by `run'. */ -void run_container_free(run_container_t *run); - -/* Duplicate container */ -run_container_t *run_container_clone(const run_container_t *src); - -/* - * Effectively deletes the value at index index, repacking data. - */ -static inline void recoverRoomAtIndex(run_container_t *run, uint16_t index) { - memmove(run->runs + index, run->runs + (1 + index), - (run->n_runs - index - 1) * sizeof(rle16_t)); - run->n_runs--; -} - -/** - * Good old binary search through rle data - */ -inline int32_t interleavedBinarySearch(const rle16_t *array, int32_t lenarray, - uint16_t ikey) { - int32_t low = 0; - int32_t high = lenarray - 1; - while (low <= high) { - int32_t middleIndex = (low + high) >> 1; - uint16_t middleValue = array[middleIndex].value; - if (middleValue < ikey) { - low = middleIndex + 1; - } else if (middleValue > ikey) { - high = middleIndex - 1; - } else { - return middleIndex; - } - } - return -(low + 1); -} - -/* - * Returns index of the run which contains $ikey - */ -static inline int32_t rle16_find_run(const rle16_t *array, int32_t lenarray, - uint16_t ikey) { - int32_t low = 0; - int32_t high = lenarray - 1; - while (low <= high) { - int32_t middleIndex = (low + high) >> 1; - uint16_t min = array[middleIndex].value; - uint16_t max = array[middleIndex].value + array[middleIndex].length; - if (ikey > max) { - low = middleIndex + 1; - } else if (ikey < min) { - high = middleIndex - 1; - } else { - return middleIndex; - } - } - return -(low + 1); -} - -/** - * Returns number of runs which can'be be merged with the key because they - * are less than the key. - * Note that [5,6,7,8] can be merged with the key 9 and won't be counted. - */ -static inline int32_t rle16_count_less(const rle16_t *array, int32_t lenarray, - uint16_t key) { - if (lenarray == 0) return 0; - int32_t low = 0; - int32_t high = lenarray - 1; - while (low <= high) { - int32_t middleIndex = (low + high) >> 1; - uint16_t min_value = array[middleIndex].value; - uint16_t max_value = - array[middleIndex].value + array[middleIndex].length; - if (max_value + UINT32_C(1) < key) { // uint32 arithmetic - low = middleIndex + 1; - } else if (key < min_value) { - high = middleIndex - 1; - } else { - return middleIndex; - } - } - return low; -} - -static inline int32_t rle16_count_greater(const rle16_t *array, - int32_t lenarray, uint16_t key) { - if (lenarray == 0) return 0; - int32_t low = 0; - int32_t high = lenarray - 1; - while (low <= high) { - int32_t middleIndex = (low + high) >> 1; - uint16_t min_value = array[middleIndex].value; - uint16_t max_value = - array[middleIndex].value + array[middleIndex].length; - if (max_value < key) { - low = middleIndex + 1; - } else if (key + UINT32_C(1) < min_value) { // uint32 arithmetic - high = middleIndex - 1; - } else { - return lenarray - (middleIndex + 1); - } - } - return lenarray - low; -} - -/** - * increase capacity to at least min. Whether the - * existing data needs to be copied over depends on copy. If "copy" is false, - * then the new content will be uninitialized, otherwise a copy is made. - */ -void run_container_grow(run_container_t *run, int32_t min, bool copy); - -/** - * Moves the data so that we can write data at index - */ -static inline void makeRoomAtIndex(run_container_t *run, uint16_t index) { - /* This function calls realloc + memmove sequentially to move by one index. - * Potentially copying twice the array. - */ - if (run->n_runs + 1 > run->capacity) - run_container_grow(run, run->n_runs + 1, true); - memmove(run->runs + 1 + index, run->runs + index, - (run->n_runs - index) * sizeof(rle16_t)); - run->n_runs++; -} - -/* Add `pos' to `run'. Returns true if `pos' was not present. */ -bool run_container_add(run_container_t *run, uint16_t pos); - -/* Remove `pos' from `run'. Returns true if `pos' was present. */ -static inline bool run_container_remove(run_container_t *run, uint16_t pos) { - int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos); - if (index >= 0) { - int32_t le = run->runs[index].length; - if (le == 0) { - recoverRoomAtIndex(run, (uint16_t)index); - } else { - run->runs[index].value++; - run->runs[index].length--; - } - return true; - } - index = -index - 2; // points to preceding value, possibly -1 - if (index >= 0) { // possible match - int32_t offset = pos - run->runs[index].value; - int32_t le = run->runs[index].length; - if (offset < le) { - // need to break in two - run->runs[index].length = (uint16_t)(offset - 1); - // need to insert - uint16_t newvalue = pos + 1; - int32_t newlength = le - offset - 1; - makeRoomAtIndex(run, (uint16_t)(index + 1)); - run->runs[index + 1].value = newvalue; - run->runs[index + 1].length = (uint16_t)newlength; - return true; - - } else if (offset == le) { - run->runs[index].length--; - return true; - } - } - // no match - return false; -} - -/* Check whether `pos' is present in `run'. */ -inline bool run_container_contains(const run_container_t *run, uint16_t pos) { - int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos); - if (index >= 0) return true; - index = -index - 2; // points to preceding value, possibly -1 - if (index != -1) { // possible match - int32_t offset = pos - run->runs[index].value; - int32_t le = run->runs[index].length; - if (offset <= le) return true; - } - return false; -} - -/* - * Check whether all positions in a range of positions from pos_start (included) - * to pos_end (excluded) is present in `run'. - */ -static inline bool run_container_contains_range(const run_container_t *run, - uint32_t pos_start, - uint32_t pos_end) { - uint32_t count = 0; - int32_t index = - interleavedBinarySearch(run->runs, run->n_runs, (uint16_t)pos_start); - if (index < 0) { - index = -index - 2; - if ((index == -1) || - ((pos_start - run->runs[index].value) > run->runs[index].length)) { - return false; - } - } - for (int32_t i = index; i < run->n_runs; ++i) { - const uint32_t stop = run->runs[i].value + run->runs[i].length; - if (run->runs[i].value >= pos_end) break; - if (stop >= pos_end) { - count += (((pos_end - run->runs[i].value) > 0) - ? (pos_end - run->runs[i].value) - : 0); - break; - } - const uint32_t min = (stop - pos_start) > 0 ? (stop - pos_start) : 0; - count += (min < run->runs[i].length) ? min : run->runs[i].length; - } - return count >= (pos_end - pos_start - 1); -} - -/* Get the cardinality of `run'. Requires an actual computation. */ -int run_container_cardinality(const run_container_t *run); - -/* Card > 0?, see run_container_empty for the reverse */ -static inline bool run_container_nonzero_cardinality( - const run_container_t *run) { - return run->n_runs > 0; // runs never empty -} - -/* Card == 0?, see run_container_nonzero_cardinality for the reverse */ -static inline bool run_container_empty(const run_container_t *run) { - return run->n_runs == 0; // runs never empty -} - -/* Copy one container into another. We assume that they are distinct. */ -void run_container_copy(const run_container_t *src, run_container_t *dst); - -/** - * Append run described by vl to the run container, possibly merging. - * It is assumed that the run would be inserted at the end of the container, no - * check is made. - * It is assumed that the run container has the necessary capacity: caller is - * responsible for checking memory capacity. - * - * - * This is not a safe function, it is meant for performance: use with care. - */ -static inline void run_container_append(run_container_t *run, rle16_t vl, - rle16_t *previousrl) { - const uint32_t previousend = previousrl->value + previousrl->length; - if (vl.value > previousend + 1) { // we add a new one - run->runs[run->n_runs] = vl; - run->n_runs++; - *previousrl = vl; - } else { - uint32_t newend = vl.value + vl.length + UINT32_C(1); - if (newend > previousend) { // we merge - previousrl->length = (uint16_t)(newend - 1 - previousrl->value); - run->runs[run->n_runs - 1] = *previousrl; - } - } -} - -/** - * Like run_container_append but it is assumed that the content of run is empty. - */ -static inline rle16_t run_container_append_first(run_container_t *run, - rle16_t vl) { - run->runs[run->n_runs] = vl; - run->n_runs++; - return vl; -} - -/** - * append a single value given by val to the run container, possibly merging. - * It is assumed that the value would be inserted at the end of the container, - * no check is made. - * It is assumed that the run container has the necessary capacity: caller is - * responsible for checking memory capacity. - * - * This is not a safe function, it is meant for performance: use with care. - */ -static inline void run_container_append_value(run_container_t *run, - uint16_t val, - rle16_t *previousrl) { - const uint32_t previousend = previousrl->value + previousrl->length; - if (val > previousend + 1) { // we add a new one - *previousrl = CROARING_MAKE_RLE16(val, 0); - run->runs[run->n_runs] = *previousrl; - run->n_runs++; - } else if (val == previousend + 1) { // we merge - previousrl->length++; - run->runs[run->n_runs - 1] = *previousrl; - } -} - -/** - * Like run_container_append_value but it is assumed that the content of run is - * empty. - */ -static inline rle16_t run_container_append_value_first(run_container_t *run, - uint16_t val) { - rle16_t newrle = CROARING_MAKE_RLE16(val, 0); - run->runs[run->n_runs] = newrle; - run->n_runs++; - return newrle; -} - -/* Check whether the container spans the whole chunk (cardinality = 1<<16). - * This check can be done in constant time (inexpensive). */ -static inline bool run_container_is_full(const run_container_t *run) { - rle16_t vl = run->runs[0]; - return (run->n_runs == 1) && (vl.value == 0) && (vl.length == 0xFFFF); -} - -/* Compute the union of `src_1' and `src_2' and write the result to `dst' - * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ -void run_container_union(const run_container_t *src_1, - const run_container_t *src_2, run_container_t *dst); - -/* Compute the union of `src_1' and `src_2' and write the result to `src_1' */ -void run_container_union_inplace(run_container_t *src_1, - const run_container_t *src_2); - -/* Compute the intersection of src_1 and src_2 and write the result to - * dst. It is assumed that dst is distinct from both src_1 and src_2. */ -void run_container_intersection(const run_container_t *src_1, - const run_container_t *src_2, - run_container_t *dst); - -/* Compute the size of the intersection of src_1 and src_2 . */ -int run_container_intersection_cardinality(const run_container_t *src_1, - const run_container_t *src_2); - -/* Check whether src_1 and src_2 intersect. */ -bool run_container_intersect(const run_container_t *src_1, - const run_container_t *src_2); - -/* Compute the symmetric difference of `src_1' and `src_2' and write the result - * to `dst' - * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ -void run_container_xor(const run_container_t *src_1, - const run_container_t *src_2, run_container_t *dst); - -/* - * Write out the 16-bit integers contained in this container as a list of 32-bit - * integers using base - * as the starting value (it might be expected that base has zeros in its 16 - * least significant bits). - * The function returns the number of values written. - * The caller is responsible for allocating enough memory in out. - */ -int run_container_to_uint32_array(void *vout, const run_container_t *cont, - uint32_t base); - -/* - * Print this container using printf (useful for debugging). - */ -void run_container_printf(const run_container_t *v); - -/* - * Print this container using printf as a comma-separated list of 32-bit - * integers starting at base. - */ -void run_container_printf_as_uint32_array(const run_container_t *v, - uint32_t base); - -bool run_container_validate(const run_container_t *run, const char **reason); - -/** - * Return the serialized size in bytes of a container having "num_runs" runs. - */ -static inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs) { - return sizeof(uint16_t) + - sizeof(rle16_t) * num_runs; // each run requires 2 2-byte entries. -} - -bool run_container_iterate(const run_container_t *cont, uint32_t base, - roaring_iterator iterator, void *ptr); -bool run_container_iterate64(const run_container_t *cont, uint32_t base, - roaring_iterator64 iterator, uint64_t high_bits, - void *ptr); - -/** - * Writes the underlying array to buf, outputs how many bytes were written. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes written should be run_container_size_in_bytes(container). - */ -int32_t run_container_write(const run_container_t *container, char *buf); - -/** - * Reads the instance from buf, outputs how many bytes were read. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes read should be bitset_container_size_in_bytes(container). - * The cardinality parameter is provided for consistency with other containers, - * but - * it might be effectively ignored.. - */ -int32_t run_container_read(int32_t cardinality, run_container_t *container, - const char *buf); - -/** - * Return the serialized size in bytes of a container (see run_container_write). - * This is meant to be compatible with the Java and Go versions of Roaring. - */ -ALLOW_UNALIGNED -static inline int32_t run_container_size_in_bytes( - const run_container_t *container) { - return run_container_serialized_size_in_bytes(container->n_runs); -} - -/** - * Return true if the two containers have the same content. - */ -ALLOW_UNALIGNED -static inline bool run_container_equals(const run_container_t *container1, - const run_container_t *container2) { - if (container1->n_runs != container2->n_runs) { - return false; - } - return memequals(container1->runs, container2->runs, - container1->n_runs * sizeof(rle16_t)); -} - -/** - * Return true if container1 is a subset of container2. - */ -bool run_container_is_subset(const run_container_t *container1, - const run_container_t *container2); - -/** - * Used in a start-finish scan that appends segments, for XOR and NOT - */ - -void run_container_smart_append_exclusive(run_container_t *src, - const uint16_t start, - const uint16_t length); - -/** - * The new container consists of a single run [start,stop). - * It is required that stop>start, the caller is responsability for this check. - * It is required that stop <= (1<<16), the caller is responsability for this - * check. The cardinality of the created container is stop - start. Returns NULL - * on failure - */ -static inline run_container_t *run_container_create_range(uint32_t start, - uint32_t stop) { - run_container_t *rc = run_container_create_given_capacity(1); - if (rc) { - rle16_t r; - r.value = (uint16_t)start; - r.length = (uint16_t)(stop - start - 1); - run_container_append_first(rc, r); - } - return rc; -} - -/** - * If the element of given rank is in this container, supposing that the first - * element has rank start_rank, then the function returns true and sets element - * accordingly. - * Otherwise, it returns false and update start_rank. - */ -bool run_container_select(const run_container_t *container, - uint32_t *start_rank, uint32_t rank, - uint32_t *element); - -/* Compute the difference of src_1 and src_2 and write the result to - * dst. It is assumed that dst is distinct from both src_1 and src_2. */ - -void run_container_andnot(const run_container_t *src_1, - const run_container_t *src_2, run_container_t *dst); - -void run_container_offset(const run_container_t *c, container_t **loc, - container_t **hic, uint16_t offset); - -/* Returns the smallest value (assumes not empty) */ -inline uint16_t run_container_minimum(const run_container_t *run) { - if (run->n_runs == 0) return 0; - return run->runs[0].value; -} - -/* Returns the largest value (assumes not empty) */ -inline uint16_t run_container_maximum(const run_container_t *run) { - if (run->n_runs == 0) return 0; - return run->runs[run->n_runs - 1].value + run->runs[run->n_runs - 1].length; -} - -/* Returns the number of values equal or smaller than x */ -int run_container_rank(const run_container_t *arr, uint16_t x); - -/* bulk version of run_container_rank(); return number of consumed elements */ -uint32_t run_container_rank_many(const run_container_t *arr, - uint64_t start_rank, const uint32_t *begin, - const uint32_t *end, uint64_t *ans); - -/* Returns the index of x, if not exsist return -1 */ -int run_container_get_index(const run_container_t *arr, uint16_t x); - -/* Returns the index of the first run containing a value at least as large as x, - * or -1 */ -inline int run_container_index_equalorlarger(const run_container_t *arr, - uint16_t x) { - int32_t index = interleavedBinarySearch(arr->runs, arr->n_runs, x); - if (index >= 0) return index; - index = -index - 2; // points to preceding run, possibly -1 - if (index != -1) { // possible match - int32_t offset = x - arr->runs[index].value; - int32_t le = arr->runs[index].length; - if (offset <= le) return index; - } - index += 1; - if (index < arr->n_runs) { - return index; - } - return -1; -} - -/* - * Add all values in range [min, max] using hint. - */ -static inline void run_container_add_range_nruns(run_container_t *run, - uint32_t min, uint32_t max, - int32_t nruns_less, - int32_t nruns_greater) { - int32_t nruns_common = run->n_runs - nruns_less - nruns_greater; - if (nruns_common == 0) { - makeRoomAtIndex(run, (uint16_t)nruns_less); - run->runs[nruns_less].value = (uint16_t)min; - run->runs[nruns_less].length = (uint16_t)(max - min); - } else { - uint32_t common_min = run->runs[nruns_less].value; - uint32_t common_max = run->runs[nruns_less + nruns_common - 1].value + - run->runs[nruns_less + nruns_common - 1].length; - uint32_t result_min = (common_min < min) ? common_min : min; - uint32_t result_max = (common_max > max) ? common_max : max; - - run->runs[nruns_less].value = (uint16_t)result_min; - run->runs[nruns_less].length = (uint16_t)(result_max - result_min); - - memmove(&(run->runs[nruns_less + 1]), - &(run->runs[run->n_runs - nruns_greater]), - nruns_greater * sizeof(rle16_t)); - run->n_runs = nruns_less + 1 + nruns_greater; - } -} - -/** - * Add all values in range [min, max]. This function is currently unused - * and left as documentation. - */ -/*static inline void run_container_add_range(run_container_t* run, - uint32_t min, uint32_t max) { - int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max); - int32_t nruns_less = rle16_count_less(run->runs, run->n_runs - -nruns_greater, min); run_container_add_range_nruns(run, min, max, nruns_less, -nruns_greater); -}*/ - -/** - * Shifts last $count elements either left (distance < 0) or right (distance > - * 0) - */ -static inline void run_container_shift_tail(run_container_t *run, int32_t count, - int32_t distance) { - if (distance > 0) { - if (run->capacity < count + distance) { - run_container_grow(run, count + distance, true); - } - } - int32_t srcpos = run->n_runs - count; - int32_t dstpos = srcpos + distance; - memmove(&(run->runs[dstpos]), &(run->runs[srcpos]), - sizeof(rle16_t) * count); - run->n_runs += distance; -} - -/** - * Remove all elements in range [min, max] - */ -static inline void run_container_remove_range(run_container_t *run, - uint32_t min, uint32_t max) { - int32_t first = rle16_find_run(run->runs, run->n_runs, (uint16_t)min); - int32_t last = rle16_find_run(run->runs, run->n_runs, (uint16_t)max); - - if (first >= 0 && min > run->runs[first].value && - max < ((uint32_t)run->runs[first].value + - (uint32_t)run->runs[first].length)) { - // split this run into two adjacent runs - - // right subinterval - makeRoomAtIndex(run, (uint16_t)(first + 1)); - run->runs[first + 1].value = (uint16_t)(max + 1); - run->runs[first + 1].length = - (uint16_t)((run->runs[first].value + run->runs[first].length) - - (max + 1)); - - // left subinterval - run->runs[first].length = - (uint16_t)((min - 1) - run->runs[first].value); - - return; - } - - // update left-most partial run - if (first >= 0) { - if (min > run->runs[first].value) { - run->runs[first].length = - (uint16_t)((min - 1) - run->runs[first].value); - first++; - } - } else { - first = -first - 1; - } - - // update right-most run - if (last >= 0) { - uint16_t run_max = run->runs[last].value + run->runs[last].length; - if (run_max > max) { - run->runs[last].value = (uint16_t)(max + 1); - run->runs[last].length = (uint16_t)(run_max - (max + 1)); - last--; - } - } else { - last = (-last - 1) - 1; - } - - // remove intermediate runs - if (first <= last) { - run_container_shift_tail(run, run->n_runs - (last + 1), - -(last - first + 1)); - } -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif /* INCLUDE_CONTAINERS_RUN_H_ */ -/* end file include/roaring/containers/run.h */ -/* begin file include/roaring/containers/convert.h */ -/* - * convert.h - * - */ - -#ifndef INCLUDE_CONTAINERS_CONVERT_H_ -#define INCLUDE_CONTAINERS_CONVERT_H_ - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/* Convert an array into a bitset. The input container is not freed or modified. - */ -bitset_container_t *bitset_container_from_array(const array_container_t *arr); - -/* Convert a run into a bitset. The input container is not freed or modified. */ -bitset_container_t *bitset_container_from_run(const run_container_t *arr); - -/* Convert a run into an array. The input container is not freed or modified. */ -array_container_t *array_container_from_run(const run_container_t *arr); - -/* Convert a bitset into an array. The input container is not freed or modified. - */ -array_container_t *array_container_from_bitset(const bitset_container_t *bits); - -/* Convert an array into a run. The input container is not freed or modified. - */ -run_container_t *run_container_from_array(const array_container_t *c); - -/* convert a run into either an array or a bitset - * might free the container. This does not free the input run container. */ -container_t *convert_to_bitset_or_array_container(run_container_t *rc, - int32_t card, - uint8_t *resulttype); - -/* convert containers to and from runcontainers, as is most space efficient. - * The container might be freed. */ -container_t *convert_run_optimize(container_t *c, uint8_t typecode_original, - uint8_t *typecode_after); - -/* converts a run container to either an array or a bitset, IF it saves space. - */ -/* If a conversion occurs, the caller is responsible to free the original - * container and - * he becomes reponsible to free the new one. */ -container_t *convert_run_to_efficient_container(run_container_t *c, - uint8_t *typecode_after); - -// like convert_run_to_efficient_container but frees the old result if needed -container_t *convert_run_to_efficient_container_and_free( - run_container_t *c, uint8_t *typecode_after); - -/** - * Create new container which is a union of run container and - * range [min, max]. Caller is responsible for freeing run container. - */ -container_t *container_from_run_range(const run_container_t *run, uint32_t min, - uint32_t max, uint8_t *typecode_after); - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif /* INCLUDE_CONTAINERS_CONVERT_H_ */ -/* end file include/roaring/containers/convert.h */ -/* begin file include/roaring/containers/mixed_equal.h */ -/* - * mixed_equal.h - * - */ - -#ifndef CONTAINERS_MIXED_EQUAL_H_ -#define CONTAINERS_MIXED_EQUAL_H_ - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/** - * Return true if the two containers have the same content. - */ -bool array_container_equal_bitset(const array_container_t* container1, - const bitset_container_t* container2); - -/** - * Return true if the two containers have the same content. - */ -bool run_container_equals_array(const run_container_t* container1, - const array_container_t* container2); -/** - * Return true if the two containers have the same content. - */ -bool run_container_equals_bitset(const run_container_t* container1, - const bitset_container_t* container2); - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif /* CONTAINERS_MIXED_EQUAL_H_ */ -/* end file include/roaring/containers/mixed_equal.h */ -/* begin file include/roaring/containers/mixed_subset.h */ -/* - * mixed_subset.h - * - */ - -#ifndef CONTAINERS_MIXED_SUBSET_H_ -#define CONTAINERS_MIXED_SUBSET_H_ - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/** - * Return true if container1 is a subset of container2. - */ -bool array_container_is_subset_bitset(const array_container_t* container1, - const bitset_container_t* container2); - -/** - * Return true if container1 is a subset of container2. - */ -bool run_container_is_subset_array(const run_container_t* container1, - const array_container_t* container2); - -/** - * Return true if container1 is a subset of container2. - */ -bool array_container_is_subset_run(const array_container_t* container1, - const run_container_t* container2); - -/** - * Return true if container1 is a subset of container2. - */ -bool run_container_is_subset_bitset(const run_container_t* container1, - const bitset_container_t* container2); - -/** - * Return true if container1 is a subset of container2. - */ -bool bitset_container_is_subset_run(const bitset_container_t* container1, - const run_container_t* container2); - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif /* CONTAINERS_MIXED_SUBSET_H_ */ -/* end file include/roaring/containers/mixed_subset.h */ -/* begin file include/roaring/containers/mixed_andnot.h */ -/* - * mixed_andnot.h - */ -#ifndef INCLUDE_CONTAINERS_MIXED_ANDNOT_H_ -#define INCLUDE_CONTAINERS_MIXED_ANDNOT_H_ - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst, a valid array container that could be the same as dst.*/ -void array_bitset_container_andnot(const array_container_t *src_1, - const bitset_container_t *src_2, - array_container_t *dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * src_1 */ - -void array_bitset_container_iandnot(array_container_t *src_1, - const bitset_container_t *src_2); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst, which does not initially have a valid container. - * Return true for a bitset result; false for array - */ - -bool bitset_array_container_andnot(const bitset_container_t *src_1, - const array_container_t *src_2, - container_t **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_array_container_iandnot(bitset_container_t *src_1, - const array_container_t *src_2, - container_t **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_andnot(const run_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_iandnot(run_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool bitset_run_container_andnot(const bitset_container_t *src_1, - const run_container_t *src_2, - container_t **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_run_container_iandnot(bitset_container_t *src_1, - const run_container_t *src_2, - container_t **dst); - -/* dst does not indicate a valid container initially. Eventually it - * can become any type of container. - */ - -int run_array_container_andnot(const run_container_t *src_1, - const array_container_t *src_2, - container_t **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -int run_array_container_iandnot(run_container_t *src_1, - const array_container_t *src_2, - container_t **dst); - -/* dst must be a valid array container, allowed to be src_1 */ - -void array_run_container_andnot(const array_container_t *src_1, - const run_container_t *src_2, - array_container_t *dst); - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -void array_run_container_iandnot(array_container_t *src_1, - const run_container_t *src_2); - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int run_run_container_andnot(const run_container_t *src_1, - const run_container_t *src_2, container_t **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -int run_run_container_iandnot(run_container_t *src_1, - const run_container_t *src_2, container_t **dst); - -/* - * dst is a valid array container and may be the same as src_1 - */ - -void array_array_container_andnot(const array_container_t *src_1, - const array_container_t *src_2, - array_container_t *dst); - -/* inplace array-array andnot will always be able to reuse the space of - * src_1 */ -void array_array_container_iandnot(array_container_t *src_1, - const array_container_t *src_2); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). Return value is - * "dst is a bitset" - */ - -bool bitset_bitset_container_andnot(const bitset_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_bitset_container_iandnot(bitset_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst); - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif -/* end file include/roaring/containers/mixed_andnot.h */ -/* begin file include/roaring/containers/mixed_intersection.h */ -/* - * mixed_intersection.h - * - */ - -#ifndef INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ -#define INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ - -/* These functions appear to exclude cases where the - * inputs have the same type and the output is guaranteed - * to have the same type as the inputs. Eg, array intersection - */ - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/* Compute the intersection of src_1 and src_2 and write the result to - * dst. It is allowed for dst to be equal to src_1. We assume that dst is a - * valid container. */ -void array_bitset_container_intersection(const array_container_t *src_1, - const bitset_container_t *src_2, - array_container_t *dst); - -/* Compute the size of the intersection of src_1 and src_2. */ -int array_bitset_container_intersection_cardinality( - const array_container_t *src_1, const bitset_container_t *src_2); - -/* Checking whether src_1 and src_2 intersect. */ -bool array_bitset_container_intersect(const array_container_t *src_1, - const bitset_container_t *src_2); - -/* - * Compute the intersection between src_1 and src_2 and write the result - * to *dst. If the return function is true, the result is a bitset_container_t - * otherwise is a array_container_t. We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -bool bitset_bitset_container_intersection(const bitset_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst); - -/* Compute the intersection between src_1 and src_2 and write the result to - * dst. It is allowed for dst to be equal to src_1. We assume that dst is a - * valid container. */ -void array_run_container_intersection(const array_container_t *src_1, - const run_container_t *src_2, - array_container_t *dst); - -/* Compute the intersection between src_1 and src_2 and write the result to - * *dst. If the result is true then the result is a bitset_container_t - * otherwise is a array_container_t. - * If *dst == src_2, then an in-place intersection is attempted - **/ -bool run_bitset_container_intersection(const run_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst); - -/* Compute the size of the intersection between src_1 and src_2 . */ -int array_run_container_intersection_cardinality(const array_container_t *src_1, - const run_container_t *src_2); - -/* Compute the size of the intersection between src_1 and src_2 - **/ -int run_bitset_container_intersection_cardinality( - const run_container_t *src_1, const bitset_container_t *src_2); - -/* Check that src_1 and src_2 intersect. */ -bool array_run_container_intersect(const array_container_t *src_1, - const run_container_t *src_2); - -/* Check that src_1 and src_2 intersect. - **/ -bool run_bitset_container_intersect(const run_container_t *src_1, - const bitset_container_t *src_2); - -/* - * Same as bitset_bitset_container_intersection except that if the output is to - * be a - * bitset_container_t, then src_1 is modified and no allocation is made. - * If the output is to be an array_container_t, then caller is responsible - * to free the container. - * In all cases, the result is in *dst. - */ -bool bitset_bitset_container_intersection_inplace( - bitset_container_t *src_1, const bitset_container_t *src_2, - container_t **dst); - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif /* INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ */ -/* end file include/roaring/containers/mixed_intersection.h */ -/* begin file include/roaring/containers/mixed_negation.h */ -/* - * mixed_negation.h - * - */ - -#ifndef INCLUDE_CONTAINERS_MIXED_NEGATION_H_ -#define INCLUDE_CONTAINERS_MIXED_NEGATION_H_ - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/* Negation across the entire range of the container. - * Compute the negation of src and write the result - * to *dst. The complement of a - * sufficiently sparse set will always be dense and a hence a bitmap - * We assume that dst is pre-allocated and a valid bitset container - * There can be no in-place version. - */ -void array_container_negation(const array_container_t *src, - bitset_container_t *dst); - -/* Negation across the entire range of the container - * Compute the negation of src and write the result - * to *dst. A true return value indicates a bitset result, - * otherwise the result is an array container. - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -bool bitset_container_negation(const bitset_container_t *src, - container_t **dst); - -/* inplace version */ -/* - * Same as bitset_container_negation except that if the output is to - * be a - * bitset_container_t, then src is modified and no allocation is made. - * If the output is to be an array_container_t, then caller is responsible - * to free the container. - * In all cases, the result is in *dst. - */ -bool bitset_container_negation_inplace(bitset_container_t *src, - container_t **dst); - -/* Negation across the entire range of container - * Compute the negation of src and write the result - * to *dst. - * Return values are the *_TYPECODES as defined * in containers.h - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -int run_container_negation(const run_container_t *src, container_t **dst); - -/* - * Same as run_container_negation except that if the output is to - * be a - * run_container_t, and has the capacity to hold the result, - * then src is modified and no allocation is made. - * In all cases, the result is in *dst. - */ -int run_container_negation_inplace(run_container_t *src, container_t **dst); - -/* Negation across a range of the container. - * Compute the negation of src and write the result - * to *dst. Returns true if the result is a bitset container - * and false for an array container. *dst is not preallocated. - */ -bool array_container_negation_range(const array_container_t *src, - const int range_start, const int range_end, - container_t **dst); - -/* Even when the result would fit, it is unclear how to make an - * inplace version without inefficient copying. Thus this routine - * may be a wrapper for the non-in-place version - */ -bool array_container_negation_range_inplace(array_container_t *src, - const int range_start, - const int range_end, - container_t **dst); - -/* Negation across a range of the container - * Compute the negation of src and write the result - * to *dst. A true return value indicates a bitset result, - * otherwise the result is an array container. - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -bool bitset_container_negation_range(const bitset_container_t *src, - const int range_start, const int range_end, - container_t **dst); - -/* inplace version */ -/* - * Same as bitset_container_negation except that if the output is to - * be a - * bitset_container_t, then src is modified and no allocation is made. - * If the output is to be an array_container_t, then caller is responsible - * to free the container. - * In all cases, the result is in *dst. - */ -bool bitset_container_negation_range_inplace(bitset_container_t *src, - const int range_start, - const int range_end, - container_t **dst); - -/* Negation across a range of container - * Compute the negation of src and write the result - * to *dst. Return values are the *_TYPECODES as defined * in containers.h - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -int run_container_negation_range(const run_container_t *src, - const int range_start, const int range_end, - container_t **dst); - -/* - * Same as run_container_negation except that if the output is to - * be a - * run_container_t, and has the capacity to hold the result, - * then src is modified and no allocation is made. - * In all cases, the result is in *dst. - */ -int run_container_negation_range_inplace(run_container_t *src, - const int range_start, - const int range_end, - container_t **dst); - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif /* INCLUDE_CONTAINERS_MIXED_NEGATION_H_ */ -/* end file include/roaring/containers/mixed_negation.h */ -/* begin file include/roaring/containers/mixed_union.h */ -/* - * mixed_intersection.h - * - */ - -#ifndef INCLUDE_CONTAINERS_MIXED_UNION_H_ -#define INCLUDE_CONTAINERS_MIXED_UNION_H_ - -/* These functions appear to exclude cases where the - * inputs have the same type and the output is guaranteed - * to have the same type as the inputs. Eg, bitset unions - */ - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/* Compute the union of src_1 and src_2 and write the result to - * dst. It is allowed for src_2 to be dst. */ -void array_bitset_container_union(const array_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Compute the union of src_1 and src_2 and write the result to - * dst. It is allowed for src_2 to be dst. This version does not - * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */ -void array_bitset_container_lazy_union(const array_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* - * Compute the union between src_1 and src_2 and write the result - * to *dst. If the return function is true, the result is a bitset_container_t - * otherwise is a array_container_t. We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -bool array_array_container_union(const array_container_t *src_1, - const array_container_t *src_2, - container_t **dst); - -/* - * Compute the union between src_1 and src_2 and write the result - * to *dst if it cannot be written to src_1. If the return function is true, - * the result is a bitset_container_t - * otherwise is a array_container_t. When the result is an array_container_t, it - * it either written to src_1 (if *dst is null) or to *dst. - * If the result is a bitset_container_t and *dst is null, then there was a - * failure. - */ -bool array_array_container_inplace_union(array_container_t *src_1, - const array_container_t *src_2, - container_t **dst); - -/* - * Same as array_array_container_union except that it will more eagerly produce - * a bitset. - */ -bool array_array_container_lazy_union(const array_container_t *src_1, - const array_container_t *src_2, - container_t **dst); - -/* - * Same as array_array_container_inplace_union except that it will more eagerly - * produce a bitset. - */ -bool array_array_container_lazy_inplace_union(array_container_t *src_1, - const array_container_t *src_2, - container_t **dst); - -/* Compute the union of src_1 and src_2 and write the result to - * dst. We assume that dst is a - * valid container. The result might need to be further converted to array or - * bitset container, - * the caller is responsible for the eventual conversion. */ -void array_run_container_union(const array_container_t *src_1, - const run_container_t *src_2, - run_container_t *dst); - -/* Compute the union of src_1 and src_2 and write the result to - * src2. The result might need to be further converted to array or - * bitset container, - * the caller is responsible for the eventual conversion. */ -void array_run_container_inplace_union(const array_container_t *src_1, - run_container_t *src_2); - -/* Compute the union of src_1 and src_2 and write the result to - * dst. It is allowed for dst to be src_2. - * If run_container_is_full(src_1) is true, you must not be calling this - *function. - **/ -void run_bitset_container_union(const run_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Compute the union of src_1 and src_2 and write the result to - * dst. It is allowed for dst to be src_2. This version does not - * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). - * If run_container_is_full(src_1) is true, you must not be calling this - * function. - * */ -void run_bitset_container_lazy_union(const run_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif /* INCLUDE_CONTAINERS_MIXED_UNION_H_ */ -/* end file include/roaring/containers/mixed_union.h */ -/* begin file include/roaring/containers/mixed_xor.h */ -/* - * mixed_xor.h - * - */ - -#ifndef INCLUDE_CONTAINERS_MIXED_XOR_H_ -#define INCLUDE_CONTAINERS_MIXED_XOR_H_ - -/* These functions appear to exclude cases where the - * inputs have the same type and the output is guaranteed - * to have the same type as the inputs. Eg, bitset unions - */ - -/* - * Java implementation (as of May 2016) for array_run, run_run - * and bitset_run don't do anything different for inplace. - * (They are not truly in place.) - */ - - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/* Compute the xor of src_1 and src_2 and write the result to - * dst (which has no container initially). - * Result is true iff dst is a bitset */ -bool array_bitset_container_xor(const array_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst); - -/* Compute the xor of src_1 and src_2 and write the result to - * dst. It is allowed for src_2 to be dst. This version does not - * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). - */ - -void array_bitset_container_lazy_xor(const array_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); -/* Compute the xor of src_1 and src_2 and write the result to - * dst (which has no container initially). Return value is - * "dst is a bitset" - */ - -bool bitset_bitset_container_xor(const bitset_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst); - -/* Compute the xor of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_xor(const run_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst); - -/* lazy xor. Dst is initialized and may be equal to src_2. - * Result is left as a bitset container, even if actual - * cardinality would dictate an array container. - */ - -void run_bitset_container_lazy_xor(const run_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int array_run_container_xor(const array_container_t *src_1, - const run_container_t *src_2, container_t **dst); - -/* dst does not initially have a valid container. Creates either - * an array or a bitset container, indicated by return code - */ - -bool array_array_container_xor(const array_container_t *src_1, - const array_container_t *src_2, - container_t **dst); - -/* dst does not initially have a valid container. Creates either - * an array or a bitset container, indicated by return code. - * A bitset container will not have a valid cardinality and the - * container type might not be correct for the actual cardinality - */ - -bool array_array_container_lazy_xor(const array_container_t *src_1, - const array_container_t *src_2, - container_t **dst); - -/* Dst is a valid run container. (Can it be src_2? Let's say not.) - * Leaves result as run container, even if other options are - * smaller. - */ - -void array_run_container_lazy_xor(const array_container_t *src_1, - const run_container_t *src_2, - run_container_t *dst); - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int run_run_container_xor(const run_container_t *src_1, - const run_container_t *src_2, container_t **dst); - -/* INPLACE versions (initial implementation may not exploit all inplace - * opportunities (if any...) - */ - -/* Compute the xor of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_array_container_ixor(bitset_container_t *src_1, - const array_container_t *src_2, - container_t **dst); - -bool bitset_bitset_container_ixor(bitset_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst); - -bool array_bitset_container_ixor(array_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst); - -/* Compute the xor of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_ixor(run_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst); - -bool bitset_run_container_ixor(bitset_container_t *src_1, - const run_container_t *src_2, container_t **dst); - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int array_run_container_ixor(array_container_t *src_1, - const run_container_t *src_2, container_t **dst); - -int run_array_container_ixor(run_container_t *src_1, - const array_container_t *src_2, container_t **dst); - -bool array_array_container_ixor(array_container_t *src_1, - const array_container_t *src_2, - container_t **dst); - -int run_run_container_ixor(run_container_t *src_1, const run_container_t *src_2, - container_t **dst); - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif -/* end file include/roaring/containers/mixed_xor.h */ -/* begin file include/roaring/containers/containers.h */ -#ifndef CONTAINERS_CONTAINERS_H -#define CONTAINERS_CONTAINERS_H - -#include -#include -#include - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -// would enum be possible or better? - -/** - * The switch case statements follow - * BITSET_CONTAINER_TYPE -- ARRAY_CONTAINER_TYPE -- RUN_CONTAINER_TYPE - * so it makes more sense to number them 1, 2, 3 (in the vague hope that the - * compiler might exploit this ordering). - */ - -#define BITSET_CONTAINER_TYPE 1 -#define ARRAY_CONTAINER_TYPE 2 -#define RUN_CONTAINER_TYPE 3 -#define SHARED_CONTAINER_TYPE 4 - -/** - * Macros for pairing container type codes, suitable for switch statements. - * Use PAIR_CONTAINER_TYPES() for the switch, CONTAINER_PAIR() for the cases: - * - * switch (PAIR_CONTAINER_TYPES(type1, type2)) { - * case CONTAINER_PAIR(BITSET,ARRAY): - * ... - * } - */ -#define PAIR_CONTAINER_TYPES(type1, type2) (4 * (type1) + (type2)) - -#define CONTAINER_PAIR(name1, name2) \ - (4 * (name1##_CONTAINER_TYPE) + (name2##_CONTAINER_TYPE)) - -/** - * A shared container is a wrapper around a container - * with reference counting. - */ -STRUCT_CONTAINER(shared_container_s) { - container_t *container; - uint8_t typecode; - croaring_refcount_t counter; // to be managed atomically -}; - -typedef struct shared_container_s shared_container_t; - -#define CAST_shared(c) CAST(shared_container_t *, c) // safer downcast -#define const_CAST_shared(c) CAST(const shared_container_t *, c) -#define movable_CAST_shared(c) movable_CAST(shared_container_t **, c) - -/* - * With copy_on_write = true - * Create a new shared container if the typecode is not SHARED_CONTAINER_TYPE, - * otherwise, increase the count - * If copy_on_write = false, then clone. - * Return NULL in case of failure. - **/ -container_t *get_copy_of_container(container_t *container, uint8_t *typecode, - bool copy_on_write); - -/* Frees a shared container (actually decrement its counter and only frees when - * the counter falls to zero). */ -void shared_container_free(shared_container_t *container); - -/* extract a copy from the shared container, freeing the shared container if -there is just one instance left, -clone instances when the counter is higher than one -*/ -container_t *shared_container_extract_copy(shared_container_t *container, - uint8_t *typecode); - -/* access to container underneath */ -static inline const container_t *container_unwrap_shared( - const container_t *candidate_shared_container, uint8_t *type) { - if (*type == SHARED_CONTAINER_TYPE) { - *type = const_CAST_shared(candidate_shared_container)->typecode; - assert(*type != SHARED_CONTAINER_TYPE); - return const_CAST_shared(candidate_shared_container)->container; - } else { - return candidate_shared_container; - } -} - -/* access to container underneath */ -static inline container_t *container_mutable_unwrap_shared(container_t *c, - uint8_t *type) { - if (*type == SHARED_CONTAINER_TYPE) { // the passed in container is shared - *type = CAST_shared(c)->typecode; - assert(*type != SHARED_CONTAINER_TYPE); - return CAST_shared(c)->container; // return the enclosed container - } else { - return c; // wasn't shared, so return as-is - } -} - -/* access to container underneath and queries its type */ -static inline uint8_t get_container_type(const container_t *c, uint8_t type) { - if (type == SHARED_CONTAINER_TYPE) { - return const_CAST_shared(c)->typecode; - } else { - return type; - } -} - -/** - * Copies a container, requires a typecode. This allocates new memory, caller - * is responsible for deallocation. If the container is not shared, then it is - * physically cloned. Sharable containers are not cloneable. - */ -container_t *container_clone(const container_t *container, uint8_t typecode); - -/* access to container underneath, cloning it if needed */ -static inline container_t *get_writable_copy_if_shared(container_t *c, - uint8_t *type) { - if (*type == SHARED_CONTAINER_TYPE) { // shared, return enclosed container - return shared_container_extract_copy(CAST_shared(c), type); - } else { - return c; // not shared, so return as-is - } -} - -/** - * End of shared container code - */ - -static const char *container_names[] = {"bitset", "array", "run", "shared"}; -static const char *shared_container_names[] = { - "bitset (shared)", "array (shared)", "run (shared)"}; - -// no matter what the initial container was, convert it to a bitset -// if a new container is produced, caller responsible for freeing the previous -// one -// container should not be a shared container -static inline bitset_container_t *container_to_bitset(container_t *c, - uint8_t typecode) { - bitset_container_t *result = NULL; - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return CAST_bitset(c); // nothing to do - case ARRAY_CONTAINER_TYPE: - result = bitset_container_from_array(CAST_array(c)); - return result; - case RUN_CONTAINER_TYPE: - result = bitset_container_from_run(CAST_run(c)); - return result; - case SHARED_CONTAINER_TYPE: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return 0; // unreached -} - -/** - * Get the container name from the typecode - * (unused at time of writing) - */ -/*static inline const char *get_container_name(uint8_t typecode) { - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return container_names[0]; - case ARRAY_CONTAINER_TYPE: - return container_names[1]; - case RUN_CONTAINER_TYPE: - return container_names[2]; - case SHARED_CONTAINER_TYPE: - return container_names[3]; - default: - assert(false); - roaring_unreachable; - return "unknown"; - } -}*/ - -static inline const char *get_full_container_name(const container_t *c, - uint8_t typecode) { - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return container_names[0]; - case ARRAY_CONTAINER_TYPE: - return container_names[1]; - case RUN_CONTAINER_TYPE: - return container_names[2]; - case SHARED_CONTAINER_TYPE: - switch (const_CAST_shared(c)->typecode) { - case BITSET_CONTAINER_TYPE: - return shared_container_names[0]; - case ARRAY_CONTAINER_TYPE: - return shared_container_names[1]; - case RUN_CONTAINER_TYPE: - return shared_container_names[2]; - default: - assert(false); - roaring_unreachable; - return "unknown"; - } - break; - default: - assert(false); - roaring_unreachable; - return "unknown"; - } - roaring_unreachable; - return NULL; -} - -/** - * Get the container cardinality (number of elements), requires a typecode - */ -static inline int container_get_cardinality(const container_t *c, - uint8_t typecode) { - c = container_unwrap_shared(c, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return bitset_container_cardinality(const_CAST_bitset(c)); - case ARRAY_CONTAINER_TYPE: - return array_container_cardinality(const_CAST_array(c)); - case RUN_CONTAINER_TYPE: - return run_container_cardinality(const_CAST_run(c)); - } - assert(false); - roaring_unreachable; - return 0; // unreached -} - -// returns true if a container is known to be full. Note that a lazy bitset -// container -// might be full without us knowing -static inline bool container_is_full(const container_t *c, uint8_t typecode) { - c = container_unwrap_shared(c, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return bitset_container_cardinality(const_CAST_bitset(c)) == - (1 << 16); - case ARRAY_CONTAINER_TYPE: - return array_container_cardinality(const_CAST_array(c)) == - (1 << 16); - case RUN_CONTAINER_TYPE: - return run_container_is_full(const_CAST_run(c)); - } - assert(false); - roaring_unreachable; - return 0; // unreached -} - -static inline int container_shrink_to_fit(container_t *c, uint8_t type) { - c = container_mutable_unwrap_shared(c, &type); - switch (type) { - case BITSET_CONTAINER_TYPE: - return 0; // no shrinking possible - case ARRAY_CONTAINER_TYPE: - return array_container_shrink_to_fit(CAST_array(c)); - case RUN_CONTAINER_TYPE: - return run_container_shrink_to_fit(CAST_run(c)); - } - assert(false); - roaring_unreachable; - return 0; // unreached -} - -/** - * make a container with a run of ones - */ -/* initially always use a run container, even if an array might be - * marginally - * smaller */ -static inline container_t *container_range_of_ones(uint32_t range_start, - uint32_t range_end, - uint8_t *result_type) { - assert(range_end >= range_start); - uint64_t cardinality = range_end - range_start + 1; - if (cardinality <= 2) { - *result_type = ARRAY_CONTAINER_TYPE; - return array_container_create_range(range_start, range_end); - } else { - *result_type = RUN_CONTAINER_TYPE; - return run_container_create_range(range_start, range_end); - } -} - -/* Create a container with all the values between in [min,max) at a - distance k*step from min. */ -static inline container_t *container_from_range(uint8_t *type, uint32_t min, - uint32_t max, uint16_t step) { - if (step == 0) return NULL; // being paranoid - if (step == 1) { - return container_range_of_ones(min, max, type); - // Note: the result is not always a run (need to check the cardinality) - //*type = RUN_CONTAINER_TYPE; - // return run_container_create_range(min, max); - } - int size = (max - min + step - 1) / step; - if (size <= DEFAULT_MAX_SIZE) { // array container - *type = ARRAY_CONTAINER_TYPE; - array_container_t *array = array_container_create_given_capacity(size); - array_container_add_from_range(array, min, max, step); - assert(array->cardinality == size); - return array; - } else { // bitset container - *type = BITSET_CONTAINER_TYPE; - bitset_container_t *bitset = bitset_container_create(); - bitset_container_add_from_range(bitset, min, max, step); - assert(bitset->cardinality == size); - return bitset; - } -} - -/** - * "repair" the container after lazy operations. - */ -static inline container_t *container_repair_after_lazy(container_t *c, - uint8_t *type) { - c = get_writable_copy_if_shared(c, type); // !!! unnecessary cloning - container_t *result = NULL; - switch (*type) { - case BITSET_CONTAINER_TYPE: { - bitset_container_t *bc = CAST_bitset(c); - bc->cardinality = bitset_container_compute_cardinality(bc); - if (bc->cardinality <= DEFAULT_MAX_SIZE) { - result = array_container_from_bitset(bc); - bitset_container_free(bc); - *type = ARRAY_CONTAINER_TYPE; - return result; - } - return c; - } - case ARRAY_CONTAINER_TYPE: - return c; // nothing to do - case RUN_CONTAINER_TYPE: - return convert_run_to_efficient_container_and_free(CAST_run(c), - type); - case SHARED_CONTAINER_TYPE: - assert(false); - } - assert(false); - roaring_unreachable; - return 0; // unreached -} - -/** - * Writes the underlying array to buf, outputs how many bytes were written. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes written should be - * container_write(container, buf). - * - */ -static inline int32_t container_write(const container_t *c, uint8_t typecode, - char *buf) { - c = container_unwrap_shared(c, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return bitset_container_write(const_CAST_bitset(c), buf); - case ARRAY_CONTAINER_TYPE: - return array_container_write(const_CAST_array(c), buf); - case RUN_CONTAINER_TYPE: - return run_container_write(const_CAST_run(c), buf); - } - assert(false); - roaring_unreachable; - return 0; // unreached -} - -/** - * Get the container size in bytes under portable serialization (see - * container_write), requires a - * typecode - */ -static inline int32_t container_size_in_bytes(const container_t *c, - uint8_t typecode) { - c = container_unwrap_shared(c, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return bitset_container_size_in_bytes(const_CAST_bitset(c)); - case ARRAY_CONTAINER_TYPE: - return array_container_size_in_bytes(const_CAST_array(c)); - case RUN_CONTAINER_TYPE: - return run_container_size_in_bytes(const_CAST_run(c)); - } - assert(false); - roaring_unreachable; - return 0; // unreached -} - -/** - * print the container (useful for debugging), requires a typecode - */ -void container_printf(const container_t *container, uint8_t typecode); - -/** - * print the content of the container as a comma-separated list of 32-bit values - * starting at base, requires a typecode - */ -void container_printf_as_uint32_array(const container_t *container, - uint8_t typecode, uint32_t base); - -bool container_internal_validate(const container_t *container, uint8_t typecode, - const char **reason); - -/** - * Checks whether a container is not empty, requires a typecode - */ -static inline bool container_nonzero_cardinality(const container_t *c, - uint8_t typecode) { - c = container_unwrap_shared(c, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return bitset_container_const_nonzero_cardinality( - const_CAST_bitset(c)); - case ARRAY_CONTAINER_TYPE: - return array_container_nonzero_cardinality(const_CAST_array(c)); - case RUN_CONTAINER_TYPE: - return run_container_nonzero_cardinality(const_CAST_run(c)); - } - assert(false); - roaring_unreachable; - return 0; // unreached -} - -/** - * Recover memory from a container, requires a typecode - */ -void container_free(container_t *container, uint8_t typecode); - -/** - * Convert a container to an array of values, requires a typecode as well as a - * "base" (most significant values) - * Returns number of ints added. - */ -static inline int container_to_uint32_array(uint32_t *output, - const container_t *c, - uint8_t typecode, uint32_t base) { - c = container_unwrap_shared(c, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return bitset_container_to_uint32_array(output, - const_CAST_bitset(c), base); - case ARRAY_CONTAINER_TYPE: - return array_container_to_uint32_array(output, const_CAST_array(c), - base); - case RUN_CONTAINER_TYPE: - return run_container_to_uint32_array(output, const_CAST_run(c), - base); - } - assert(false); - roaring_unreachable; - return 0; // unreached -} - -/** - * Add a value to a container, requires a typecode, fills in new_typecode and - * return (possibly different) container. - * This function may allocate a new container, and caller is responsible for - * memory deallocation - */ -static inline container_t *container_add( - container_t *c, uint16_t val, - uint8_t typecode, // !!! should be second argument? - uint8_t *new_typecode) { - c = get_writable_copy_if_shared(c, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE: - bitset_container_set(CAST_bitset(c), val); - *new_typecode = BITSET_CONTAINER_TYPE; - return c; - case ARRAY_CONTAINER_TYPE: { - array_container_t *ac = CAST_array(c); - if (array_container_try_add(ac, val, DEFAULT_MAX_SIZE) != -1) { - *new_typecode = ARRAY_CONTAINER_TYPE; - return ac; - } else { - bitset_container_t *bitset = bitset_container_from_array(ac); - bitset_container_add(bitset, val); - *new_typecode = BITSET_CONTAINER_TYPE; - return bitset; - } - } break; - case RUN_CONTAINER_TYPE: - // per Java, no container type adjustments are done (revisit?) - run_container_add(CAST_run(c), val); - *new_typecode = RUN_CONTAINER_TYPE; - return c; - default: - assert(false); - roaring_unreachable; - return NULL; - } -} - -/** - * Remove a value from a container, requires a typecode, fills in new_typecode - * and - * return (possibly different) container. - * This function may allocate a new container, and caller is responsible for - * memory deallocation - */ -static inline container_t *container_remove( - container_t *c, uint16_t val, - uint8_t typecode, // !!! should be second argument? - uint8_t *new_typecode) { - c = get_writable_copy_if_shared(c, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE: - if (bitset_container_remove(CAST_bitset(c), val)) { - int card = bitset_container_cardinality(CAST_bitset(c)); - if (card <= DEFAULT_MAX_SIZE) { - *new_typecode = ARRAY_CONTAINER_TYPE; - return array_container_from_bitset(CAST_bitset(c)); - } - } - *new_typecode = typecode; - return c; - case ARRAY_CONTAINER_TYPE: - *new_typecode = typecode; - array_container_remove(CAST_array(c), val); - return c; - case RUN_CONTAINER_TYPE: - // per Java, no container type adjustments are done (revisit?) - run_container_remove(CAST_run(c), val); - *new_typecode = RUN_CONTAINER_TYPE; - return c; - default: - assert(false); - roaring_unreachable; - return NULL; - } -} - -/** - * Check whether a value is in a container, requires a typecode - */ -static inline bool container_contains( - const container_t *c, uint16_t val, - uint8_t typecode // !!! should be second argument? -) { - c = container_unwrap_shared(c, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return bitset_container_get(const_CAST_bitset(c), val); - case ARRAY_CONTAINER_TYPE: - return array_container_contains(const_CAST_array(c), val); - case RUN_CONTAINER_TYPE: - return run_container_contains(const_CAST_run(c), val); - default: - assert(false); - roaring_unreachable; - return false; - } -} - -/** - * Check whether a range of values from range_start (included) to range_end - * (excluded) is in a container, requires a typecode - */ -static inline bool container_contains_range( - const container_t *c, uint32_t range_start, uint32_t range_end, - uint8_t typecode // !!! should be second argument? -) { - c = container_unwrap_shared(c, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return bitset_container_get_range(const_CAST_bitset(c), range_start, - range_end); - case ARRAY_CONTAINER_TYPE: - return array_container_contains_range(const_CAST_array(c), - range_start, range_end); - case RUN_CONTAINER_TYPE: - return run_container_contains_range(const_CAST_run(c), range_start, - range_end); - default: - assert(false); - roaring_unreachable; - return false; - } -} - -/** - * Returns true if the two containers have the same content. Note that - * two containers having different types can be "equal" in this sense. - */ -static inline bool container_equals(const container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - return bitset_container_equals(const_CAST_bitset(c1), - const_CAST_bitset(c2)); - - case CONTAINER_PAIR(BITSET, RUN): - return run_container_equals_bitset(const_CAST_run(c2), - const_CAST_bitset(c1)); - - case CONTAINER_PAIR(RUN, BITSET): - return run_container_equals_bitset(const_CAST_run(c1), - const_CAST_bitset(c2)); - - case CONTAINER_PAIR(BITSET, ARRAY): - // java would always return false? - return array_container_equal_bitset(const_CAST_array(c2), - const_CAST_bitset(c1)); - - case CONTAINER_PAIR(ARRAY, BITSET): - // java would always return false? - return array_container_equal_bitset(const_CAST_array(c1), - const_CAST_bitset(c2)); - - case CONTAINER_PAIR(ARRAY, RUN): - return run_container_equals_array(const_CAST_run(c2), - const_CAST_array(c1)); - - case CONTAINER_PAIR(RUN, ARRAY): - return run_container_equals_array(const_CAST_run(c1), - const_CAST_array(c2)); - - case CONTAINER_PAIR(ARRAY, ARRAY): - return array_container_equals(const_CAST_array(c1), - const_CAST_array(c2)); - - case CONTAINER_PAIR(RUN, RUN): - return run_container_equals(const_CAST_run(c1), const_CAST_run(c2)); - - default: - assert(false); - roaring_unreachable; - return false; - } -} - -/** - * Returns true if the container c1 is a subset of the container c2. Note that - * c1 can be a subset of c2 even if they have a different type. - */ -static inline bool container_is_subset(const container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - return bitset_container_is_subset(const_CAST_bitset(c1), - const_CAST_bitset(c2)); - - case CONTAINER_PAIR(BITSET, RUN): - return bitset_container_is_subset_run(const_CAST_bitset(c1), - const_CAST_run(c2)); - - case CONTAINER_PAIR(RUN, BITSET): - return run_container_is_subset_bitset(const_CAST_run(c1), - const_CAST_bitset(c2)); - - case CONTAINER_PAIR(BITSET, ARRAY): - return false; // by construction, size(c1) > size(c2) - - case CONTAINER_PAIR(ARRAY, BITSET): - return array_container_is_subset_bitset(const_CAST_array(c1), - const_CAST_bitset(c2)); - - case CONTAINER_PAIR(ARRAY, RUN): - return array_container_is_subset_run(const_CAST_array(c1), - const_CAST_run(c2)); - - case CONTAINER_PAIR(RUN, ARRAY): - return run_container_is_subset_array(const_CAST_run(c1), - const_CAST_array(c2)); - - case CONTAINER_PAIR(ARRAY, ARRAY): - return array_container_is_subset(const_CAST_array(c1), - const_CAST_array(c2)); - - case CONTAINER_PAIR(RUN, RUN): - return run_container_is_subset(const_CAST_run(c1), - const_CAST_run(c2)); - - default: - assert(false); - roaring_unreachable; - return false; - } -} - -// macro-izations possibilities for generic non-inplace binary-op dispatch - -/** - * Compute intersection between two containers, generate a new container (having - * type result_type), requires a typecode. This allocates new memory, caller - * is responsible for deallocation. - */ -static inline container_t *container_and(const container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2, - uint8_t *result_type) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - container_t *result = NULL; - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - *result_type = - bitset_bitset_container_intersection( - const_CAST_bitset(c1), const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, ARRAY): - result = array_container_create(); - array_container_intersection( - const_CAST_array(c1), const_CAST_array(c2), CAST_array(result)); - *result_type = ARRAY_CONTAINER_TYPE; // never bitset - return result; - - case CONTAINER_PAIR(RUN, RUN): - result = run_container_create(); - run_container_intersection(const_CAST_run(c1), const_CAST_run(c2), - CAST_run(result)); - return convert_run_to_efficient_container_and_free(CAST_run(result), - result_type); - - case CONTAINER_PAIR(BITSET, ARRAY): - result = array_container_create(); - array_bitset_container_intersection(const_CAST_array(c2), - const_CAST_bitset(c1), - CAST_array(result)); - *result_type = ARRAY_CONTAINER_TYPE; // never bitset - return result; - - case CONTAINER_PAIR(ARRAY, BITSET): - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE; // never bitset - array_bitset_container_intersection(const_CAST_array(c1), - const_CAST_bitset(c2), - CAST_array(result)); - return result; - - case CONTAINER_PAIR(BITSET, RUN): - *result_type = - run_bitset_container_intersection( - const_CAST_run(c2), const_CAST_bitset(c1), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, BITSET): - *result_type = - run_bitset_container_intersection( - const_CAST_run(c1), const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, RUN): - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE; // never bitset - array_run_container_intersection( - const_CAST_array(c1), const_CAST_run(c2), CAST_array(result)); - return result; - - case CONTAINER_PAIR(RUN, ARRAY): - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE; // never bitset - array_run_container_intersection( - const_CAST_array(c2), const_CAST_run(c1), CAST_array(result)); - return result; - - default: - assert(false); - roaring_unreachable; - return NULL; - } -} - -/** - * Compute the size of the intersection between two containers. - */ -static inline int container_and_cardinality(const container_t *c1, - uint8_t type1, - const container_t *c2, - uint8_t type2) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - return bitset_container_and_justcard(const_CAST_bitset(c1), - const_CAST_bitset(c2)); - - case CONTAINER_PAIR(ARRAY, ARRAY): - return array_container_intersection_cardinality( - const_CAST_array(c1), const_CAST_array(c2)); - - case CONTAINER_PAIR(RUN, RUN): - return run_container_intersection_cardinality(const_CAST_run(c1), - const_CAST_run(c2)); - - case CONTAINER_PAIR(BITSET, ARRAY): - return array_bitset_container_intersection_cardinality( - const_CAST_array(c2), const_CAST_bitset(c1)); - - case CONTAINER_PAIR(ARRAY, BITSET): - return array_bitset_container_intersection_cardinality( - const_CAST_array(c1), const_CAST_bitset(c2)); - - case CONTAINER_PAIR(BITSET, RUN): - return run_bitset_container_intersection_cardinality( - const_CAST_run(c2), const_CAST_bitset(c1)); - - case CONTAINER_PAIR(RUN, BITSET): - return run_bitset_container_intersection_cardinality( - const_CAST_run(c1), const_CAST_bitset(c2)); - - case CONTAINER_PAIR(ARRAY, RUN): - return array_run_container_intersection_cardinality( - const_CAST_array(c1), const_CAST_run(c2)); - - case CONTAINER_PAIR(RUN, ARRAY): - return array_run_container_intersection_cardinality( - const_CAST_array(c2), const_CAST_run(c1)); - - default: - assert(false); - roaring_unreachable; - return 0; - } -} - -/** - * Check whether two containers intersect. - */ -static inline bool container_intersect(const container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - return bitset_container_intersect(const_CAST_bitset(c1), - const_CAST_bitset(c2)); - - case CONTAINER_PAIR(ARRAY, ARRAY): - return array_container_intersect(const_CAST_array(c1), - const_CAST_array(c2)); - - case CONTAINER_PAIR(RUN, RUN): - return run_container_intersect(const_CAST_run(c1), - const_CAST_run(c2)); - - case CONTAINER_PAIR(BITSET, ARRAY): - return array_bitset_container_intersect(const_CAST_array(c2), - const_CAST_bitset(c1)); - - case CONTAINER_PAIR(ARRAY, BITSET): - return array_bitset_container_intersect(const_CAST_array(c1), - const_CAST_bitset(c2)); - - case CONTAINER_PAIR(BITSET, RUN): - return run_bitset_container_intersect(const_CAST_run(c2), - const_CAST_bitset(c1)); - - case CONTAINER_PAIR(RUN, BITSET): - return run_bitset_container_intersect(const_CAST_run(c1), - const_CAST_bitset(c2)); - - case CONTAINER_PAIR(ARRAY, RUN): - return array_run_container_intersect(const_CAST_array(c1), - const_CAST_run(c2)); - - case CONTAINER_PAIR(RUN, ARRAY): - return array_run_container_intersect(const_CAST_array(c2), - const_CAST_run(c1)); - - default: - assert(false); - roaring_unreachable; - return 0; - } -} - -/** - * Compute intersection between two containers, with result in the first - container if possible. If the returned pointer is identical to c1, - then the container has been modified. If the returned pointer is different - from c1, then a new container has been created and the caller is responsible - for freeing it. - The type of the first container may change. Returns the modified - (and possibly new) container. -*/ -static inline container_t *container_iand(container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2, - uint8_t *result_type) { - c1 = get_writable_copy_if_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - container_t *result = NULL; - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - *result_type = bitset_bitset_container_intersection_inplace( - CAST_bitset(c1), const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, ARRAY): - array_container_intersection_inplace(CAST_array(c1), - const_CAST_array(c2)); - *result_type = ARRAY_CONTAINER_TYPE; - return c1; - - case CONTAINER_PAIR(RUN, RUN): - result = run_container_create(); - run_container_intersection(const_CAST_run(c1), const_CAST_run(c2), - CAST_run(result)); - // as of January 2016, Java code used non-in-place intersection for - // two runcontainers - return convert_run_to_efficient_container_and_free(CAST_run(result), - result_type); - - case CONTAINER_PAIR(BITSET, ARRAY): - // c1 is a bitmap so no inplace possible - result = array_container_create(); - array_bitset_container_intersection(const_CAST_array(c2), - const_CAST_bitset(c1), - CAST_array(result)); - *result_type = ARRAY_CONTAINER_TYPE; // never bitset - return result; - - case CONTAINER_PAIR(ARRAY, BITSET): - *result_type = ARRAY_CONTAINER_TYPE; // never bitset - array_bitset_container_intersection( - const_CAST_array(c1), const_CAST_bitset(c2), - CAST_array(c1)); // result is allowed to be same as c1 - return c1; - - case CONTAINER_PAIR(BITSET, RUN): - // will attempt in-place computation - *result_type = run_bitset_container_intersection( - const_CAST_run(c2), const_CAST_bitset(c1), &c1) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return c1; - - case CONTAINER_PAIR(RUN, BITSET): - *result_type = - run_bitset_container_intersection( - const_CAST_run(c1), const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, RUN): - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE; // never bitset - array_run_container_intersection( - const_CAST_array(c1), const_CAST_run(c2), CAST_array(result)); - return result; - - case CONTAINER_PAIR(RUN, ARRAY): - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE; // never bitset - array_run_container_intersection( - const_CAST_array(c2), const_CAST_run(c1), CAST_array(result)); - return result; - - default: - assert(false); - roaring_unreachable; - return NULL; - } -} - -/** - * Compute union between two containers, generate a new container (having type - * result_type), requires a typecode. This allocates new memory, caller - * is responsible for deallocation. - */ -static inline container_t *container_or(const container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2, - uint8_t *result_type) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - container_t *result = NULL; - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - result = bitset_container_create(); - bitset_container_or(const_CAST_bitset(c1), const_CAST_bitset(c2), - CAST_bitset(result)); - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, ARRAY): - *result_type = - array_array_container_union(const_CAST_array(c1), - const_CAST_array(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, RUN): - result = run_container_create(); - run_container_union(const_CAST_run(c1), const_CAST_run(c2), - CAST_run(result)); - *result_type = RUN_CONTAINER_TYPE; - // todo: could be optimized since will never convert to array - result = convert_run_to_efficient_container_and_free( - CAST_run(result), result_type); - return result; - - case CONTAINER_PAIR(BITSET, ARRAY): - result = bitset_container_create(); - array_bitset_container_union(const_CAST_array(c2), - const_CAST_bitset(c1), - CAST_bitset(result)); - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, BITSET): - result = bitset_container_create(); - array_bitset_container_union(const_CAST_array(c1), - const_CAST_bitset(c2), - CAST_bitset(result)); - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(BITSET, RUN): - if (run_container_is_full(const_CAST_run(c2))) { - result = run_container_create(); - *result_type = RUN_CONTAINER_TYPE; - run_container_copy(const_CAST_run(c2), CAST_run(result)); - return result; - } - result = bitset_container_create(); - run_bitset_container_union( - const_CAST_run(c2), const_CAST_bitset(c1), CAST_bitset(result)); - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, BITSET): - if (run_container_is_full(const_CAST_run(c1))) { - result = run_container_create(); - *result_type = RUN_CONTAINER_TYPE; - run_container_copy(const_CAST_run(c1), CAST_run(result)); - return result; - } - result = bitset_container_create(); - run_bitset_container_union( - const_CAST_run(c1), const_CAST_bitset(c2), CAST_bitset(result)); - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, RUN): - result = run_container_create(); - array_run_container_union(const_CAST_array(c1), const_CAST_run(c2), - CAST_run(result)); - result = convert_run_to_efficient_container_and_free( - CAST_run(result), result_type); - return result; - - case CONTAINER_PAIR(RUN, ARRAY): - result = run_container_create(); - array_run_container_union(const_CAST_array(c2), const_CAST_run(c1), - CAST_run(result)); - result = convert_run_to_efficient_container_and_free( - CAST_run(result), result_type); - return result; - - default: - assert(false); - roaring_unreachable; - return NULL; // unreached - } -} - -/** - * Compute union between two containers, generate a new container (having type - * result_type), requires a typecode. This allocates new memory, caller - * is responsible for deallocation. - * - * This lazy version delays some operations such as the maintenance of the - * cardinality. It requires repair later on the generated containers. - */ -static inline container_t *container_lazy_or(const container_t *c1, - uint8_t type1, - const container_t *c2, - uint8_t type2, - uint8_t *result_type) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - container_t *result = NULL; - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - result = bitset_container_create(); - bitset_container_or_nocard(const_CAST_bitset(c1), - const_CAST_bitset(c2), - CAST_bitset(result)); // is lazy - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, ARRAY): - *result_type = - array_array_container_lazy_union(const_CAST_array(c1), - const_CAST_array(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, RUN): - result = run_container_create(); - run_container_union(const_CAST_run(c1), const_CAST_run(c2), - CAST_run(result)); - *result_type = RUN_CONTAINER_TYPE; - // we are being lazy - result = convert_run_to_efficient_container_and_free( - CAST_run(result), result_type); - return result; - - case CONTAINER_PAIR(BITSET, ARRAY): - result = bitset_container_create(); - array_bitset_container_lazy_union(const_CAST_array(c2), - const_CAST_bitset(c1), - CAST_bitset(result)); // is lazy - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, BITSET): - result = bitset_container_create(); - array_bitset_container_lazy_union(const_CAST_array(c1), - const_CAST_bitset(c2), - CAST_bitset(result)); // is lazy - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(BITSET, RUN): - if (run_container_is_full(const_CAST_run(c2))) { - result = run_container_create(); - *result_type = RUN_CONTAINER_TYPE; - run_container_copy(const_CAST_run(c2), CAST_run(result)); - return result; - } - result = bitset_container_create(); - run_bitset_container_lazy_union(const_CAST_run(c2), - const_CAST_bitset(c1), - CAST_bitset(result)); // is lazy - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, BITSET): - if (run_container_is_full(const_CAST_run(c1))) { - result = run_container_create(); - *result_type = RUN_CONTAINER_TYPE; - run_container_copy(const_CAST_run(c1), CAST_run(result)); - return result; - } - result = bitset_container_create(); - run_bitset_container_lazy_union(const_CAST_run(c1), - const_CAST_bitset(c2), - CAST_bitset(result)); // is lazy - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, RUN): - result = run_container_create(); - array_run_container_union(const_CAST_array(c1), const_CAST_run(c2), - CAST_run(result)); - *result_type = RUN_CONTAINER_TYPE; - // next line skipped since we are lazy - // result = convert_run_to_efficient_container(result, result_type); - return result; - - case CONTAINER_PAIR(RUN, ARRAY): - result = run_container_create(); - array_run_container_union(const_CAST_array(c2), const_CAST_run(c1), - CAST_run(result)); // TODO make lazy - *result_type = RUN_CONTAINER_TYPE; - // next line skipped since we are lazy - // result = convert_run_to_efficient_container(result, result_type); - return result; - - default: - assert(false); - roaring_unreachable; - return NULL; // unreached - } -} - -/** - * Compute the union between two containers, with result in the first container. - * If the returned pointer is identical to c1, then the container has been - * modified. - * If the returned pointer is different from c1, then a new container has been - * created and the caller is responsible for freeing it. - * The type of the first container may change. Returns the modified - * (and possibly new) container - */ -static inline container_t *container_ior(container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2, - uint8_t *result_type) { - c1 = get_writable_copy_if_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - container_t *result = NULL; - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - bitset_container_or(const_CAST_bitset(c1), const_CAST_bitset(c2), - CAST_bitset(c1)); -#ifdef OR_BITSET_CONVERSION_TO_FULL - if (CAST_bitset(c1)->cardinality == (1 << 16)) { // we convert - result = run_container_create_range(0, (1 << 16)); - *result_type = RUN_CONTAINER_TYPE; - return result; - } -#endif - *result_type = BITSET_CONTAINER_TYPE; - return c1; - - case CONTAINER_PAIR(ARRAY, ARRAY): - *result_type = array_array_container_inplace_union( - CAST_array(c1), const_CAST_array(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - if ((result == NULL) && (*result_type == ARRAY_CONTAINER_TYPE)) { - return c1; // the computation was done in-place! - } - return result; - - case CONTAINER_PAIR(RUN, RUN): - run_container_union_inplace(CAST_run(c1), const_CAST_run(c2)); - return convert_run_to_efficient_container(CAST_run(c1), - result_type); - - case CONTAINER_PAIR(BITSET, ARRAY): - array_bitset_container_union( - const_CAST_array(c2), const_CAST_bitset(c1), CAST_bitset(c1)); - *result_type = BITSET_CONTAINER_TYPE; // never array - return c1; - - case CONTAINER_PAIR(ARRAY, BITSET): - // c1 is an array, so no in-place possible - result = bitset_container_create(); - *result_type = BITSET_CONTAINER_TYPE; - array_bitset_container_union(const_CAST_array(c1), - const_CAST_bitset(c2), - CAST_bitset(result)); - return result; - - case CONTAINER_PAIR(BITSET, RUN): - if (run_container_is_full(const_CAST_run(c2))) { - result = run_container_create(); - *result_type = RUN_CONTAINER_TYPE; - run_container_copy(const_CAST_run(c2), CAST_run(result)); - return result; - } - run_bitset_container_union(const_CAST_run(c2), - const_CAST_bitset(c1), - CAST_bitset(c1)); // allowed - *result_type = BITSET_CONTAINER_TYPE; - return c1; - - case CONTAINER_PAIR(RUN, BITSET): - if (run_container_is_full(const_CAST_run(c1))) { - *result_type = RUN_CONTAINER_TYPE; - return c1; - } - result = bitset_container_create(); - run_bitset_container_union( - const_CAST_run(c1), const_CAST_bitset(c2), CAST_bitset(result)); - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, RUN): - result = run_container_create(); - array_run_container_union(const_CAST_array(c1), const_CAST_run(c2), - CAST_run(result)); - result = convert_run_to_efficient_container_and_free( - CAST_run(result), result_type); - return result; - - case CONTAINER_PAIR(RUN, ARRAY): - array_run_container_inplace_union(const_CAST_array(c2), - CAST_run(c1)); - c1 = convert_run_to_efficient_container(CAST_run(c1), result_type); - return c1; - - default: - assert(false); - roaring_unreachable; - return NULL; - } -} - -/** - * Compute the union between two containers, with result in the first container. - * If the returned pointer is identical to c1, then the container has been - * modified. - * If the returned pointer is different from c1, then a new container has been - * created and the caller is responsible for freeing it. - * The type of the first container may change. Returns the modified - * (and possibly new) container - * - * This lazy version delays some operations such as the maintenance of the - * cardinality. It requires repair later on the generated containers. - */ -static inline container_t *container_lazy_ior(container_t *c1, uint8_t type1, - const container_t *c2, - uint8_t type2, - uint8_t *result_type) { - assert(type1 != SHARED_CONTAINER_TYPE); - // c1 = get_writable_copy_if_shared(c1,&type1); - c2 = container_unwrap_shared(c2, &type2); - container_t *result = NULL; - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): -#ifdef LAZY_OR_BITSET_CONVERSION_TO_FULL - // if we have two bitsets, we might as well compute the cardinality - bitset_container_or(const_CAST_bitset(c1), const_CAST_bitset(c2), - CAST_bitset(c1)); - // it is possible that two bitsets can lead to a full container - if (CAST_bitset(c1)->cardinality == (1 << 16)) { // we convert - result = run_container_create_range(0, (1 << 16)); - *result_type = RUN_CONTAINER_TYPE; - return result; - } -#else - bitset_container_or_nocard(const_CAST_bitset(c1), - const_CAST_bitset(c2), CAST_bitset(c1)); - -#endif - *result_type = BITSET_CONTAINER_TYPE; - return c1; - - case CONTAINER_PAIR(ARRAY, ARRAY): - *result_type = array_array_container_lazy_inplace_union( - CAST_array(c1), const_CAST_array(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - if ((result == NULL) && (*result_type == ARRAY_CONTAINER_TYPE)) { - return c1; // the computation was done in-place! - } - return result; - - case CONTAINER_PAIR(RUN, RUN): - run_container_union_inplace(CAST_run(c1), const_CAST_run(c2)); - *result_type = RUN_CONTAINER_TYPE; - return convert_run_to_efficient_container(CAST_run(c1), - result_type); - - case CONTAINER_PAIR(BITSET, ARRAY): - array_bitset_container_lazy_union(const_CAST_array(c2), - const_CAST_bitset(c1), - CAST_bitset(c1)); // is lazy - *result_type = BITSET_CONTAINER_TYPE; // never array - return c1; - - case CONTAINER_PAIR(ARRAY, BITSET): - // c1 is an array, so no in-place possible - result = bitset_container_create(); - *result_type = BITSET_CONTAINER_TYPE; - array_bitset_container_lazy_union(const_CAST_array(c1), - const_CAST_bitset(c2), - CAST_bitset(result)); // is lazy - return result; - - case CONTAINER_PAIR(BITSET, RUN): - if (run_container_is_full(const_CAST_run(c2))) { - result = run_container_create(); - *result_type = RUN_CONTAINER_TYPE; - run_container_copy(const_CAST_run(c2), CAST_run(result)); - return result; - } - run_bitset_container_lazy_union( - const_CAST_run(c2), const_CAST_bitset(c1), - CAST_bitset(c1)); // allowed // lazy - *result_type = BITSET_CONTAINER_TYPE; - return c1; - - case CONTAINER_PAIR(RUN, BITSET): - if (run_container_is_full(const_CAST_run(c1))) { - *result_type = RUN_CONTAINER_TYPE; - return c1; - } - result = bitset_container_create(); - run_bitset_container_lazy_union(const_CAST_run(c1), - const_CAST_bitset(c2), - CAST_bitset(result)); // lazy - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, RUN): - result = run_container_create(); - array_run_container_union(const_CAST_array(c1), const_CAST_run(c2), - CAST_run(result)); - *result_type = RUN_CONTAINER_TYPE; - // next line skipped since we are lazy - // result = convert_run_to_efficient_container_and_free(result, - // result_type); - return result; - - case CONTAINER_PAIR(RUN, ARRAY): - array_run_container_inplace_union(const_CAST_array(c2), - CAST_run(c1)); - *result_type = RUN_CONTAINER_TYPE; - // next line skipped since we are lazy - // result = convert_run_to_efficient_container_and_free(result, - // result_type); - return c1; - - default: - assert(false); - roaring_unreachable; - return NULL; - } -} - -/** - * Compute symmetric difference (xor) between two containers, generate a new - * container (having type result_type), requires a typecode. This allocates new - * memory, caller is responsible for deallocation. - */ -static inline container_t *container_xor(const container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2, - uint8_t *result_type) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - container_t *result = NULL; - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - *result_type = - bitset_bitset_container_xor(const_CAST_bitset(c1), - const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, ARRAY): - *result_type = - array_array_container_xor(const_CAST_array(c1), - const_CAST_array(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, RUN): - *result_type = (uint8_t)run_run_container_xor( - const_CAST_run(c1), const_CAST_run(c2), &result); - return result; - - case CONTAINER_PAIR(BITSET, ARRAY): - *result_type = - array_bitset_container_xor(const_CAST_array(c2), - const_CAST_bitset(c1), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, BITSET): - *result_type = - array_bitset_container_xor(const_CAST_array(c1), - const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(BITSET, RUN): - *result_type = - run_bitset_container_xor(const_CAST_run(c2), - const_CAST_bitset(c1), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, BITSET): - *result_type = - run_bitset_container_xor(const_CAST_run(c1), - const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, RUN): - *result_type = (uint8_t)array_run_container_xor( - const_CAST_array(c1), const_CAST_run(c2), &result); - return result; - - case CONTAINER_PAIR(RUN, ARRAY): - *result_type = (uint8_t)array_run_container_xor( - const_CAST_array(c2), const_CAST_run(c1), &result); - return result; - - default: - assert(false); - roaring_unreachable; - return NULL; // unreached - } -} - -/* Applies an offset to the non-empty container 'c'. - * The results are stored in new containers returned via 'lo' and 'hi', for the - * low and high halves of the result (where the low half matches the original - * key and the high one corresponds to values for the following key). Either one - * of 'lo' and 'hi' are allowed to be 'NULL', but not both. Whenever one of them - * is not 'NULL', it should point to a 'NULL' container. Whenever one of them is - * 'NULL' the shifted elements for that part will not be computed. If either of - * the resulting containers turns out to be empty, the pointed container will - * remain 'NULL'. - */ -static inline void container_add_offset(const container_t *c, uint8_t type, - container_t **lo, container_t **hi, - uint16_t offset) { - assert(offset != 0); - assert(container_nonzero_cardinality(c, type)); - assert(lo != NULL || hi != NULL); - assert(lo == NULL || *lo == NULL); - assert(hi == NULL || *hi == NULL); - - switch (type) { - case BITSET_CONTAINER_TYPE: - bitset_container_offset(const_CAST_bitset(c), lo, hi, offset); - break; - case ARRAY_CONTAINER_TYPE: - array_container_offset(const_CAST_array(c), lo, hi, offset); - break; - case RUN_CONTAINER_TYPE: - run_container_offset(const_CAST_run(c), lo, hi, offset); - break; - default: - assert(false); - roaring_unreachable; - break; - } -} - -/** - * Compute xor between two containers, generate a new container (having type - * result_type), requires a typecode. This allocates new memory, caller - * is responsible for deallocation. - * - * This lazy version delays some operations such as the maintenance of the - * cardinality. It requires repair later on the generated containers. - */ -static inline container_t *container_lazy_xor(const container_t *c1, - uint8_t type1, - const container_t *c2, - uint8_t type2, - uint8_t *result_type) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - container_t *result = NULL; - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - result = bitset_container_create(); - bitset_container_xor_nocard(const_CAST_bitset(c1), - const_CAST_bitset(c2), - CAST_bitset(result)); // is lazy - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, ARRAY): - *result_type = - array_array_container_lazy_xor(const_CAST_array(c1), - const_CAST_array(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, RUN): - // nothing special done yet. - *result_type = (uint8_t)run_run_container_xor( - const_CAST_run(c1), const_CAST_run(c2), &result); - return result; - - case CONTAINER_PAIR(BITSET, ARRAY): - result = bitset_container_create(); - *result_type = BITSET_CONTAINER_TYPE; - array_bitset_container_lazy_xor(const_CAST_array(c2), - const_CAST_bitset(c1), - CAST_bitset(result)); - return result; - - case CONTAINER_PAIR(ARRAY, BITSET): - result = bitset_container_create(); - *result_type = BITSET_CONTAINER_TYPE; - array_bitset_container_lazy_xor(const_CAST_array(c1), - const_CAST_bitset(c2), - CAST_bitset(result)); - return result; - - case CONTAINER_PAIR(BITSET, RUN): - result = bitset_container_create(); - run_bitset_container_lazy_xor( - const_CAST_run(c2), const_CAST_bitset(c1), CAST_bitset(result)); - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, BITSET): - result = bitset_container_create(); - run_bitset_container_lazy_xor( - const_CAST_run(c1), const_CAST_bitset(c2), CAST_bitset(result)); - *result_type = BITSET_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, RUN): - result = run_container_create(); - array_run_container_lazy_xor(const_CAST_array(c1), - const_CAST_run(c2), CAST_run(result)); - *result_type = RUN_CONTAINER_TYPE; - // next line skipped since we are lazy - // result = convert_run_to_efficient_container(result, result_type); - return result; - - case CONTAINER_PAIR(RUN, ARRAY): - result = run_container_create(); - array_run_container_lazy_xor(const_CAST_array(c2), - const_CAST_run(c1), CAST_run(result)); - *result_type = RUN_CONTAINER_TYPE; - // next line skipped since we are lazy - // result = convert_run_to_efficient_container(result, result_type); - return result; - - default: - assert(false); - roaring_unreachable; - return NULL; // unreached - } -} - -/** - * Compute the xor between two containers, with result in the first container. - * If the returned pointer is identical to c1, then the container has been - * modified. - * If the returned pointer is different from c1, then a new container has been - * created. The original container is freed by container_ixor. - * The type of the first container may change. Returns the modified (and - * possibly new) container. - */ -static inline container_t *container_ixor(container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2, - uint8_t *result_type) { - c1 = get_writable_copy_if_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - container_t *result = NULL; - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - *result_type = bitset_bitset_container_ixor( - CAST_bitset(c1), const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, ARRAY): - *result_type = array_array_container_ixor( - CAST_array(c1), const_CAST_array(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, RUN): - *result_type = (uint8_t)run_run_container_ixor( - CAST_run(c1), const_CAST_run(c2), &result); - return result; - - case CONTAINER_PAIR(BITSET, ARRAY): - *result_type = bitset_array_container_ixor( - CAST_bitset(c1), const_CAST_array(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, BITSET): - *result_type = array_bitset_container_ixor( - CAST_array(c1), const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(BITSET, RUN): - *result_type = bitset_run_container_ixor( - CAST_bitset(c1), const_CAST_run(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - - return result; - - case CONTAINER_PAIR(RUN, BITSET): - *result_type = run_bitset_container_ixor( - CAST_run(c1), const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, RUN): - *result_type = (uint8_t)array_run_container_ixor( - CAST_array(c1), const_CAST_run(c2), &result); - return result; - - case CONTAINER_PAIR(RUN, ARRAY): - *result_type = (uint8_t)run_array_container_ixor( - CAST_run(c1), const_CAST_array(c2), &result); - return result; - - default: - assert(false); - roaring_unreachable; - return NULL; - } -} - -/** - * Compute the xor between two containers, with result in the first container. - * If the returned pointer is identical to c1, then the container has been - * modified. - * If the returned pointer is different from c1, then a new container has been - * created and the caller is responsible for freeing it. - * The type of the first container may change. Returns the modified - * (and possibly new) container - * - * This lazy version delays some operations such as the maintenance of the - * cardinality. It requires repair later on the generated containers. - */ -static inline container_t *container_lazy_ixor(container_t *c1, uint8_t type1, - const container_t *c2, - uint8_t type2, - uint8_t *result_type) { - assert(type1 != SHARED_CONTAINER_TYPE); - // c1 = get_writable_copy_if_shared(c1,&type1); - c2 = container_unwrap_shared(c2, &type2); - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - bitset_container_xor_nocard(CAST_bitset(c1), const_CAST_bitset(c2), - CAST_bitset(c1)); // is lazy - *result_type = BITSET_CONTAINER_TYPE; - return c1; - - // TODO: other cases being lazy, esp. when we know inplace not likely - // could see the corresponding code for union - default: - // we may have a dirty bitset (without a precomputed cardinality) - // and calling container_ixor on it might be unsafe. - if (type1 == BITSET_CONTAINER_TYPE) { - bitset_container_t *bc = CAST_bitset(c1); - if (bc->cardinality == BITSET_UNKNOWN_CARDINALITY) { - bc->cardinality = bitset_container_compute_cardinality(bc); - } - } - return container_ixor(c1, type1, c2, type2, result_type); - } -} - -/** - * Compute difference (andnot) between two containers, generate a new - * container (having type result_type), requires a typecode. This allocates new - * memory, caller is responsible for deallocation. - */ -static inline container_t *container_andnot(const container_t *c1, - uint8_t type1, - const container_t *c2, - uint8_t type2, - uint8_t *result_type) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - container_t *result = NULL; - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - *result_type = - bitset_bitset_container_andnot(const_CAST_bitset(c1), - const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, ARRAY): - result = array_container_create(); - array_array_container_andnot( - const_CAST_array(c1), const_CAST_array(c2), CAST_array(result)); - *result_type = ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, RUN): - if (run_container_is_full(const_CAST_run(c2))) { - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE; - return result; - } - *result_type = (uint8_t)run_run_container_andnot( - const_CAST_run(c1), const_CAST_run(c2), &result); - return result; - - case CONTAINER_PAIR(BITSET, ARRAY): - *result_type = - bitset_array_container_andnot(const_CAST_bitset(c1), - const_CAST_array(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, BITSET): - result = array_container_create(); - array_bitset_container_andnot(const_CAST_array(c1), - const_CAST_bitset(c2), - CAST_array(result)); - *result_type = ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(BITSET, RUN): - if (run_container_is_full(const_CAST_run(c2))) { - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE; - return result; - } - *result_type = - bitset_run_container_andnot(const_CAST_bitset(c1), - const_CAST_run(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, BITSET): - *result_type = - run_bitset_container_andnot(const_CAST_run(c1), - const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, RUN): - if (run_container_is_full(const_CAST_run(c2))) { - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE; - return result; - } - result = array_container_create(); - array_run_container_andnot(const_CAST_array(c1), const_CAST_run(c2), - CAST_array(result)); - *result_type = ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, ARRAY): - *result_type = (uint8_t)run_array_container_andnot( - const_CAST_run(c1), const_CAST_array(c2), &result); - return result; - - default: - assert(false); - roaring_unreachable; - return NULL; // unreached - } -} - -/** - * Compute the andnot between two containers, with result in the first - * container. - * If the returned pointer is identical to c1, then the container has been - * modified. - * If the returned pointer is different from c1, then a new container has been - * created. The original container is freed by container_iandnot. - * The type of the first container may change. Returns the modified (and - * possibly new) container. - */ -static inline container_t *container_iandnot(container_t *c1, uint8_t type1, - const container_t *c2, - uint8_t type2, - uint8_t *result_type) { - c1 = get_writable_copy_if_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - container_t *result = NULL; - switch (PAIR_CONTAINER_TYPES(type1, type2)) { - case CONTAINER_PAIR(BITSET, BITSET): - *result_type = bitset_bitset_container_iandnot( - CAST_bitset(c1), const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, ARRAY): - array_array_container_iandnot(CAST_array(c1), const_CAST_array(c2)); - *result_type = ARRAY_CONTAINER_TYPE; - return c1; - - case CONTAINER_PAIR(RUN, RUN): - *result_type = (uint8_t)run_run_container_iandnot( - CAST_run(c1), const_CAST_run(c2), &result); - return result; - - case CONTAINER_PAIR(BITSET, ARRAY): - *result_type = bitset_array_container_iandnot( - CAST_bitset(c1), const_CAST_array(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, BITSET): - *result_type = ARRAY_CONTAINER_TYPE; - array_bitset_container_iandnot(CAST_array(c1), - const_CAST_bitset(c2)); - return c1; - - case CONTAINER_PAIR(BITSET, RUN): - *result_type = bitset_run_container_iandnot( - CAST_bitset(c1), const_CAST_run(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(RUN, BITSET): - *result_type = run_bitset_container_iandnot( - CAST_run(c1), const_CAST_bitset(c2), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - - case CONTAINER_PAIR(ARRAY, RUN): - *result_type = ARRAY_CONTAINER_TYPE; - array_run_container_iandnot(CAST_array(c1), const_CAST_run(c2)); - return c1; - - case CONTAINER_PAIR(RUN, ARRAY): - *result_type = (uint8_t)run_array_container_iandnot( - CAST_run(c1), const_CAST_array(c2), &result); - return result; - - default: - assert(false); - roaring_unreachable; - return NULL; - } -} - -/** - * Visit all values x of the container once, passing (base+x,ptr) - * to iterator. You need to specify a container and its type. - * Returns true if the iteration should continue. - */ -static inline bool container_iterate(const container_t *c, uint8_t type, - uint32_t base, roaring_iterator iterator, - void *ptr) { - c = container_unwrap_shared(c, &type); - switch (type) { - case BITSET_CONTAINER_TYPE: - return bitset_container_iterate(const_CAST_bitset(c), base, - iterator, ptr); - case ARRAY_CONTAINER_TYPE: - return array_container_iterate(const_CAST_array(c), base, iterator, - ptr); - case RUN_CONTAINER_TYPE: - return run_container_iterate(const_CAST_run(c), base, iterator, - ptr); - default: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return false; -} - -static inline bool container_iterate64(const container_t *c, uint8_t type, - uint32_t base, - roaring_iterator64 iterator, - uint64_t high_bits, void *ptr) { - c = container_unwrap_shared(c, &type); - switch (type) { - case BITSET_CONTAINER_TYPE: - return bitset_container_iterate64(const_CAST_bitset(c), base, - iterator, high_bits, ptr); - case ARRAY_CONTAINER_TYPE: - return array_container_iterate64(const_CAST_array(c), base, - iterator, high_bits, ptr); - case RUN_CONTAINER_TYPE: - return run_container_iterate64(const_CAST_run(c), base, iterator, - high_bits, ptr); - default: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return false; -} - -static inline container_t *container_not(const container_t *c, uint8_t type, - uint8_t *result_type) { - c = container_unwrap_shared(c, &type); - container_t *result = NULL; - switch (type) { - case BITSET_CONTAINER_TYPE: - *result_type = - bitset_container_negation(const_CAST_bitset(c), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - case ARRAY_CONTAINER_TYPE: - result = bitset_container_create(); - *result_type = BITSET_CONTAINER_TYPE; - array_container_negation(const_CAST_array(c), CAST_bitset(result)); - return result; - case RUN_CONTAINER_TYPE: - *result_type = - (uint8_t)run_container_negation(const_CAST_run(c), &result); - return result; - - default: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return NULL; -} - -static inline container_t *container_not_range(const container_t *c, - uint8_t type, - uint32_t range_start, - uint32_t range_end, - uint8_t *result_type) { - c = container_unwrap_shared(c, &type); - container_t *result = NULL; - switch (type) { - case BITSET_CONTAINER_TYPE: - *result_type = - bitset_container_negation_range(const_CAST_bitset(c), - range_start, range_end, &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - case ARRAY_CONTAINER_TYPE: - *result_type = - array_container_negation_range(const_CAST_array(c), range_start, - range_end, &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - case RUN_CONTAINER_TYPE: - *result_type = (uint8_t)run_container_negation_range( - const_CAST_run(c), range_start, range_end, &result); - return result; - - default: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return NULL; -} - -static inline container_t *container_inot(container_t *c, uint8_t type, - uint8_t *result_type) { - c = get_writable_copy_if_shared(c, &type); - container_t *result = NULL; - switch (type) { - case BITSET_CONTAINER_TYPE: - *result_type = - bitset_container_negation_inplace(CAST_bitset(c), &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - case ARRAY_CONTAINER_TYPE: - // will never be inplace - result = bitset_container_create(); - *result_type = BITSET_CONTAINER_TYPE; - array_container_negation(CAST_array(c), CAST_bitset(result)); - array_container_free(CAST_array(c)); - return result; - case RUN_CONTAINER_TYPE: - *result_type = - (uint8_t)run_container_negation_inplace(CAST_run(c), &result); - return result; - - default: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return NULL; -} - -static inline container_t *container_inot_range(container_t *c, uint8_t type, - uint32_t range_start, - uint32_t range_end, - uint8_t *result_type) { - c = get_writable_copy_if_shared(c, &type); - container_t *result = NULL; - switch (type) { - case BITSET_CONTAINER_TYPE: - *result_type = bitset_container_negation_range_inplace( - CAST_bitset(c), range_start, range_end, &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - case ARRAY_CONTAINER_TYPE: - *result_type = array_container_negation_range_inplace( - CAST_array(c), range_start, range_end, &result) - ? BITSET_CONTAINER_TYPE - : ARRAY_CONTAINER_TYPE; - return result; - case RUN_CONTAINER_TYPE: - *result_type = (uint8_t)run_container_negation_range_inplace( - CAST_run(c), range_start, range_end, &result); - return result; - - default: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return NULL; -} - -/** - * If the element of given rank is in this container, supposing that - * the first - * element has rank start_rank, then the function returns true and - * sets element - * accordingly. - * Otherwise, it returns false and update start_rank. - */ -static inline bool container_select(const container_t *c, uint8_t type, - uint32_t *start_rank, uint32_t rank, - uint32_t *element) { - c = container_unwrap_shared(c, &type); - switch (type) { - case BITSET_CONTAINER_TYPE: - return bitset_container_select(const_CAST_bitset(c), start_rank, - rank, element); - case ARRAY_CONTAINER_TYPE: - return array_container_select(const_CAST_array(c), start_rank, rank, - element); - case RUN_CONTAINER_TYPE: - return run_container_select(const_CAST_run(c), start_rank, rank, - element); - default: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return false; -} - -static inline uint16_t container_maximum(const container_t *c, uint8_t type) { - c = container_unwrap_shared(c, &type); - switch (type) { - case BITSET_CONTAINER_TYPE: - return bitset_container_maximum(const_CAST_bitset(c)); - case ARRAY_CONTAINER_TYPE: - return array_container_maximum(const_CAST_array(c)); - case RUN_CONTAINER_TYPE: - return run_container_maximum(const_CAST_run(c)); - default: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return false; -} - -static inline uint16_t container_minimum(const container_t *c, uint8_t type) { - c = container_unwrap_shared(c, &type); - switch (type) { - case BITSET_CONTAINER_TYPE: - return bitset_container_minimum(const_CAST_bitset(c)); - case ARRAY_CONTAINER_TYPE: - return array_container_minimum(const_CAST_array(c)); - case RUN_CONTAINER_TYPE: - return run_container_minimum(const_CAST_run(c)); - default: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return false; -} - -// number of values smaller or equal to x -static inline int container_rank(const container_t *c, uint8_t type, - uint16_t x) { - c = container_unwrap_shared(c, &type); - switch (type) { - case BITSET_CONTAINER_TYPE: - return bitset_container_rank(const_CAST_bitset(c), x); - case ARRAY_CONTAINER_TYPE: - return array_container_rank(const_CAST_array(c), x); - case RUN_CONTAINER_TYPE: - return run_container_rank(const_CAST_run(c), x); - default: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return false; -} - -// bulk version of container_rank(); return number of consumed elements -static inline uint32_t container_rank_many(const container_t *c, uint8_t type, - uint64_t start_rank, - const uint32_t *begin, - const uint32_t *end, uint64_t *ans) { - c = container_unwrap_shared(c, &type); - switch (type) { - case BITSET_CONTAINER_TYPE: - return bitset_container_rank_many(const_CAST_bitset(c), start_rank, - begin, end, ans); - case ARRAY_CONTAINER_TYPE: - return array_container_rank_many(const_CAST_array(c), start_rank, - begin, end, ans); - case RUN_CONTAINER_TYPE: - return run_container_rank_many(const_CAST_run(c), start_rank, begin, - end, ans); - default: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return 0; -} - -// return the index of x, if not exsist return -1 -static inline int container_get_index(const container_t *c, uint8_t type, - uint16_t x) { - c = container_unwrap_shared(c, &type); - switch (type) { - case BITSET_CONTAINER_TYPE: - return bitset_container_get_index(const_CAST_bitset(c), x); - case ARRAY_CONTAINER_TYPE: - return array_container_get_index(const_CAST_array(c), x); - case RUN_CONTAINER_TYPE: - return run_container_get_index(const_CAST_run(c), x); - default: - assert(false); - roaring_unreachable; - } - assert(false); - roaring_unreachable; - return false; -} - -/** - * Add all values in range [min, max] to a given container. - * - * If the returned pointer is different from $container, then a new container - * has been created and the caller is responsible for freeing it. - * The type of the first container may change. Returns the modified - * (and possibly new) container. - */ -static inline container_t *container_add_range(container_t *c, uint8_t type, - uint32_t min, uint32_t max, - uint8_t *result_type) { - // NB: when selecting new container type, we perform only inexpensive checks - switch (type) { - case BITSET_CONTAINER_TYPE: { - bitset_container_t *bitset = CAST_bitset(c); - - int32_t union_cardinality = 0; - union_cardinality += bitset->cardinality; - union_cardinality += max - min + 1; - union_cardinality -= - bitset_lenrange_cardinality(bitset->words, min, max - min); - - if (union_cardinality == INT32_C(0x10000)) { - *result_type = RUN_CONTAINER_TYPE; - return run_container_create_range(0, INT32_C(0x10000)); - } else { - *result_type = BITSET_CONTAINER_TYPE; - bitset_set_lenrange(bitset->words, min, max - min); - bitset->cardinality = union_cardinality; - return bitset; - } - } - case ARRAY_CONTAINER_TYPE: { - array_container_t *array = CAST_array(c); - - int32_t nvals_greater = - count_greater(array->array, array->cardinality, (uint16_t)max); - int32_t nvals_less = - count_less(array->array, array->cardinality - nvals_greater, - (uint16_t)min); - int32_t union_cardinality = - nvals_less + (max - min + 1) + nvals_greater; - - if (union_cardinality == INT32_C(0x10000)) { - *result_type = RUN_CONTAINER_TYPE; - return run_container_create_range(0, INT32_C(0x10000)); - } else if (union_cardinality <= DEFAULT_MAX_SIZE) { - *result_type = ARRAY_CONTAINER_TYPE; - array_container_add_range_nvals(array, min, max, nvals_less, - nvals_greater); - return array; - } else { - *result_type = BITSET_CONTAINER_TYPE; - bitset_container_t *bitset = bitset_container_from_array(array); - bitset_set_lenrange(bitset->words, min, max - min); - bitset->cardinality = union_cardinality; - return bitset; - } - } - case RUN_CONTAINER_TYPE: { - run_container_t *run = CAST_run(c); - - int32_t nruns_greater = - rle16_count_greater(run->runs, run->n_runs, (uint16_t)max); - int32_t nruns_less = rle16_count_less( - run->runs, run->n_runs - nruns_greater, (uint16_t)min); - - int32_t run_size_bytes = - (nruns_less + 1 + nruns_greater) * sizeof(rle16_t); - int32_t bitset_size_bytes = - BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); - - if (run_size_bytes <= bitset_size_bytes) { - run_container_add_range_nruns(run, min, max, nruns_less, - nruns_greater); - *result_type = RUN_CONTAINER_TYPE; - return run; - } else { - return container_from_run_range(run, min, max, result_type); - } - } - default: - roaring_unreachable; - } -} - -/* - * Removes all elements in range [min, max]. - * Returns one of: - * - NULL if no elements left - * - pointer to the original container - * - pointer to a newly-allocated container (if it is more efficient) - * - * If the returned pointer is different from $container, then a new container - * has been created and the caller is responsible for freeing the original - * container. - */ -static inline container_t *container_remove_range(container_t *c, uint8_t type, - uint32_t min, uint32_t max, - uint8_t *result_type) { - switch (type) { - case BITSET_CONTAINER_TYPE: { - bitset_container_t *bitset = CAST_bitset(c); - - int32_t result_cardinality = - bitset->cardinality - - bitset_lenrange_cardinality(bitset->words, min, max - min); - - if (result_cardinality == 0) { - return NULL; - } else if (result_cardinality <= DEFAULT_MAX_SIZE) { - *result_type = ARRAY_CONTAINER_TYPE; - bitset_reset_range(bitset->words, min, max + 1); - bitset->cardinality = result_cardinality; - return array_container_from_bitset(bitset); - } else { - *result_type = BITSET_CONTAINER_TYPE; - bitset_reset_range(bitset->words, min, max + 1); - bitset->cardinality = result_cardinality; - return bitset; - } - } - case ARRAY_CONTAINER_TYPE: { - array_container_t *array = CAST_array(c); - - int32_t nvals_greater = - count_greater(array->array, array->cardinality, (uint16_t)max); - int32_t nvals_less = - count_less(array->array, array->cardinality - nvals_greater, - (uint16_t)min); - int32_t result_cardinality = nvals_less + nvals_greater; - - if (result_cardinality == 0) { - return NULL; - } else { - *result_type = ARRAY_CONTAINER_TYPE; - array_container_remove_range( - array, nvals_less, array->cardinality - result_cardinality); - return array; - } - } - case RUN_CONTAINER_TYPE: { - run_container_t *run = CAST_run(c); - - if (run->n_runs == 0) { - return NULL; - } - if (min <= run_container_minimum(run) && - max >= run_container_maximum(run)) { - return NULL; - } - - run_container_remove_range(run, min, max); - return convert_run_to_efficient_container(run, result_type); - } - default: - roaring_unreachable; - } -} - -#ifdef __cplusplus -using api::roaring_container_iterator_t; -#endif - -/** - * Initializes the iterator at the first entry in the container. - */ -roaring_container_iterator_t container_init_iterator(const container_t *c, - uint8_t typecode, - uint16_t *value); - -/** - * Initializes the iterator at the last entry in the container. - */ -roaring_container_iterator_t container_init_iterator_last(const container_t *c, - uint8_t typecode, - uint16_t *value); - -/** - * Moves the iterator to the next entry. Returns true and sets `value` if a - * value is present. - */ -bool container_iterator_next(const container_t *c, uint8_t typecode, - roaring_container_iterator_t *it, uint16_t *value); - -/** - * Moves the iterator to the previous entry. Returns true and sets `value` if a - * value is present. - */ -bool container_iterator_prev(const container_t *c, uint8_t typecode, - roaring_container_iterator_t *it, uint16_t *value); - -/** - * Moves the iterator to the smallest entry that is greater than or equal to - * `val`. Returns true and sets `value_out` if a value is present. `value_out` - * should be initialized to a value. - */ -bool container_iterator_lower_bound(const container_t *c, uint8_t typecode, - roaring_container_iterator_t *it, - uint16_t *value_out, uint16_t val); - -/** - * Reads up to `count` entries from the container, and writes them into `buf` - * as `high16 | entry`. Returns true and sets `value_out` if a value is present - * after reading the entries. Sets `consumed` to the number of values read. - * `count` should be greater than zero. - */ -bool container_iterator_read_into_uint32(const container_t *c, uint8_t typecode, - roaring_container_iterator_t *it, - uint32_t high16, uint32_t *buf, - uint32_t count, uint32_t *consumed, - uint16_t *value_out); - -/** - * Reads up to `count` entries from the container, and writes them into `buf` - * as `high48 | entry`. Returns true and sets `value_out` if a value is present - * after reading the entries. Sets `consumed` to the number of values read. - * `count` should be greater than zero. - */ -bool container_iterator_read_into_uint64(const container_t *c, uint8_t typecode, - roaring_container_iterator_t *it, - uint64_t high48, uint64_t *buf, - uint32_t count, uint32_t *consumed, - uint16_t *value_out); - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#endif -/* end file include/roaring/containers/containers.h */ -/* begin file include/roaring/roaring_array.h */ -#ifndef INCLUDE_ROARING_ARRAY_H -#define INCLUDE_ROARING_ARRAY_H - -#include -#include -#include - - -#ifdef __cplusplus -extern "C" { -namespace roaring { - -// Note: in pure C++ code, you should avoid putting `using` in header files -using api::roaring_array_t; - -namespace internal { -#endif - -enum { - SERIAL_COOKIE_NO_RUNCONTAINER = 12346, - SERIAL_COOKIE = 12347, - FROZEN_COOKIE = 13766, - NO_OFFSET_THRESHOLD = 4 -}; - -/** - * Create a new roaring array - */ -roaring_array_t *ra_create(void); - -/** - * Initialize an existing roaring array with the specified capacity (in number - * of containers) - */ -bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap); - -/** - * Initialize with zero capacity - */ -void ra_init(roaring_array_t *t); - -/** - * Copies this roaring array, we assume that dest is not initialized - */ -bool ra_copy(const roaring_array_t *source, roaring_array_t *dest, - bool copy_on_write); - -/* - * Shrinks the capacity, returns the number of bytes saved. - */ -int ra_shrink_to_fit(roaring_array_t *ra); - -/** - * Copies this roaring array, we assume that dest is initialized - */ -bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest, - bool copy_on_write); - -/** - * Frees the memory used by a roaring array - */ -void ra_clear(roaring_array_t *r); - -/** - * Frees the memory used by a roaring array, but does not free the containers - */ -void ra_clear_without_containers(roaring_array_t *r); - -/** - * Frees just the containers - */ -void ra_clear_containers(roaring_array_t *ra); - -/** - * Get the index corresponding to a 16-bit key - */ -inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x) { - if ((ra->size == 0) || ra->keys[ra->size - 1] == x) return ra->size - 1; - return binarySearch(ra->keys, (int32_t)ra->size, x); -} - -/** - * Retrieves the container at index i, filling in the typecode - */ -inline container_t *ra_get_container_at_index(const roaring_array_t *ra, - uint16_t i, uint8_t *typecode) { - *typecode = ra->typecodes[i]; - return ra->containers[i]; -} - -/** - * Retrieves the key at index i - */ -inline uint16_t ra_get_key_at_index(const roaring_array_t *ra, uint16_t i) { - return ra->keys[i]; -} - -/** - * Add a new key-value pair at index i - */ -void ra_insert_new_key_value_at(roaring_array_t *ra, int32_t i, uint16_t key, - container_t *c, uint8_t typecode); - -/** - * Append a new key-value pair - */ -void ra_append(roaring_array_t *ra, uint16_t key, container_t *c, - uint8_t typecode); - -/** - * Append a new key-value pair to ra, cloning (in COW sense) a value from sa - * at index index - */ -void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa, - uint16_t index, bool copy_on_write); - -/** - * Append new key-value pairs to ra, cloning (in COW sense) values from sa - * at indexes - * [start_index, end_index) - */ -void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa, - int32_t start_index, int32_t end_index, - bool copy_on_write); - -/** appends from sa to ra, ending with the greatest key that is - * is less or equal stopping_key - */ -void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa, - uint16_t stopping_key, bool copy_on_write); - -/** appends from sa to ra, starting with the smallest key that is - * is strictly greater than before_start - */ - -void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa, - uint16_t before_start, bool copy_on_write); - -/** - * Move the key-value pairs to ra from sa at indexes - * [start_index, end_index), old array should not be freed - * (use ra_clear_without_containers) - **/ -void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa, - int32_t start_index, int32_t end_index); -/** - * Append new key-value pairs to ra, from sa at indexes - * [start_index, end_index) - */ -void ra_append_range(roaring_array_t *ra, roaring_array_t *sa, - int32_t start_index, int32_t end_index, - bool copy_on_write); - -/** - * Set the container at the corresponding index using the specified - * typecode. - */ -inline void ra_set_container_at_index(const roaring_array_t *ra, int32_t i, - container_t *c, uint8_t typecode) { - assert(i < ra->size); - ra->containers[i] = c; - ra->typecodes[i] = typecode; -} - -container_t *ra_get_container(roaring_array_t *ra, uint16_t x, - uint8_t *typecode); - -/** - * If needed, increase the capacity of the array so that it can fit k values - * (at - * least); - */ -bool extend_array(roaring_array_t *ra, int32_t k); - -inline int32_t ra_get_size(const roaring_array_t *ra) { return ra->size; } - -static inline int32_t ra_advance_until(const roaring_array_t *ra, uint16_t x, - int32_t pos) { - return advanceUntil(ra->keys, pos, ra->size, x); -} - -int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos); - -void ra_downsize(roaring_array_t *ra, int32_t new_length); - -inline void ra_replace_key_and_container_at_index(roaring_array_t *ra, - int32_t i, uint16_t key, - container_t *c, - uint8_t typecode) { - assert(i < ra->size); - - ra->keys[i] = key; - ra->containers[i] = c; - ra->typecodes[i] = typecode; -} - -// write set bits to an array -void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans); - -bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset, - size_t limit, uint32_t *ans); - -/** - * write a bitmap to a buffer. This is meant to be compatible with - * the - * Java and Go versions. Return the size in bytes of the serialized - * output (which should be ra_portable_size_in_bytes(ra)). - */ -size_t ra_portable_serialize(const roaring_array_t *ra, char *buf); - -/** - * read a bitmap from a serialized version. This is meant to be compatible - * with the Java and Go versions. - * maxbytes indicates how many bytes available from buf. - * When the function returns true, roaring_array_t is populated with the data - * and *readbytes indicates how many bytes were read. In all cases, if the - * function returns true, then maxbytes >= *readbytes. - */ -bool ra_portable_deserialize(roaring_array_t *ra, const char *buf, - const size_t maxbytes, size_t *readbytes); - -/** - * Quickly checks whether there is a serialized bitmap at the pointer, - * not exceeding size "maxbytes" in bytes. This function does not allocate - * memory dynamically. - * - * This function returns 0 if and only if no valid bitmap is found. - * Otherwise, it returns how many bytes are occupied by the bitmap data. - */ -size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes); - -/** - * How many bytes are required to serialize this bitmap (meant to be - * compatible - * with Java and Go versions) - */ -size_t ra_portable_size_in_bytes(const roaring_array_t *ra); - -/** - * return true if it contains at least one run container. - */ -bool ra_has_run_container(const roaring_array_t *ra); - -/** - * Size of the header when serializing (meant to be compatible - * with Java and Go versions) - */ -uint32_t ra_portable_header_size(const roaring_array_t *ra); - -/** - * If the container at the index i is share, unshare it (creating a local - * copy if needed). - */ -static inline void ra_unshare_container_at_index(roaring_array_t *ra, - uint16_t i) { - assert(i < ra->size); - ra->containers[i] = - get_writable_copy_if_shared(ra->containers[i], &ra->typecodes[i]); -} - -/** - * remove at index i, sliding over all entries after i - */ -void ra_remove_at_index(roaring_array_t *ra, int32_t i); - -/** - * clears all containers, sets the size at 0 and shrinks the memory usage. - */ -void ra_reset(roaring_array_t *ra); - -/** - * remove at index i, sliding over all entries after i. Free removed container. - */ -void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i); - -/** - * remove a chunk of indices, sliding over entries after it - */ -// void ra_remove_index_range(roaring_array_t *ra, int32_t begin, int32_t end); - -// used in inplace andNot only, to slide left the containers from -// the mutated RoaringBitmap that are after the largest container of -// the argument RoaringBitmap. It is followed by a call to resize. -// -void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end, - uint32_t new_begin); - -/** - * Shifts rightmost $count containers to the left (distance < 0) or - * to the right (distance > 0). - * Allocates memory if necessary. - * This function doesn't free or create new containers. - * Caller is responsible for that. - */ -void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance); - -#ifdef __cplusplus -} // namespace internal -} -} // extern "C" { namespace roaring { -#endif - -#endif -/* end file include/roaring/roaring_array.h */ -/* begin file include/roaring/art/art.h */ -#ifndef ART_ART_H -#define ART_ART_H - -#include -#include -#include - -/* - * This file contains an implementation of an Adaptive Radix Tree as described - * in https://db.in.tum.de/~leis/papers/ART.pdf. - * - * The ART contains the keys in _byte lexographical_ order. - * - * Other features: - * * Fixed 48 bit key length: all keys are assumed to be be 48 bits in size. - * This allows us to put the key and key prefixes directly in nodes, reducing - * indirection at no additional memory overhead. - * * Key compression: the only inner nodes created are at points where key - * chunks _differ_. This means that if there are two entries with different - * high 48 bits, then there is only one inner node containing the common key - * prefix, and two leaves. - * * Intrusive leaves: the leaf struct is included in user values. This removes - * a layer of indirection. - */ - -// Fixed length of keys in the ART. All keys are assumed to be of this length. -#define ART_KEY_BYTES 6 - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -typedef uint8_t art_key_chunk_t; -typedef struct art_node_s art_node_t; - -/** - * Wrapper to allow an empty tree. - */ -typedef struct art_s { - art_node_t *root; -} art_t; - -/** - * Values inserted into the tree have to be cast-able to art_val_t. This - * improves performance by reducing indirection. - * - * NOTE: Value pointers must be unique! This is because each value struct - * contains the key corresponding to the value. - */ -typedef struct art_val_s { - art_key_chunk_t key[ART_KEY_BYTES]; -} art_val_t; - -/** - * Compares two keys, returns their relative order: - * * Key 1 < key 2: returns a negative value - * * Key 1 == key 2: returns 0 - * * Key 1 > key 2: returns a positive value - */ -int art_compare_keys(const art_key_chunk_t key1[], - const art_key_chunk_t key2[]); - -/** - * Inserts the given key and value. - */ -void art_insert(art_t *art, const art_key_chunk_t *key, art_val_t *val); - -/** - * Returns the value erased, NULL if not found. - */ -art_val_t *art_erase(art_t *art, const art_key_chunk_t *key); - -/** - * Returns the value associated with the given key, NULL if not found. - */ -art_val_t *art_find(const art_t *art, const art_key_chunk_t *key); - -/** - * Returns true if the ART is empty. - */ -bool art_is_empty(const art_t *art); - -/** - * Frees the nodes of the ART except the values, which the user is expected to - * free. - */ -void art_free(art_t *art); - -/** - * Returns the size in bytes of the ART. Includes size of pointers to values, - * but not the values themselves. - */ -size_t art_size_in_bytes(const art_t *art); - -/** - * Prints the ART using printf, useful for debugging. - */ -void art_printf(const art_t *art); - -/** - * Callback for validating the value stored in a leaf. - * - * Should return true if the value is valid, false otherwise - * If false is returned, `*reason` should be set to a static string describing - * the reason for the failure. - */ -typedef bool (*art_validate_cb_t)(const art_val_t *val, const char **reason); - -/** - * Validate the ART tree, ensuring it is internally consistent. - */ -bool art_internal_validate(const art_t *art, const char **reason, - art_validate_cb_t validate_cb); - -/** - * ART-internal iterator bookkeeping. Users should treat this as an opaque type. - */ -typedef struct art_iterator_frame_s { - art_node_t *node; - uint8_t index_in_node; -} art_iterator_frame_t; - -/** - * Users should only access `key` and `value` in iterators. The iterator is - * valid when `value != NULL`. - */ -typedef struct art_iterator_s { - art_key_chunk_t key[ART_KEY_BYTES]; - art_val_t *value; - - uint8_t depth; // Key depth - uint8_t frame; // Node depth - - // State for each node in the ART the iterator has travelled from the root. - // This is `ART_KEY_BYTES + 1` because it includes state for the leaf too. - art_iterator_frame_t frames[ART_KEY_BYTES + 1]; -} art_iterator_t; - -/** - * Creates an iterator initialzed to the first or last entry in the ART, - * depending on `first`. The iterator is not valid if there are no entries in - * the ART. - */ -art_iterator_t art_init_iterator(const art_t *art, bool first); - -/** - * Returns an initialized iterator positioned at a key equal to or greater than - * the given key, if it exists. - */ -art_iterator_t art_lower_bound(const art_t *art, const art_key_chunk_t *key); - -/** - * Returns an initialized iterator positioned at a key greater than the given - * key, if it exists. - */ -art_iterator_t art_upper_bound(const art_t *art, const art_key_chunk_t *key); - -/** - * The following iterator movement functions return true if a new entry was - * encountered. - */ -bool art_iterator_move(art_iterator_t *iterator, bool forward); -bool art_iterator_next(art_iterator_t *iterator); -bool art_iterator_prev(art_iterator_t *iterator); - -/** - * Moves the iterator forward to a key equal to or greater than the given key. - */ -bool art_iterator_lower_bound(art_iterator_t *iterator, - const art_key_chunk_t *key); - -/** - * Insert the value and positions the iterator at the key. - */ -void art_iterator_insert(art_t *art, art_iterator_t *iterator, - const art_key_chunk_t *key, art_val_t *val); - -/** - * Erase the value pointed at by the iterator. Moves the iterator to the next - * leaf. Returns the value erased or NULL if nothing was erased. - */ -art_val_t *art_iterator_erase(art_t *art, art_iterator_t *iterator); - -#ifdef __cplusplus -} // extern "C" -} // namespace roaring -} // namespace internal -#endif - -#endif -/* end file include/roaring/art/art.h */ -/* begin file src/array_util.c */ -#include -#include -#include -#include -#include -#include - - -#if CROARING_IS_X64 -#ifndef CROARING_COMPILER_SUPPORTS_AVX512 -#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined." -#endif // CROARING_COMPILER_SUPPORTS_AVX512 -#endif - -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wuninitialized" -#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" -#endif -#ifdef __cplusplus -using namespace ::roaring::internal; -extern "C" { -namespace roaring { -namespace internal { -#endif - -extern inline int32_t binarySearch(const uint16_t *array, int32_t lenarray, - uint16_t ikey); - -#if CROARING_IS_X64 -// used by intersect_vector16 -ALIGNED(0x1000) -static const uint8_t shuffle_mask16[] = { - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, - 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 10, 11, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 10, 11, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 10, 11, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 10, 11, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 10, 11, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 10, 11, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 10, 11, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, - 0xFF, 0xFF, 0xFF, 0xFF, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 8, 9, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 8, 9, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, - 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 8, 9, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, - 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 8, 9, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 10, 11, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 10, 11, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 10, 11, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, - 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, - 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 6, 7, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, - 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 6, 7, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 10, 11, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 10, 11, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 6, 7, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, - 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 6, 7, 10, 11, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 6, 7, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7, - 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 10, 11, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 8, 9, 10, 11, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, - 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 6, 7, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 8, 9, - 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, - 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 8, 9, - 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 12, 13, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 12, 13, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 6, 7, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, - 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 6, 7, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 10, 11, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 10, 11, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 10, 11, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 10, 11, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, - 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 10, 11, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 10, 11, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 6, 7, 8, 9, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 10, 11, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, - 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 2, 3, 4, 5, - 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, - 12, 13, 14, 15}; - -/** - * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions - * Optimized by D. Lemire on May 3rd 2013 - */ -CROARING_TARGET_AVX2 -int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a, - const uint16_t *__restrict__ B, size_t s_b, - uint16_t *C) { - size_t count = 0; - size_t i_a = 0, i_b = 0; - const int vectorlength = sizeof(__m128i) / sizeof(uint16_t); - const size_t st_a = (s_a / vectorlength) * vectorlength; - const size_t st_b = (s_b / vectorlength) * vectorlength; - __m128i v_a, v_b; - if ((i_a < st_a) && (i_b < st_b)) { - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - while ((A[i_a] == 0) || (B[i_b] == 0)) { - const __m128i res_v = _mm_cmpestrm( - v_b, vectorlength, v_a, vectorlength, - _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK); - const int r = _mm_extract_epi32(res_v, 0); - __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 + r); - __m128i p = _mm_shuffle_epi8(v_a, sm16); - _mm_storeu_si128((__m128i *)&C[count], p); // can overflow - count += _mm_popcnt_u32(r); - const uint16_t a_max = A[i_a + vectorlength - 1]; - const uint16_t b_max = B[i_b + vectorlength - 1]; - if (a_max <= b_max) { - i_a += vectorlength; - if (i_a == st_a) break; - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - } - if (b_max <= a_max) { - i_b += vectorlength; - if (i_b == st_b) break; - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - } - } - if ((i_a < st_a) && (i_b < st_b)) - while (true) { - const __m128i res_v = _mm_cmpistrm( - v_b, v_a, - _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK); - const int r = _mm_extract_epi32(res_v, 0); - __m128i sm16 = - _mm_loadu_si128((const __m128i *)shuffle_mask16 + r); - __m128i p = _mm_shuffle_epi8(v_a, sm16); - _mm_storeu_si128((__m128i *)&C[count], p); // can overflow - count += _mm_popcnt_u32(r); - const uint16_t a_max = A[i_a + vectorlength - 1]; - const uint16_t b_max = B[i_b + vectorlength - 1]; - if (a_max <= b_max) { - i_a += vectorlength; - if (i_a == st_a) break; - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - } - if (b_max <= a_max) { - i_b += vectorlength; - if (i_b == st_b) break; - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - } - } - } - // intersect the tail using scalar intersection - while (i_a < s_a && i_b < s_b) { - uint16_t a = A[i_a]; - uint16_t b = B[i_b]; - if (a < b) { - i_a++; - } else if (b < a) { - i_b++; - } else { - C[count] = a; //==b; - count++; - i_a++; - i_b++; - } - } - return (int32_t)count; -} - -ALLOW_UNALIGNED -int array_container_to_uint32_array_vector16(void *vout, const uint16_t *array, - size_t cardinality, - uint32_t base) { - int outpos = 0; - uint32_t *out = (uint32_t *)vout; - size_t i = 0; - for (; i + sizeof(__m128i) / sizeof(uint16_t) <= cardinality; - i += sizeof(__m128i) / sizeof(uint16_t)) { - __m128i vinput = _mm_loadu_si128((const __m128i *)(array + i)); - __m256i voutput = _mm256_add_epi32(_mm256_cvtepu16_epi32(vinput), - _mm256_set1_epi32(base)); - _mm256_storeu_si256((__m256i *)(out + outpos), voutput); - outpos += sizeof(__m256i) / sizeof(uint32_t); - } - for (; i < cardinality; ++i) { - const uint32_t val = base + array[i]; - memcpy(out + outpos, &val, - sizeof(uint32_t)); // should be compiled as a MOV on x64 - outpos++; - } - return outpos; -} - -int32_t intersect_vector16_inplace(uint16_t *__restrict__ A, size_t s_a, - const uint16_t *__restrict__ B, size_t s_b) { - size_t count = 0; - size_t i_a = 0, i_b = 0; - const int vectorlength = sizeof(__m128i) / sizeof(uint16_t); - const size_t st_a = (s_a / vectorlength) * vectorlength; - const size_t st_b = (s_b / vectorlength) * vectorlength; - __m128i v_a, v_b; - if ((i_a < st_a) && (i_b < st_b)) { - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - __m128i tmp[2] = {_mm_setzero_si128()}; - size_t tmp_count = 0; - while ((A[i_a] == 0) || (B[i_b] == 0)) { - const __m128i res_v = _mm_cmpestrm( - v_b, vectorlength, v_a, vectorlength, - _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK); - const int r = _mm_extract_epi32(res_v, 0); - __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 + r); - __m128i p = _mm_shuffle_epi8(v_a, sm16); - _mm_storeu_si128((__m128i *)&((uint16_t *)tmp)[tmp_count], p); - tmp_count += _mm_popcnt_u32(r); - const uint16_t a_max = A[i_a + vectorlength - 1]; - const uint16_t b_max = B[i_b + vectorlength - 1]; - if (a_max <= b_max) { - _mm_storeu_si128((__m128i *)&A[count], tmp[0]); - _mm_storeu_si128(tmp, _mm_setzero_si128()); - count += tmp_count; - tmp_count = 0; - i_a += vectorlength; - if (i_a == st_a) break; - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - } - if (b_max <= a_max) { - i_b += vectorlength; - if (i_b == st_b) break; - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - } - } - if ((i_a < st_a) && (i_b < st_b)) { - while (true) { - const __m128i res_v = _mm_cmpistrm( - v_b, v_a, - _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK); - const int r = _mm_extract_epi32(res_v, 0); - __m128i sm16 = - _mm_loadu_si128((const __m128i *)shuffle_mask16 + r); - __m128i p = _mm_shuffle_epi8(v_a, sm16); - _mm_storeu_si128((__m128i *)&((uint16_t *)tmp)[tmp_count], p); - tmp_count += _mm_popcnt_u32(r); - const uint16_t a_max = A[i_a + vectorlength - 1]; - const uint16_t b_max = B[i_b + vectorlength - 1]; - if (a_max <= b_max) { - _mm_storeu_si128((__m128i *)&A[count], tmp[0]); - _mm_storeu_si128(tmp, _mm_setzero_si128()); - count += tmp_count; - tmp_count = 0; - i_a += vectorlength; - if (i_a == st_a) break; - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - } - if (b_max <= a_max) { - i_b += vectorlength; - if (i_b == st_b) break; - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - } - } - } - // tmp_count <= 8, so this does not affect efficiency so much - for (size_t i = 0; i < tmp_count; i++) { - A[count] = ((uint16_t *)tmp)[i]; - count++; - } - i_a += tmp_count; // We can at least jump pass $tmp_count elements in A - } - // intersect the tail using scalar intersection - while (i_a < s_a && i_b < s_b) { - uint16_t a = A[i_a]; - uint16_t b = B[i_b]; - if (a < b) { - i_a++; - } else if (b < a) { - i_b++; - } else { - A[count] = a; //==b; - count++; - i_a++; - i_b++; - } - } - return (int32_t)count; -} -CROARING_UNTARGET_AVX2 - -CROARING_TARGET_AVX2 -int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A, - size_t s_a, - const uint16_t *__restrict__ B, - size_t s_b) { - size_t count = 0; - size_t i_a = 0, i_b = 0; - const int vectorlength = sizeof(__m128i) / sizeof(uint16_t); - const size_t st_a = (s_a / vectorlength) * vectorlength; - const size_t st_b = (s_b / vectorlength) * vectorlength; - __m128i v_a, v_b; - if ((i_a < st_a) && (i_b < st_b)) { - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - while ((A[i_a] == 0) || (B[i_b] == 0)) { - const __m128i res_v = _mm_cmpestrm( - v_b, vectorlength, v_a, vectorlength, - _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK); - const int r = _mm_extract_epi32(res_v, 0); - count += _mm_popcnt_u32(r); - const uint16_t a_max = A[i_a + vectorlength - 1]; - const uint16_t b_max = B[i_b + vectorlength - 1]; - if (a_max <= b_max) { - i_a += vectorlength; - if (i_a == st_a) break; - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - } - if (b_max <= a_max) { - i_b += vectorlength; - if (i_b == st_b) break; - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - } - } - if ((i_a < st_a) && (i_b < st_b)) - while (true) { - const __m128i res_v = _mm_cmpistrm( - v_b, v_a, - _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK); - const int r = _mm_extract_epi32(res_v, 0); - count += _mm_popcnt_u32(r); - const uint16_t a_max = A[i_a + vectorlength - 1]; - const uint16_t b_max = B[i_b + vectorlength - 1]; - if (a_max <= b_max) { - i_a += vectorlength; - if (i_a == st_a) break; - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - } - if (b_max <= a_max) { - i_b += vectorlength; - if (i_b == st_b) break; - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - } - } - } - // intersect the tail using scalar intersection - while (i_a < s_a && i_b < s_b) { - uint16_t a = A[i_a]; - uint16_t b = B[i_b]; - if (a < b) { - i_a++; - } else if (b < a) { - i_b++; - } else { - count++; - i_a++; - i_b++; - } - } - return (int32_t)count; -} -CROARING_UNTARGET_AVX2 - -CROARING_TARGET_AVX2 -///////// -// Warning: -// This function may not be safe if A == C or B == C. -///////// -int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a, - const uint16_t *__restrict__ B, size_t s_b, - uint16_t *C) { - // we handle the degenerate case - if (s_a == 0) return 0; - if (s_b == 0) { - if (A != C) memcpy(C, A, sizeof(uint16_t) * s_a); - return (int32_t)s_a; - } - // handle the leading zeroes, it is messy but it allows us to use the fast - // _mm_cmpistrm instrinsic safely - int32_t count = 0; - if ((A[0] == 0) || (B[0] == 0)) { - if ((A[0] == 0) && (B[0] == 0)) { - A++; - s_a--; - B++; - s_b--; - } else if (A[0] == 0) { - C[count++] = 0; - A++; - s_a--; - } else { - B++; - s_b--; - } - } - // at this point, we have two non-empty arrays, made of non-zero - // increasing values. - size_t i_a = 0, i_b = 0; - const size_t vectorlength = sizeof(__m128i) / sizeof(uint16_t); - const size_t st_a = (s_a / vectorlength) * vectorlength; - const size_t st_b = (s_b / vectorlength) * vectorlength; - if ((i_a < st_a) && (i_b < st_b)) { // this is the vectorized code path - __m128i v_a, v_b; //, v_bmax; - // we load a vector from A and a vector from B - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - // we have a runningmask which indicates which values from A have been - // spotted in B, these don't get written out. - __m128i runningmask_a_found_in_b = _mm_setzero_si128(); - /**** - * start of the main vectorized loop - *****/ - while (true) { - // afoundinb will contain a mask indicate for each entry in A - // whether it is seen - // in B - const __m128i a_found_in_b = _mm_cmpistrm( - v_b, v_a, - _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK); - runningmask_a_found_in_b = - _mm_or_si128(runningmask_a_found_in_b, a_found_in_b); - // we always compare the last values of A and B - const uint16_t a_max = A[i_a + vectorlength - 1]; - const uint16_t b_max = B[i_b + vectorlength - 1]; - if (a_max <= b_max) { - // Ok. In this code path, we are ready to write our v_a - // because there is no need to read more from B, they will - // all be large values. - const int bitmask_belongs_to_difference = - _mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF; - /*** next few lines are probably expensive *****/ - __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 + - bitmask_belongs_to_difference); - __m128i p = _mm_shuffle_epi8(v_a, sm16); - _mm_storeu_si128((__m128i *)&C[count], p); // can overflow - count += _mm_popcnt_u32(bitmask_belongs_to_difference); - // we advance a - i_a += vectorlength; - if (i_a == st_a) // no more - break; - runningmask_a_found_in_b = _mm_setzero_si128(); - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - } - if (b_max <= a_max) { - // in this code path, the current v_b has become useless - i_b += vectorlength; - if (i_b == st_b) break; - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - } - } - // at this point, either we have i_a == st_a, which is the end of the - // vectorized processing, - // or we have i_b == st_b, and we are not done processing the vector... - // so we need to finish it off. - if (i_a < st_a) { // we have unfinished business... - uint16_t buffer[8]; // buffer to do a masked load - memset(buffer, 0, 8 * sizeof(uint16_t)); - memcpy(buffer, B + i_b, (s_b - i_b) * sizeof(uint16_t)); - v_b = _mm_lddqu_si128((__m128i *)buffer); - const __m128i a_found_in_b = _mm_cmpistrm( - v_b, v_a, - _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK); - runningmask_a_found_in_b = - _mm_or_si128(runningmask_a_found_in_b, a_found_in_b); - const int bitmask_belongs_to_difference = - _mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF; - __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 + - bitmask_belongs_to_difference); - __m128i p = _mm_shuffle_epi8(v_a, sm16); - _mm_storeu_si128((__m128i *)&C[count], p); // can overflow - count += _mm_popcnt_u32(bitmask_belongs_to_difference); - i_a += vectorlength; - } - // at this point we should have i_a == st_a and i_b == st_b - } - // do the tail using scalar code - while (i_a < s_a && i_b < s_b) { - uint16_t a = A[i_a]; - uint16_t b = B[i_b]; - if (b < a) { - i_b++; - } else if (a < b) { - C[count] = a; - count++; - i_a++; - } else { //== - i_a++; - i_b++; - } - } - if (i_a < s_a) { - if (C == A) { - assert((size_t)count <= i_a); - if ((size_t)count < i_a) { - memmove(C + count, A + i_a, sizeof(uint16_t) * (s_a - i_a)); - } - } else { - for (size_t i = 0; i < (s_a - i_a); i++) { - C[count + i] = A[i + i_a]; - } - } - count += (int32_t)(s_a - i_a); - } - return count; -} -CROARING_UNTARGET_AVX2 -#endif // CROARING_IS_X64 - -/** - * Branchless binary search going after 4 values at once. - * Assumes that array is sorted. - * You have that array[*index1] >= target1, array[*index12] >= target2, ... - * except when *index1 = n, in which case you know that all values in array are - * smaller than target1, and so forth. - * It has logarithmic complexity. - */ -static void binarySearch4(const uint16_t *array, int32_t n, uint16_t target1, - uint16_t target2, uint16_t target3, uint16_t target4, - int32_t *index1, int32_t *index2, int32_t *index3, - int32_t *index4) { - const uint16_t *base1 = array; - const uint16_t *base2 = array; - const uint16_t *base3 = array; - const uint16_t *base4 = array; - if (n == 0) return; - while (n > 1) { - int32_t half = n >> 1; - base1 = (base1[half] < target1) ? &base1[half] : base1; - base2 = (base2[half] < target2) ? &base2[half] : base2; - base3 = (base3[half] < target3) ? &base3[half] : base3; - base4 = (base4[half] < target4) ? &base4[half] : base4; - n -= half; - } - *index1 = (int32_t)((*base1 < target1) + base1 - array); - *index2 = (int32_t)((*base2 < target2) + base2 - array); - *index3 = (int32_t)((*base3 < target3) + base3 - array); - *index4 = (int32_t)((*base4 < target4) + base4 - array); -} - -/** - * Branchless binary search going after 2 values at once. - * Assumes that array is sorted. - * You have that array[*index1] >= target1, array[*index12] >= target2. - * except when *index1 = n, in which case you know that all values in array are - * smaller than target1, and so forth. - * It has logarithmic complexity. - */ -static void binarySearch2(const uint16_t *array, int32_t n, uint16_t target1, - uint16_t target2, int32_t *index1, int32_t *index2) { - const uint16_t *base1 = array; - const uint16_t *base2 = array; - if (n == 0) return; - while (n > 1) { - int32_t half = n >> 1; - base1 = (base1[half] < target1) ? &base1[half] : base1; - base2 = (base2[half] < target2) ? &base2[half] : base2; - n -= half; - } - *index1 = (int32_t)((*base1 < target1) + base1 - array); - *index2 = (int32_t)((*base2 < target2) + base2 - array); -} - -/* Computes the intersection between one small and one large set of uint16_t. - * Stores the result into buffer and return the number of elements. - * Processes the small set in blocks of 4 values calling binarySearch4 - * and binarySearch2. This approach can be slightly superior to a conventional - * galloping search in some instances. - */ -int32_t intersect_skewed_uint16(const uint16_t *small, size_t size_s, - const uint16_t *large, size_t size_l, - uint16_t *buffer) { - size_t pos = 0, idx_l = 0, idx_s = 0; - - if (0 == size_s) { - return 0; - } - int32_t index1 = 0, index2 = 0, index3 = 0, index4 = 0; - while ((idx_s + 4 <= size_s) && (idx_l < size_l)) { - uint16_t target1 = small[idx_s]; - uint16_t target2 = small[idx_s + 1]; - uint16_t target3 = small[idx_s + 2]; - uint16_t target4 = small[idx_s + 3]; - binarySearch4(large + idx_l, (int32_t)(size_l - idx_l), target1, - target2, target3, target4, &index1, &index2, &index3, - &index4); - if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) { - buffer[pos++] = target1; - } - if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) { - buffer[pos++] = target2; - } - if ((index3 + idx_l < size_l) && (large[idx_l + index3] == target3)) { - buffer[pos++] = target3; - } - if ((index4 + idx_l < size_l) && (large[idx_l + index4] == target4)) { - buffer[pos++] = target4; - } - idx_s += 4; - idx_l += index4; - } - if ((idx_s + 2 <= size_s) && (idx_l < size_l)) { - uint16_t target1 = small[idx_s]; - uint16_t target2 = small[idx_s + 1]; - binarySearch2(large + idx_l, (int32_t)(size_l - idx_l), target1, - target2, &index1, &index2); - if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) { - buffer[pos++] = target1; - } - if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) { - buffer[pos++] = target2; - } - idx_s += 2; - idx_l += index2; - } - if ((idx_s < size_s) && (idx_l < size_l)) { - uint16_t val_s = small[idx_s]; - int32_t index = - binarySearch(large + idx_l, (int32_t)(size_l - idx_l), val_s); - if (index >= 0) buffer[pos++] = val_s; - } - return (int32_t)pos; -} - -// TODO: this could be accelerated, possibly, by using binarySearch4 as above. -int32_t intersect_skewed_uint16_cardinality(const uint16_t *small, - size_t size_s, - const uint16_t *large, - size_t size_l) { - size_t pos = 0, idx_l = 0, idx_s = 0; - - if (0 == size_s) { - return 0; - } - - uint16_t val_l = large[idx_l], val_s = small[idx_s]; - - while (true) { - if (val_l < val_s) { - idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s); - if (idx_l == size_l) break; - val_l = large[idx_l]; - } else if (val_s < val_l) { - idx_s++; - if (idx_s == size_s) break; - val_s = small[idx_s]; - } else { - pos++; - idx_s++; - if (idx_s == size_s) break; - val_s = small[idx_s]; - idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s); - if (idx_l == size_l) break; - val_l = large[idx_l]; - } - } - - return (int32_t)pos; -} - -bool intersect_skewed_uint16_nonempty(const uint16_t *small, size_t size_s, - const uint16_t *large, size_t size_l) { - size_t idx_l = 0, idx_s = 0; - - if (0 == size_s) { - return false; - } - - uint16_t val_l = large[idx_l], val_s = small[idx_s]; - - while (true) { - if (val_l < val_s) { - idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s); - if (idx_l == size_l) break; - val_l = large[idx_l]; - } else if (val_s < val_l) { - idx_s++; - if (idx_s == size_s) break; - val_s = small[idx_s]; - } else { - return true; - } - } - - return false; -} - -/** - * Generic intersection function. - */ -int32_t intersect_uint16(const uint16_t *A, const size_t lenA, - const uint16_t *B, const size_t lenB, uint16_t *out) { - const uint16_t *initout = out; - if (lenA == 0 || lenB == 0) return 0; - const uint16_t *endA = A + lenA; - const uint16_t *endB = B + lenB; - - while (1) { - while (*A < *B) { - SKIP_FIRST_COMPARE: - if (++A == endA) return (int32_t)(out - initout); - } - while (*A > *B) { - if (++B == endB) return (int32_t)(out - initout); - } - if (*A == *B) { - *out++ = *A; - if (++A == endA || ++B == endB) return (int32_t)(out - initout); - } else { - goto SKIP_FIRST_COMPARE; - } - } - // return (int32_t)(out - initout); // NOTREACHED -} - -int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA, - const uint16_t *B, const size_t lenB) { - int32_t answer = 0; - if (lenA == 0 || lenB == 0) return 0; - const uint16_t *endA = A + lenA; - const uint16_t *endB = B + lenB; - - while (1) { - while (*A < *B) { - SKIP_FIRST_COMPARE: - if (++A == endA) return answer; - } - while (*A > *B) { - if (++B == endB) return answer; - } - if (*A == *B) { - ++answer; - if (++A == endA || ++B == endB) return answer; - } else { - goto SKIP_FIRST_COMPARE; - } - } - // return answer; // NOTREACHED -} - -bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA, - const uint16_t *B, const size_t lenB) { - if (lenA == 0 || lenB == 0) return 0; - const uint16_t *endA = A + lenA; - const uint16_t *endB = B + lenB; - - while (1) { - while (*A < *B) { - SKIP_FIRST_COMPARE: - if (++A == endA) return false; - } - while (*A > *B) { - if (++B == endB) return false; - } - if (*A == *B) { - return true; - } else { - goto SKIP_FIRST_COMPARE; - } - } - return false; // NOTREACHED -} - -/** - * Generic intersection function. - */ -size_t intersection_uint32(const uint32_t *A, const size_t lenA, - const uint32_t *B, const size_t lenB, - uint32_t *out) { - const uint32_t *initout = out; - if (lenA == 0 || lenB == 0) return 0; - const uint32_t *endA = A + lenA; - const uint32_t *endB = B + lenB; - - while (1) { - while (*A < *B) { - SKIP_FIRST_COMPARE: - if (++A == endA) return (out - initout); - } - while (*A > *B) { - if (++B == endB) return (out - initout); - } - if (*A == *B) { - *out++ = *A; - if (++A == endA || ++B == endB) return (out - initout); - } else { - goto SKIP_FIRST_COMPARE; - } - } - // return (out - initout); // NOTREACHED -} - -size_t intersection_uint32_card(const uint32_t *A, const size_t lenA, - const uint32_t *B, const size_t lenB) { - if (lenA == 0 || lenB == 0) return 0; - size_t card = 0; - const uint32_t *endA = A + lenA; - const uint32_t *endB = B + lenB; - - while (1) { - while (*A < *B) { - SKIP_FIRST_COMPARE: - if (++A == endA) return card; - } - while (*A > *B) { - if (++B == endB) return card; - } - if (*A == *B) { - card++; - if (++A == endA || ++B == endB) return card; - } else { - goto SKIP_FIRST_COMPARE; - } - } - // return card; // NOTREACHED -} - -// can one vectorize the computation of the union? (Update: Yes! See -// union_vector16). - -size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2, - size_t size_2, uint16_t *buffer) { - size_t pos = 0, idx_1 = 0, idx_2 = 0; - - if (0 == size_2) { - memmove(buffer, set_1, size_1 * sizeof(uint16_t)); - return size_1; - } - if (0 == size_1) { - memmove(buffer, set_2, size_2 * sizeof(uint16_t)); - return size_2; - } - - uint16_t val_1 = set_1[idx_1], val_2 = set_2[idx_2]; - - while (true) { - if (val_1 < val_2) { - buffer[pos++] = val_1; - ++idx_1; - if (idx_1 >= size_1) break; - val_1 = set_1[idx_1]; - } else if (val_2 < val_1) { - buffer[pos++] = val_2; - ++idx_2; - if (idx_2 >= size_2) break; - val_2 = set_2[idx_2]; - } else { - buffer[pos++] = val_1; - ++idx_1; - ++idx_2; - if (idx_1 >= size_1 || idx_2 >= size_2) break; - val_1 = set_1[idx_1]; - val_2 = set_2[idx_2]; - } - } - - if (idx_1 < size_1) { - const size_t n_elems = size_1 - idx_1; - memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint16_t)); - pos += n_elems; - } else if (idx_2 < size_2) { - const size_t n_elems = size_2 - idx_2; - memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint16_t)); - pos += n_elems; - } - - return pos; -} - -int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2, - int length2, uint16_t *a_out) { - int out_card = 0; - int k1 = 0, k2 = 0; - if (length1 == 0) return 0; - if (length2 == 0) { - if (a1 != a_out) memcpy(a_out, a1, sizeof(uint16_t) * length1); - return length1; - } - uint16_t s1 = a1[k1]; - uint16_t s2 = a2[k2]; - while (true) { - if (s1 < s2) { - a_out[out_card++] = s1; - ++k1; - if (k1 >= length1) { - break; - } - s1 = a1[k1]; - } else if (s1 == s2) { - ++k1; - ++k2; - if (k1 >= length1) { - break; - } - if (k2 >= length2) { - memmove(a_out + out_card, a1 + k1, - sizeof(uint16_t) * (length1 - k1)); - return out_card + length1 - k1; - } - s1 = a1[k1]; - s2 = a2[k2]; - } else { // if (val1>val2) - ++k2; - if (k2 >= length2) { - memmove(a_out + out_card, a1 + k1, - sizeof(uint16_t) * (length1 - k1)); - return out_card + length1 - k1; - } - s2 = a2[k2]; - } - } - return out_card; -} - -int32_t xor_uint16(const uint16_t *array_1, int32_t card_1, - const uint16_t *array_2, int32_t card_2, uint16_t *out) { - int32_t pos1 = 0, pos2 = 0, pos_out = 0; - while (pos1 < card_1 && pos2 < card_2) { - const uint16_t v1 = array_1[pos1]; - const uint16_t v2 = array_2[pos2]; - if (v1 == v2) { - ++pos1; - ++pos2; - continue; - } - if (v1 < v2) { - out[pos_out++] = v1; - ++pos1; - } else { - out[pos_out++] = v2; - ++pos2; - } - } - if (pos1 < card_1) { - const size_t n_elems = card_1 - pos1; - memcpy(out + pos_out, array_1 + pos1, n_elems * sizeof(uint16_t)); - pos_out += (int32_t)n_elems; - } else if (pos2 < card_2) { - const size_t n_elems = card_2 - pos2; - memcpy(out + pos_out, array_2 + pos2, n_elems * sizeof(uint16_t)); - pos_out += (int32_t)n_elems; - } - return pos_out; -} - -#if CROARING_IS_X64 - -/*** - * start of the SIMD 16-bit union code - * - */ -CROARING_TARGET_AVX2 - -// Assuming that vInput1 and vInput2 are sorted, produces a sorted output going -// from vecMin all the way to vecMax -// developed originally for merge sort using SIMD instructions. -// Standard merge. See, e.g., Inoue and Taura, SIMD- and Cache-Friendly -// Algorithm for Sorting an Array of Structures -static inline void sse_merge(const __m128i *vInput1, - const __m128i *vInput2, // input 1 & 2 - __m128i *vecMin, __m128i *vecMax) { // output - __m128i vecTmp; - vecTmp = _mm_min_epu16(*vInput1, *vInput2); - *vecMax = _mm_max_epu16(*vInput1, *vInput2); - vecTmp = _mm_alignr_epi8(vecTmp, vecTmp, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - *vecMin = _mm_alignr_epi8(*vecMin, *vecMin, 2); -} -CROARING_UNTARGET_AVX2 -// used by store_unique, generated by simdunion.py -static uint8_t uniqshuf[] = { - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, - 0xc, 0xd, 0xe, 0xf, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, - 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, - 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, - 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, - 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, - 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, - 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, - 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, - 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, - 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, - 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, - 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, - 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, - 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, - 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, - 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, - 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, - 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, - 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xa, 0xb, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, - 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xa, 0xb, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xa, 0xb, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, - 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, - 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, - 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, - 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, - 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, - 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, - 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, - 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, - 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF}; -CROARING_TARGET_AVX2 -// write vector new, while omitting repeated values assuming that previously -// written vector was "old" -static inline int store_unique(__m128i old, __m128i newval, uint16_t *output) { - __m128i vecTmp = _mm_alignr_epi8(newval, old, 16 - 2); - // lots of high latency instructions follow (optimize?) - int M = _mm_movemask_epi8( - _mm_packs_epi16(_mm_cmpeq_epi16(vecTmp, newval), _mm_setzero_si128())); - int numberofnewvalues = 8 - _mm_popcnt_u32(M); - __m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M); - __m128i val = _mm_shuffle_epi8(newval, key); - _mm_storeu_si128((__m128i *)output, val); - return numberofnewvalues; -} -CROARING_UNTARGET_AVX2 - -// working in-place, this function overwrites the repeated values -// could be avoided? -static inline uint32_t unique(uint16_t *out, uint32_t len) { - uint32_t pos = 1; - for (uint32_t i = 1; i < len; ++i) { - if (out[i] != out[i - 1]) { - out[pos++] = out[i]; - } - } - return pos; -} - -// use with qsort, could be avoided -static int uint16_compare(const void *a, const void *b) { - return (*(uint16_t *)a - *(uint16_t *)b); -} - -CROARING_TARGET_AVX2 -// a one-pass SSE union algorithm -// This function may not be safe if array1 == output or array2 == output. -uint32_t union_vector16(const uint16_t *__restrict__ array1, uint32_t length1, - const uint16_t *__restrict__ array2, uint32_t length2, - uint16_t *__restrict__ output) { - if ((length1 < 8) || (length2 < 8)) { - return (uint32_t)union_uint16(array1, length1, array2, length2, output); - } - __m128i vA, vB, V, vecMin, vecMax; - __m128i laststore; - uint16_t *initoutput = output; - uint32_t len1 = length1 / 8; - uint32_t len2 = length2 / 8; - uint32_t pos1 = 0; - uint32_t pos2 = 0; - // we start the machine - vA = _mm_lddqu_si128((const __m128i *)array1 + pos1); - pos1++; - vB = _mm_lddqu_si128((const __m128i *)array2 + pos2); - pos2++; - sse_merge(&vA, &vB, &vecMin, &vecMax); - laststore = _mm_set1_epi16(-1); - output += store_unique(laststore, vecMin, output); - laststore = vecMin; - if ((pos1 < len1) && (pos2 < len2)) { - uint16_t curA, curB; - curA = array1[8 * pos1]; - curB = array2[8 * pos2]; - while (true) { - if (curA <= curB) { - V = _mm_lddqu_si128((const __m128i *)array1 + pos1); - pos1++; - if (pos1 < len1) { - curA = array1[8 * pos1]; - } else { - break; - } - } else { - V = _mm_lddqu_si128((const __m128i *)array2 + pos2); - pos2++; - if (pos2 < len2) { - curB = array2[8 * pos2]; - } else { - break; - } - } - sse_merge(&V, &vecMax, &vecMin, &vecMax); - output += store_unique(laststore, vecMin, output); - laststore = vecMin; - } - sse_merge(&V, &vecMax, &vecMin, &vecMax); - output += store_unique(laststore, vecMin, output); - laststore = vecMin; - } - // we finish the rest off using a scalar algorithm - // could be improved? - // - // copy the small end on a tmp buffer - uint32_t len = (uint32_t)(output - initoutput); - uint16_t buffer[16]; - uint32_t leftoversize = store_unique(laststore, vecMax, buffer); - if (pos1 == len1) { - memcpy(buffer + leftoversize, array1 + 8 * pos1, - (length1 - 8 * len1) * sizeof(uint16_t)); - leftoversize += length1 - 8 * len1; - qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare); - - leftoversize = unique(buffer, leftoversize); - len += (uint32_t)union_uint16(buffer, leftoversize, array2 + 8 * pos2, - length2 - 8 * pos2, output); - } else { - memcpy(buffer + leftoversize, array2 + 8 * pos2, - (length2 - 8 * len2) * sizeof(uint16_t)); - leftoversize += length2 - 8 * len2; - qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare); - leftoversize = unique(buffer, leftoversize); - len += (uint32_t)union_uint16(buffer, leftoversize, array1 + 8 * pos1, - length1 - 8 * pos1, output); - } - return len; -} -CROARING_UNTARGET_AVX2 - -/** - * End of the SIMD 16-bit union code - * - */ - -/** - * Start of SIMD 16-bit XOR code - */ - -CROARING_TARGET_AVX2 -// write vector new, while omitting repeated values assuming that previously -// written vector was "old" -static inline int store_unique_xor(__m128i old, __m128i newval, - uint16_t *output) { - __m128i vecTmp1 = _mm_alignr_epi8(newval, old, 16 - 4); - __m128i vecTmp2 = _mm_alignr_epi8(newval, old, 16 - 2); - __m128i equalleft = _mm_cmpeq_epi16(vecTmp2, vecTmp1); - __m128i equalright = _mm_cmpeq_epi16(vecTmp2, newval); - __m128i equalleftoright = _mm_or_si128(equalleft, equalright); - int M = _mm_movemask_epi8( - _mm_packs_epi16(equalleftoright, _mm_setzero_si128())); - int numberofnewvalues = 8 - _mm_popcnt_u32(M); - __m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M); - __m128i val = _mm_shuffle_epi8(vecTmp2, key); - _mm_storeu_si128((__m128i *)output, val); - return numberofnewvalues; -} -CROARING_UNTARGET_AVX2 - -// working in-place, this function overwrites the repeated values -// could be avoided? Warning: assumes len > 0 -static inline uint32_t unique_xor(uint16_t *out, uint32_t len) { - uint32_t pos = 1; - for (uint32_t i = 1; i < len; ++i) { - if (out[i] != out[i - 1]) { - out[pos++] = out[i]; - } else - pos--; // if it is identical to previous, delete it - } - return pos; -} -CROARING_TARGET_AVX2 -// a one-pass SSE xor algorithm -uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1, - const uint16_t *__restrict__ array2, uint32_t length2, - uint16_t *__restrict__ output) { - if ((length1 < 8) || (length2 < 8)) { - return xor_uint16(array1, length1, array2, length2, output); - } - __m128i vA, vB, V, vecMin, vecMax; - __m128i laststore; - uint16_t *initoutput = output; - uint32_t len1 = length1 / 8; - uint32_t len2 = length2 / 8; - uint32_t pos1 = 0; - uint32_t pos2 = 0; - // we start the machine - vA = _mm_lddqu_si128((const __m128i *)array1 + pos1); - pos1++; - vB = _mm_lddqu_si128((const __m128i *)array2 + pos2); - pos2++; - sse_merge(&vA, &vB, &vecMin, &vecMax); - laststore = _mm_set1_epi16(-1); - uint16_t buffer[17]; - output += store_unique_xor(laststore, vecMin, output); - - laststore = vecMin; - if ((pos1 < len1) && (pos2 < len2)) { - uint16_t curA, curB; - curA = array1[8 * pos1]; - curB = array2[8 * pos2]; - while (true) { - if (curA <= curB) { - V = _mm_lddqu_si128((const __m128i *)array1 + pos1); - pos1++; - if (pos1 < len1) { - curA = array1[8 * pos1]; - } else { - break; - } - } else { - V = _mm_lddqu_si128((const __m128i *)array2 + pos2); - pos2++; - if (pos2 < len2) { - curB = array2[8 * pos2]; - } else { - break; - } - } - sse_merge(&V, &vecMax, &vecMin, &vecMax); - // conditionally stores the last value of laststore as well as all - // but the - // last value of vecMin - output += store_unique_xor(laststore, vecMin, output); - laststore = vecMin; - } - sse_merge(&V, &vecMax, &vecMin, &vecMax); - // conditionally stores the last value of laststore as well as all but - // the - // last value of vecMin - output += store_unique_xor(laststore, vecMin, output); - laststore = vecMin; - } - uint32_t len = (uint32_t)(output - initoutput); - - // we finish the rest off using a scalar algorithm - // could be improved? - // conditionally stores the last value of laststore as well as all but the - // last value of vecMax, - // we store to "buffer" - int leftoversize = store_unique_xor(laststore, vecMax, buffer); - uint16_t vec7 = (uint16_t)_mm_extract_epi16(vecMax, 7); - uint16_t vec6 = (uint16_t)_mm_extract_epi16(vecMax, 6); - if (vec7 != vec6) buffer[leftoversize++] = vec7; - if (pos1 == len1) { - memcpy(buffer + leftoversize, array1 + 8 * pos1, - (length1 - 8 * len1) * sizeof(uint16_t)); - leftoversize += length1 - 8 * len1; - if (leftoversize == 0) { // trivial case - memcpy(output, array2 + 8 * pos2, - (length2 - 8 * pos2) * sizeof(uint16_t)); - len += (length2 - 8 * pos2); - } else { - qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare); - leftoversize = unique_xor(buffer, leftoversize); - len += xor_uint16(buffer, leftoversize, array2 + 8 * pos2, - length2 - 8 * pos2, output); - } - } else { - memcpy(buffer + leftoversize, array2 + 8 * pos2, - (length2 - 8 * len2) * sizeof(uint16_t)); - leftoversize += length2 - 8 * len2; - if (leftoversize == 0) { // trivial case - memcpy(output, array1 + 8 * pos1, - (length1 - 8 * pos1) * sizeof(uint16_t)); - len += (length1 - 8 * pos1); - } else { - qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare); - leftoversize = unique_xor(buffer, leftoversize); - len += xor_uint16(buffer, leftoversize, array1 + 8 * pos1, - length1 - 8 * pos1, output); - } - } - return len; -} -CROARING_UNTARGET_AVX2 -/** - * End of SIMD 16-bit XOR code - */ - -#endif // CROARING_IS_X64 - -size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t *set_2, - size_t size_2, uint32_t *buffer) { - size_t pos = 0, idx_1 = 0, idx_2 = 0; - - if (0 == size_2) { - memmove(buffer, set_1, size_1 * sizeof(uint32_t)); - return size_1; - } - if (0 == size_1) { - memmove(buffer, set_2, size_2 * sizeof(uint32_t)); - return size_2; - } - - uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2]; - - while (true) { - if (val_1 < val_2) { - buffer[pos++] = val_1; - ++idx_1; - if (idx_1 >= size_1) break; - val_1 = set_1[idx_1]; - } else if (val_2 < val_1) { - buffer[pos++] = val_2; - ++idx_2; - if (idx_2 >= size_2) break; - val_2 = set_2[idx_2]; - } else { - buffer[pos++] = val_1; - ++idx_1; - ++idx_2; - if (idx_1 >= size_1 || idx_2 >= size_2) break; - val_1 = set_1[idx_1]; - val_2 = set_2[idx_2]; - } - } - - if (idx_1 < size_1) { - const size_t n_elems = size_1 - idx_1; - memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint32_t)); - pos += n_elems; - } else if (idx_2 < size_2) { - const size_t n_elems = size_2 - idx_2; - memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint32_t)); - pos += n_elems; - } - - return pos; -} - -size_t union_uint32_card(const uint32_t *set_1, size_t size_1, - const uint32_t *set_2, size_t size_2) { - size_t pos = 0, idx_1 = 0, idx_2 = 0; - - if (0 == size_2) { - return size_1; - } - if (0 == size_1) { - return size_2; - } - - uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2]; - - while (true) { - if (val_1 < val_2) { - ++idx_1; - ++pos; - if (idx_1 >= size_1) break; - val_1 = set_1[idx_1]; - } else if (val_2 < val_1) { - ++idx_2; - ++pos; - if (idx_2 >= size_2) break; - val_2 = set_2[idx_2]; - } else { - ++idx_1; - ++idx_2; - ++pos; - if (idx_1 >= size_1 || idx_2 >= size_2) break; - val_1 = set_1[idx_1]; - val_2 = set_2[idx_2]; - } - } - - if (idx_1 < size_1) { - const size_t n_elems = size_1 - idx_1; - pos += n_elems; - } else if (idx_2 < size_2) { - const size_t n_elems = size_2 - idx_2; - pos += n_elems; - } - return pos; -} - -size_t fast_union_uint16(const uint16_t *set_1, size_t size_1, - const uint16_t *set_2, size_t size_2, - uint16_t *buffer) { -#if CROARING_IS_X64 - if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) { - // compute union with smallest array first - if (size_1 < size_2) { - return union_vector16(set_1, (uint32_t)size_1, set_2, - (uint32_t)size_2, buffer); - } else { - return union_vector16(set_2, (uint32_t)size_2, set_1, - (uint32_t)size_1, buffer); - } - } else { - // compute union with smallest array first - if (size_1 < size_2) { - return union_uint16(set_1, size_1, set_2, size_2, buffer); - } else { - return union_uint16(set_2, size_2, set_1, size_1, buffer); - } - } -#else - // compute union with smallest array first - if (size_1 < size_2) { - return union_uint16(set_1, size_1, set_2, size_2, buffer); - } else { - return union_uint16(set_2, size_2, set_1, size_1, buffer); - } -#endif -} -#if CROARING_IS_X64 -#if CROARING_COMPILER_SUPPORTS_AVX512 -CROARING_TARGET_AVX512 -static inline bool _avx512_memequals(const void *s1, const void *s2, size_t n) { - const uint8_t *ptr1 = (const uint8_t *)s1; - const uint8_t *ptr2 = (const uint8_t *)s2; - const uint8_t *end1 = ptr1 + n; - const uint8_t *end8 = ptr1 + ((n >> 3) << 3); - const uint8_t *end32 = ptr1 + ((n >> 5) << 5); - const uint8_t *end64 = ptr1 + ((n >> 6) << 6); - - while (ptr1 < end64) { - __m512i r1 = _mm512_loadu_si512((const __m512i *)ptr1); - __m512i r2 = _mm512_loadu_si512((const __m512i *)ptr2); - - uint64_t mask = _mm512_cmpeq_epi8_mask(r1, r2); - - if (mask != UINT64_MAX) { - return false; - } - - ptr1 += 64; - ptr2 += 64; - } - - while (ptr1 < end32) { - __m256i r1 = _mm256_loadu_si256((const __m256i *)ptr1); - __m256i r2 = _mm256_loadu_si256((const __m256i *)ptr2); - int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2)); - if ((uint32_t)mask != UINT32_MAX) { - return false; - } - ptr1 += 32; - ptr2 += 32; - } - - while (ptr1 < end8) { - uint64_t v1, v2; - memcpy(&v1, ptr1, sizeof(uint64_t)); - memcpy(&v2, ptr2, sizeof(uint64_t)); - if (v1 != v2) { - return false; - } - ptr1 += 8; - ptr2 += 8; - } - - while (ptr1 < end1) { - if (*ptr1 != *ptr2) { - return false; - } - ptr1++; - ptr2++; - } - - return true; -} -CROARING_UNTARGET_AVX512 -#endif // CROARING_COMPILER_SUPPORTS_AVX512 - -CROARING_TARGET_AVX2 -static inline bool _avx2_memequals(const void *s1, const void *s2, size_t n) { - const uint8_t *ptr1 = (const uint8_t *)s1; - const uint8_t *ptr2 = (const uint8_t *)s2; - const uint8_t *end1 = ptr1 + n; - const uint8_t *end8 = ptr1 + n / 8 * 8; - const uint8_t *end32 = ptr1 + n / 32 * 32; - - while (ptr1 < end32) { - __m256i r1 = _mm256_loadu_si256((const __m256i *)ptr1); - __m256i r2 = _mm256_loadu_si256((const __m256i *)ptr2); - int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2)); - if ((uint32_t)mask != UINT32_MAX) { - return false; - } - ptr1 += 32; - ptr2 += 32; - } - - while (ptr1 < end8) { - uint64_t v1, v2; - memcpy(&v1, ptr1, sizeof(uint64_t)); - memcpy(&v2, ptr2, sizeof(uint64_t)); - if (v1 != v2) { - return false; - } - ptr1 += 8; - ptr2 += 8; - } - - while (ptr1 < end1) { - if (*ptr1 != *ptr2) { - return false; - } - ptr1++; - ptr2++; - } - - return true; -} -CROARING_UNTARGET_AVX2 -#endif - -bool memequals(const void *s1, const void *s2, size_t n) { - if (n == 0) { - return true; - } -#if CROARING_IS_X64 - int support = croaring_hardware_support(); -#if CROARING_COMPILER_SUPPORTS_AVX512 - if (support & ROARING_SUPPORTS_AVX512) { - return _avx512_memequals(s1, s2, n); - } else -#endif // CROARING_COMPILER_SUPPORTS_AVX512 - if (support & ROARING_SUPPORTS_AVX2) { - return _avx2_memequals(s1, s2, n); - } else { - return memcmp(s1, s2, n) == 0; - } -#else - return memcmp(s1, s2, n) == 0; -#endif -} - -#if CROARING_IS_X64 -#if CROARING_COMPILER_SUPPORTS_AVX512 -CROARING_TARGET_AVX512 -ALLOW_UNALIGNED -int avx512_array_container_to_uint32_array(void *vout, const uint16_t *array, - size_t cardinality, uint32_t base) { - int outpos = 0; - uint32_t *out = (uint32_t *)vout; - size_t i = 0; - for (; i + sizeof(__m256i) / sizeof(uint16_t) <= cardinality; - i += sizeof(__m256i) / sizeof(uint16_t)) { - __m256i vinput = _mm256_loadu_si256((const __m256i *)(array + i)); - __m512i voutput = _mm512_add_epi32(_mm512_cvtepu16_epi32(vinput), - _mm512_set1_epi32(base)); - _mm512_storeu_si512((__m512i *)(out + outpos), voutput); - outpos += sizeof(__m512i) / sizeof(uint32_t); - } - for (; i < cardinality; ++i) { - const uint32_t val = base + array[i]; - memcpy(out + outpos, &val, - sizeof(uint32_t)); // should be compiled as a MOV on x64 - outpos++; - } - return outpos; -} -CROARING_UNTARGET_AVX512 -#endif // #if CROARING_COMPILER_SUPPORTS_AVX512 -#endif // #if CROARING_IS_X64 - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC diagnostic pop -#endif/* end file src/array_util.c */ -/* begin file src/art/art.c */ -#include -#include -#include - - -#define CROARING_ART_NODE4_TYPE 0 -#define CROARING_ART_NODE16_TYPE 1 -#define CROARING_ART_NODE48_TYPE 2 -#define CROARING_ART_NODE256_TYPE 3 -#define CROARING_ART_NUM_TYPES 4 - -// Node48 placeholder value to indicate no child is present at this key index. -#define CROARING_ART_NODE48_EMPTY_VAL 48 - -// We use the least significant bit of node pointers to indicate whether a node -// is a leaf or an inner node. This is never surfaced to the user. -// -// Using pointer tagging to indicate leaves not only saves a bit of memory by -// sparing the typecode, but also allows us to use an intrusive leaf struct. -// Using an intrusive leaf struct leaves leaf allocation up to the user. Upon -// deallocation of the ART, we know not to free the leaves without having to -// dereference the leaf pointers. -// -// All internal operations on leaves should use CROARING_CAST_LEAF before using -// the leaf. The only places that use CROARING_SET_LEAF are locations where a -// field is directly assigned to a leaf pointer. After using CROARING_SET_LEAF, -// the leaf should be treated as a node of unknown type. -#define CROARING_IS_LEAF(p) (((uintptr_t)(p) & 1)) -#define CROARING_SET_LEAF(p) ((art_node_t *)((uintptr_t)(p) | 1)) -#define CROARING_CAST_LEAF(p) ((art_leaf_t *)((void *)((uintptr_t)(p) & ~1))) - -#define CROARING_NODE48_AVAILABLE_CHILDREN_MASK ((UINT64_C(1) << 48) - 1) - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -typedef uint8_t art_typecode_t; - -// Aliasing with a "leaf" naming so that its purpose is clearer in the context -// of the trie internals. -typedef art_val_t art_leaf_t; - -typedef struct art_internal_validate_s { - const char **reason; - art_validate_cb_t validate_cb; - - int depth; - art_key_chunk_t current_key[ART_KEY_BYTES]; -} art_internal_validate_t; - -// Set the reason message, and return false for convenience. -static inline bool art_validate_fail(const art_internal_validate_t *validate, - const char *msg) { - *validate->reason = msg; - return false; -} - -// Inner node, with prefix. -// -// We use a fixed-length array as a pointer would be larger than the array. -typedef struct art_inner_node_s { - art_typecode_t typecode; - uint8_t prefix_size; - uint8_t prefix[ART_KEY_BYTES - 1]; -} art_inner_node_t; - -// Inner node types. - -// Node4: key[i] corresponds with children[i]. Keys are sorted. -typedef struct art_node4_s { - art_inner_node_t base; - uint8_t count; - uint8_t keys[4]; - art_node_t *children[4]; -} art_node4_t; - -// Node16: key[i] corresponds with children[i]. Keys are sorted. -typedef struct art_node16_s { - art_inner_node_t base; - uint8_t count; - uint8_t keys[16]; - art_node_t *children[16]; -} art_node16_t; - -// Node48: key[i] corresponds with children[key[i]] if key[i] != -// CROARING_ART_NODE48_EMPTY_VAL. Keys are naturally sorted due to direct -// indexing. -typedef struct art_node48_s { - art_inner_node_t base; - uint8_t count; - // Bitset where the ith bit is set if children[i] is available - // Because there are at most 48 children, only the bottom 48 bits are used. - uint64_t available_children; - uint8_t keys[256]; - art_node_t *children[48]; -} art_node48_t; - -// Node256: children[i] is directly indexed by key chunk. A child is present if -// children[i] != NULL. -typedef struct art_node256_s { - art_inner_node_t base; - uint16_t count; - art_node_t *children[256]; -} art_node256_t; - -// Helper struct to refer to a child within a node at a specific index. -typedef struct art_indexed_child_s { - art_node_t *child; - uint8_t index; - art_key_chunk_t key_chunk; -} art_indexed_child_t; - -static inline bool art_is_leaf(const art_node_t *node) { - return CROARING_IS_LEAF(node); -} - -static void art_leaf_populate(art_leaf_t *leaf, const art_key_chunk_t key[]) { - memcpy(leaf->key, key, ART_KEY_BYTES); -} - -static inline uint8_t art_get_type(const art_inner_node_t *node) { - return node->typecode; -} - -static inline void art_init_inner_node(art_inner_node_t *node, - art_typecode_t typecode, - const art_key_chunk_t prefix[], - uint8_t prefix_size) { - node->typecode = typecode; - node->prefix_size = prefix_size; - memcpy(node->prefix, prefix, prefix_size * sizeof(art_key_chunk_t)); -} - -static void art_free_node(art_node_t *node); - -// ===================== Start of node-specific functions ====================== - -static art_node4_t *art_node4_create(const art_key_chunk_t prefix[], - uint8_t prefix_size); -static art_node16_t *art_node16_create(const art_key_chunk_t prefix[], - uint8_t prefix_size); -static art_node48_t *art_node48_create(const art_key_chunk_t prefix[], - uint8_t prefix_size); -static art_node256_t *art_node256_create(const art_key_chunk_t prefix[], - uint8_t prefix_size); - -static art_node_t *art_node4_insert(art_node4_t *node, art_node_t *child, - uint8_t key); -static art_node_t *art_node16_insert(art_node16_t *node, art_node_t *child, - uint8_t key); -static art_node_t *art_node48_insert(art_node48_t *node, art_node_t *child, - uint8_t key); -static art_node_t *art_node256_insert(art_node256_t *node, art_node_t *child, - uint8_t key); - -static art_node4_t *art_node4_create(const art_key_chunk_t prefix[], - uint8_t prefix_size) { - art_node4_t *node = (art_node4_t *)roaring_malloc(sizeof(art_node4_t)); - art_init_inner_node(&node->base, CROARING_ART_NODE4_TYPE, prefix, - prefix_size); - node->count = 0; - return node; -} - -static void art_free_node4(art_node4_t *node) { - for (size_t i = 0; i < node->count; ++i) { - art_free_node(node->children[i]); - } - roaring_free(node); -} - -static inline art_node_t *art_node4_find_child(const art_node4_t *node, - art_key_chunk_t key) { - for (size_t i = 0; i < node->count; ++i) { - if (node->keys[i] == key) { - return node->children[i]; - } - } - return NULL; -} - -static art_node_t *art_node4_insert(art_node4_t *node, art_node_t *child, - uint8_t key) { - if (node->count < 4) { - size_t idx = 0; - for (; idx < node->count; ++idx) { - if (node->keys[idx] > key) { - break; - } - } - size_t after = node->count - idx; - // Shift other keys to maintain sorted order. - memmove(node->keys + idx + 1, node->keys + idx, - after * sizeof(art_key_chunk_t)); - memmove(node->children + idx + 1, node->children + idx, - after * sizeof(art_node_t *)); - - node->children[idx] = child; - node->keys[idx] = key; - node->count++; - return (art_node_t *)node; - } - art_node16_t *new_node = - art_node16_create(node->base.prefix, node->base.prefix_size); - // Instead of calling insert, this could be specialized to 2x memcpy and - // setting the count. - for (size_t i = 0; i < 4; ++i) { - art_node16_insert(new_node, node->children[i], node->keys[i]); - } - roaring_free(node); - return art_node16_insert(new_node, child, key); -} - -static inline art_node_t *art_node4_erase(art_node4_t *node, - art_key_chunk_t key_chunk) { - int idx = -1; - for (size_t i = 0; i < node->count; ++i) { - if (node->keys[i] == key_chunk) { - idx = i; - } - } - if (idx == -1) { - return (art_node_t *)node; - } - if (node->count == 2) { - // Only one child remains after erasing, so compress the path by - // removing this node. - uint8_t other_idx = idx ^ 1; - art_node_t *remaining_child = node->children[other_idx]; - art_key_chunk_t remaining_child_key = node->keys[other_idx]; - if (!art_is_leaf(remaining_child)) { - // Correct the prefix of the child node. - art_inner_node_t *inner_node = (art_inner_node_t *)remaining_child; - memmove(inner_node->prefix + node->base.prefix_size + 1, - inner_node->prefix, inner_node->prefix_size); - memcpy(inner_node->prefix, node->base.prefix, - node->base.prefix_size); - inner_node->prefix[node->base.prefix_size] = remaining_child_key; - inner_node->prefix_size += node->base.prefix_size + 1; - } - roaring_free(node); - return remaining_child; - } - // Shift other keys to maintain sorted order. - size_t after_next = node->count - idx - 1; - memmove(node->keys + idx, node->keys + idx + 1, - after_next * sizeof(art_key_chunk_t)); - memmove(node->children + idx, node->children + idx + 1, - after_next * sizeof(art_node_t *)); - node->count--; - return (art_node_t *)node; -} - -static inline void art_node4_replace(art_node4_t *node, - art_key_chunk_t key_chunk, - art_node_t *new_child) { - for (size_t i = 0; i < node->count; ++i) { - if (node->keys[i] == key_chunk) { - node->children[i] = new_child; - return; - } - } -} - -static inline art_indexed_child_t art_node4_next_child(const art_node4_t *node, - int index) { - art_indexed_child_t indexed_child; - index++; - if (index >= node->count) { - indexed_child.child = NULL; - return indexed_child; - } - indexed_child.index = index; - indexed_child.child = node->children[index]; - indexed_child.key_chunk = node->keys[index]; - return indexed_child; -} - -static inline art_indexed_child_t art_node4_prev_child(const art_node4_t *node, - int index) { - if (index > node->count) { - index = node->count; - } - index--; - art_indexed_child_t indexed_child; - if (index < 0) { - indexed_child.child = NULL; - return indexed_child; - } - indexed_child.index = index; - indexed_child.child = node->children[index]; - indexed_child.key_chunk = node->keys[index]; - return indexed_child; -} - -static inline art_indexed_child_t art_node4_child_at(const art_node4_t *node, - int index) { - art_indexed_child_t indexed_child; - if (index < 0 || index >= node->count) { - indexed_child.child = NULL; - return indexed_child; - } - indexed_child.index = index; - indexed_child.child = node->children[index]; - indexed_child.key_chunk = node->keys[index]; - return indexed_child; -} - -static inline art_indexed_child_t art_node4_lower_bound( - art_node4_t *node, art_key_chunk_t key_chunk) { - art_indexed_child_t indexed_child; - for (size_t i = 0; i < node->count; ++i) { - if (node->keys[i] >= key_chunk) { - indexed_child.index = i; - indexed_child.child = node->children[i]; - indexed_child.key_chunk = node->keys[i]; - return indexed_child; - } - } - indexed_child.child = NULL; - return indexed_child; -} - -static bool art_internal_validate_at(const art_node_t *node, - art_internal_validate_t validator); - -static bool art_node4_internal_validate(const art_node4_t *node, - art_internal_validate_t validator) { - if (node->count == 0) { - return art_validate_fail(&validator, "Node4 has no children"); - } - if (node->count > 4) { - return art_validate_fail(&validator, "Node4 has too many children"); - } - if (node->count == 1) { - return art_validate_fail( - &validator, "Node4 and child node should have been combined"); - } - validator.depth++; - for (int i = 0; i < node->count; ++i) { - if (i > 0) { - if (node->keys[i - 1] >= node->keys[i]) { - return art_validate_fail( - &validator, "Node4 keys are not strictly increasing"); - } - } - for (int j = i + 1; j < node->count; ++j) { - if (node->children[i] == node->children[j]) { - return art_validate_fail(&validator, - "Node4 has duplicate children"); - } - } - validator.current_key[validator.depth - 1] = node->keys[i]; - if (!art_internal_validate_at(node->children[i], validator)) { - return false; - } - } - return true; -} - -static art_node16_t *art_node16_create(const art_key_chunk_t prefix[], - uint8_t prefix_size) { - art_node16_t *node = (art_node16_t *)roaring_malloc(sizeof(art_node16_t)); - art_init_inner_node(&node->base, CROARING_ART_NODE16_TYPE, prefix, - prefix_size); - node->count = 0; - return node; -} - -static void art_free_node16(art_node16_t *node) { - for (size_t i = 0; i < node->count; ++i) { - art_free_node(node->children[i]); - } - roaring_free(node); -} - -static inline art_node_t *art_node16_find_child(const art_node16_t *node, - art_key_chunk_t key) { - for (size_t i = 0; i < node->count; ++i) { - if (node->keys[i] == key) { - return node->children[i]; - } - } - return NULL; -} - -static art_node_t *art_node16_insert(art_node16_t *node, art_node_t *child, - uint8_t key) { - if (node->count < 16) { - size_t idx = 0; - for (; idx < node->count; ++idx) { - if (node->keys[idx] > key) { - break; - } - } - size_t after = node->count - idx; - // Shift other keys to maintain sorted order. - memmove(node->keys + idx + 1, node->keys + idx, - after * sizeof(art_key_chunk_t)); - memmove(node->children + idx + 1, node->children + idx, - after * sizeof(art_node_t *)); - - node->children[idx] = child; - node->keys[idx] = key; - node->count++; - return (art_node_t *)node; - } - art_node48_t *new_node = - art_node48_create(node->base.prefix, node->base.prefix_size); - for (size_t i = 0; i < 16; ++i) { - art_node48_insert(new_node, node->children[i], node->keys[i]); - } - roaring_free(node); - return art_node48_insert(new_node, child, key); -} - -static inline art_node_t *art_node16_erase(art_node16_t *node, - uint8_t key_chunk) { - for (size_t i = 0; i < node->count; ++i) { - if (node->keys[i] == key_chunk) { - // Shift other keys to maintain sorted order. - size_t after_next = node->count - i - 1; - memmove(node->keys + i, node->keys + i + 1, - after_next * sizeof(key_chunk)); - memmove(node->children + i, node->children + i + 1, - after_next * sizeof(art_node_t *)); - node->count--; - break; - } - } - if (node->count > 4) { - return (art_node_t *)node; - } - art_node4_t *new_node = - art_node4_create(node->base.prefix, node->base.prefix_size); - // Instead of calling insert, this could be specialized to 2x memcpy and - // setting the count. - for (size_t i = 0; i < 4; ++i) { - art_node4_insert(new_node, node->children[i], node->keys[i]); - } - roaring_free(node); - return (art_node_t *)new_node; -} - -static inline void art_node16_replace(art_node16_t *node, - art_key_chunk_t key_chunk, - art_node_t *new_child) { - for (uint8_t i = 0; i < node->count; ++i) { - if (node->keys[i] == key_chunk) { - node->children[i] = new_child; - return; - } - } -} - -static inline art_indexed_child_t art_node16_next_child( - const art_node16_t *node, int index) { - art_indexed_child_t indexed_child; - index++; - if (index >= node->count) { - indexed_child.child = NULL; - return indexed_child; - } - indexed_child.index = index; - indexed_child.child = node->children[index]; - indexed_child.key_chunk = node->keys[index]; - return indexed_child; -} - -static inline art_indexed_child_t art_node16_prev_child( - const art_node16_t *node, int index) { - if (index > node->count) { - index = node->count; - } - index--; - art_indexed_child_t indexed_child; - if (index < 0) { - indexed_child.child = NULL; - return indexed_child; - } - indexed_child.index = index; - indexed_child.child = node->children[index]; - indexed_child.key_chunk = node->keys[index]; - return indexed_child; -} - -static inline art_indexed_child_t art_node16_child_at(const art_node16_t *node, - int index) { - art_indexed_child_t indexed_child; - if (index < 0 || index >= node->count) { - indexed_child.child = NULL; - return indexed_child; - } - indexed_child.index = index; - indexed_child.child = node->children[index]; - indexed_child.key_chunk = node->keys[index]; - return indexed_child; -} - -static inline art_indexed_child_t art_node16_lower_bound( - art_node16_t *node, art_key_chunk_t key_chunk) { - art_indexed_child_t indexed_child; - for (size_t i = 0; i < node->count; ++i) { - if (node->keys[i] >= key_chunk) { - indexed_child.index = i; - indexed_child.child = node->children[i]; - indexed_child.key_chunk = node->keys[i]; - return indexed_child; - } - } - indexed_child.child = NULL; - return indexed_child; -} - -static bool art_node16_internal_validate(const art_node16_t *node, - art_internal_validate_t validator) { - if (node->count <= 4) { - return art_validate_fail(&validator, "Node16 has too few children"); - } - if (node->count > 16) { - return art_validate_fail(&validator, "Node16 has too many children"); - } - validator.depth++; - for (int i = 0; i < node->count; ++i) { - if (i > 0) { - if (node->keys[i - 1] >= node->keys[i]) { - return art_validate_fail( - &validator, "Node16 keys are not strictly increasing"); - } - } - for (int j = i + 1; j < node->count; ++j) { - if (node->children[i] == node->children[j]) { - return art_validate_fail(&validator, - "Node16 has duplicate children"); - } - } - validator.current_key[validator.depth - 1] = node->keys[i]; - if (!art_internal_validate_at(node->children[i], validator)) { - return false; - } - } - return true; -} - -static art_node48_t *art_node48_create(const art_key_chunk_t prefix[], - uint8_t prefix_size) { - art_node48_t *node = (art_node48_t *)roaring_malloc(sizeof(art_node48_t)); - art_init_inner_node(&node->base, CROARING_ART_NODE48_TYPE, prefix, - prefix_size); - node->count = 0; - node->available_children = CROARING_NODE48_AVAILABLE_CHILDREN_MASK; - for (size_t i = 0; i < 256; ++i) { - node->keys[i] = CROARING_ART_NODE48_EMPTY_VAL; - } - return node; -} - -static void art_free_node48(art_node48_t *node) { - uint64_t used_children = - (node->available_children) ^ CROARING_NODE48_AVAILABLE_CHILDREN_MASK; - while (used_children != 0) { - // We checked above that used_children is not zero - uint8_t child_idx = roaring_trailing_zeroes(used_children); - art_free_node(node->children[child_idx]); - used_children &= ~(UINT64_C(1) << child_idx); - } - roaring_free(node); -} - -static inline art_node_t *art_node48_find_child(const art_node48_t *node, - art_key_chunk_t key) { - uint8_t val_idx = node->keys[key]; - if (val_idx != CROARING_ART_NODE48_EMPTY_VAL) { - return node->children[val_idx]; - } - return NULL; -} - -static art_node_t *art_node48_insert(art_node48_t *node, art_node_t *child, - uint8_t key) { - if (node->count < 48) { - // node->available_children is only zero when the node is full (count == - // 48), we just checked count < 48 - uint8_t val_idx = roaring_trailing_zeroes(node->available_children); - node->keys[key] = val_idx; - node->children[val_idx] = child; - node->count++; - node->available_children &= ~(UINT64_C(1) << val_idx); - return (art_node_t *)node; - } - art_node256_t *new_node = - art_node256_create(node->base.prefix, node->base.prefix_size); - for (size_t i = 0; i < 256; ++i) { - uint8_t val_idx = node->keys[i]; - if (val_idx != CROARING_ART_NODE48_EMPTY_VAL) { - art_node256_insert(new_node, node->children[val_idx], i); - } - } - roaring_free(node); - return art_node256_insert(new_node, child, key); -} - -static inline art_node_t *art_node48_erase(art_node48_t *node, - uint8_t key_chunk) { - uint8_t val_idx = node->keys[key_chunk]; - if (val_idx == CROARING_ART_NODE48_EMPTY_VAL) { - return (art_node_t *)node; - } - node->keys[key_chunk] = CROARING_ART_NODE48_EMPTY_VAL; - node->available_children |= UINT64_C(1) << val_idx; - node->count--; - if (node->count > 16) { - return (art_node_t *)node; - } - - art_node16_t *new_node = - art_node16_create(node->base.prefix, node->base.prefix_size); - for (size_t i = 0; i < 256; ++i) { - val_idx = node->keys[i]; - if (val_idx != CROARING_ART_NODE48_EMPTY_VAL) { - art_node16_insert(new_node, node->children[val_idx], i); - } - } - roaring_free(node); - return (art_node_t *)new_node; -} - -static inline void art_node48_replace(art_node48_t *node, - art_key_chunk_t key_chunk, - art_node_t *new_child) { - uint8_t val_idx = node->keys[key_chunk]; - assert(val_idx != CROARING_ART_NODE48_EMPTY_VAL); - node->children[val_idx] = new_child; -} - -static inline art_indexed_child_t art_node48_next_child( - const art_node48_t *node, int index) { - art_indexed_child_t indexed_child; - index++; - for (size_t i = index; i < 256; ++i) { - if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) { - indexed_child.index = i; - indexed_child.child = node->children[node->keys[i]]; - indexed_child.key_chunk = i; - return indexed_child; - } - } - indexed_child.child = NULL; - return indexed_child; -} - -static inline art_indexed_child_t art_node48_prev_child( - const art_node48_t *node, int index) { - if (index > 256) { - index = 256; - } - index--; - art_indexed_child_t indexed_child; - for (int i = index; i >= 0; --i) { - if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) { - indexed_child.index = i; - indexed_child.child = node->children[node->keys[i]]; - indexed_child.key_chunk = i; - return indexed_child; - } - } - indexed_child.child = NULL; - return indexed_child; -} - -static inline art_indexed_child_t art_node48_child_at(const art_node48_t *node, - int index) { - art_indexed_child_t indexed_child; - if (index < 0 || index >= 256) { - indexed_child.child = NULL; - return indexed_child; - } - indexed_child.index = index; - indexed_child.child = node->children[node->keys[index]]; - indexed_child.key_chunk = index; - return indexed_child; -} - -static inline art_indexed_child_t art_node48_lower_bound( - art_node48_t *node, art_key_chunk_t key_chunk) { - art_indexed_child_t indexed_child; - for (size_t i = key_chunk; i < 256; ++i) { - if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) { - indexed_child.index = i; - indexed_child.child = node->children[node->keys[i]]; - indexed_child.key_chunk = i; - return indexed_child; - } - } - indexed_child.child = NULL; - return indexed_child; -} - -static bool art_node48_internal_validate(const art_node48_t *node, - art_internal_validate_t validator) { - if (node->count <= 16) { - return art_validate_fail(&validator, "Node48 has too few children"); - } - if (node->count > 48) { - return art_validate_fail(&validator, "Node48 has too many children"); - } - uint64_t used_children = 0; - for (int i = 0; i < 256; ++i) { - uint8_t child_idx = node->keys[i]; - if (child_idx != CROARING_ART_NODE48_EMPTY_VAL) { - if (used_children & (UINT64_C(1) << child_idx)) { - return art_validate_fail( - &validator, "Node48 keys point to the same child index"); - } - - art_node_t *child = node->children[child_idx]; - if (child == NULL) { - return art_validate_fail(&validator, "Node48 has a NULL child"); - } - used_children |= UINT64_C(1) << child_idx; - } - } - uint64_t expected_used_children = - (node->available_children) ^ CROARING_NODE48_AVAILABLE_CHILDREN_MASK; - if (used_children != expected_used_children) { - return art_validate_fail( - &validator, - "Node48 available_children does not match actual children"); - } - while (used_children != 0) { - uint8_t child_idx = roaring_trailing_zeroes(used_children); - used_children &= used_children - 1; - - uint64_t other_children = used_children; - while (other_children != 0) { - uint8_t other_child_idx = roaring_trailing_zeroes(other_children); - if (node->children[child_idx] == node->children[other_child_idx]) { - return art_validate_fail(&validator, - "Node48 has duplicate children"); - } - other_children &= other_children - 1; - } - } - - validator.depth++; - for (int i = 0; i < 256; ++i) { - if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) { - validator.current_key[validator.depth - 1] = i; - if (!art_internal_validate_at(node->children[node->keys[i]], - validator)) { - return false; - } - } - } - return true; -} - -static art_node256_t *art_node256_create(const art_key_chunk_t prefix[], - uint8_t prefix_size) { - art_node256_t *node = - (art_node256_t *)roaring_malloc(sizeof(art_node256_t)); - art_init_inner_node(&node->base, CROARING_ART_NODE256_TYPE, prefix, - prefix_size); - node->count = 0; - for (size_t i = 0; i < 256; ++i) { - node->children[i] = NULL; - } - return node; -} - -static void art_free_node256(art_node256_t *node) { - for (size_t i = 0; i < 256; ++i) { - if (node->children[i] != NULL) { - art_free_node(node->children[i]); - } - } - roaring_free(node); -} - -static inline art_node_t *art_node256_find_child(const art_node256_t *node, - art_key_chunk_t key) { - return node->children[key]; -} - -static art_node_t *art_node256_insert(art_node256_t *node, art_node_t *child, - uint8_t key) { - node->children[key] = child; - node->count++; - return (art_node_t *)node; -} - -static inline art_node_t *art_node256_erase(art_node256_t *node, - uint8_t key_chunk) { - node->children[key_chunk] = NULL; - node->count--; - if (node->count > 48) { - return (art_node_t *)node; - } - - art_node48_t *new_node = - art_node48_create(node->base.prefix, node->base.prefix_size); - for (size_t i = 0; i < 256; ++i) { - if (node->children[i] != NULL) { - art_node48_insert(new_node, node->children[i], i); - } - } - roaring_free(node); - return (art_node_t *)new_node; -} - -static inline void art_node256_replace(art_node256_t *node, - art_key_chunk_t key_chunk, - art_node_t *new_child) { - node->children[key_chunk] = new_child; -} - -static inline art_indexed_child_t art_node256_next_child( - const art_node256_t *node, int index) { - art_indexed_child_t indexed_child; - index++; - for (size_t i = index; i < 256; ++i) { - if (node->children[i] != NULL) { - indexed_child.index = i; - indexed_child.child = node->children[i]; - indexed_child.key_chunk = i; - return indexed_child; - } - } - indexed_child.child = NULL; - return indexed_child; -} - -static inline art_indexed_child_t art_node256_prev_child( - const art_node256_t *node, int index) { - if (index > 256) { - index = 256; - } - index--; - art_indexed_child_t indexed_child; - for (int i = index; i >= 0; --i) { - if (node->children[i] != NULL) { - indexed_child.index = i; - indexed_child.child = node->children[i]; - indexed_child.key_chunk = i; - return indexed_child; - } - } - indexed_child.child = NULL; - return indexed_child; -} - -static inline art_indexed_child_t art_node256_child_at( - const art_node256_t *node, int index) { - art_indexed_child_t indexed_child; - if (index < 0 || index >= 256) { - indexed_child.child = NULL; - return indexed_child; - } - indexed_child.index = index; - indexed_child.child = node->children[index]; - indexed_child.key_chunk = index; - return indexed_child; -} - -static inline art_indexed_child_t art_node256_lower_bound( - art_node256_t *node, art_key_chunk_t key_chunk) { - art_indexed_child_t indexed_child; - for (size_t i = key_chunk; i < 256; ++i) { - if (node->children[i] != NULL) { - indexed_child.index = i; - indexed_child.child = node->children[i]; - indexed_child.key_chunk = i; - return indexed_child; - } - } - indexed_child.child = NULL; - return indexed_child; -} - -static bool art_node256_internal_validate(const art_node256_t *node, - art_internal_validate_t validator) { - if (node->count <= 48) { - return art_validate_fail(&validator, "Node256 has too few children"); - } - if (node->count > 256) { - return art_validate_fail(&validator, "Node256 has too many children"); - } - validator.depth++; - int actual_count = 0; - for (int i = 0; i < 256; ++i) { - if (node->children[i] != NULL) { - actual_count++; - - for (int j = i + 1; j < 256; ++j) { - if (node->children[i] == node->children[j]) { - return art_validate_fail(&validator, - "Node256 has duplicate children"); - } - } - - validator.current_key[validator.depth - 1] = i; - if (!art_internal_validate_at(node->children[i], validator)) { - return false; - } - } - } - if (actual_count != node->count) { - return art_validate_fail( - &validator, "Node256 count does not match actual children"); - } - return true; -} - -// Finds the child with the given key chunk in the inner node, returns NULL if -// no such child is found. -static art_node_t *art_find_child(const art_inner_node_t *node, - art_key_chunk_t key_chunk) { - switch (art_get_type(node)) { - case CROARING_ART_NODE4_TYPE: - return art_node4_find_child((art_node4_t *)node, key_chunk); - case CROARING_ART_NODE16_TYPE: - return art_node16_find_child((art_node16_t *)node, key_chunk); - case CROARING_ART_NODE48_TYPE: - return art_node48_find_child((art_node48_t *)node, key_chunk); - case CROARING_ART_NODE256_TYPE: - return art_node256_find_child((art_node256_t *)node, key_chunk); - default: - assert(false); - return NULL; - } -} - -// Replaces the child with the given key chunk in the inner node. -static void art_replace(art_inner_node_t *node, art_key_chunk_t key_chunk, - art_node_t *new_child) { - switch (art_get_type(node)) { - case CROARING_ART_NODE4_TYPE: - art_node4_replace((art_node4_t *)node, key_chunk, new_child); - break; - case CROARING_ART_NODE16_TYPE: - art_node16_replace((art_node16_t *)node, key_chunk, new_child); - break; - case CROARING_ART_NODE48_TYPE: - art_node48_replace((art_node48_t *)node, key_chunk, new_child); - break; - case CROARING_ART_NODE256_TYPE: - art_node256_replace((art_node256_t *)node, key_chunk, new_child); - break; - default: - assert(false); - } -} - -// Erases the child with the given key chunk from the inner node, returns the -// updated node (the same as the initial node if it was not shrunk). -static art_node_t *art_node_erase(art_inner_node_t *node, - art_key_chunk_t key_chunk) { - switch (art_get_type(node)) { - case CROARING_ART_NODE4_TYPE: - return art_node4_erase((art_node4_t *)node, key_chunk); - case CROARING_ART_NODE16_TYPE: - return art_node16_erase((art_node16_t *)node, key_chunk); - case CROARING_ART_NODE48_TYPE: - return art_node48_erase((art_node48_t *)node, key_chunk); - case CROARING_ART_NODE256_TYPE: - return art_node256_erase((art_node256_t *)node, key_chunk); - default: - assert(false); - return NULL; - } -} - -// Inserts the leaf with the given key chunk in the inner node, returns a -// pointer to the (possibly expanded) node. -static art_node_t *art_node_insert_leaf(art_inner_node_t *node, - art_key_chunk_t key_chunk, - art_leaf_t *leaf) { - art_node_t *child = (art_node_t *)(CROARING_SET_LEAF(leaf)); - switch (art_get_type(node)) { - case CROARING_ART_NODE4_TYPE: - return art_node4_insert((art_node4_t *)node, child, key_chunk); - case CROARING_ART_NODE16_TYPE: - return art_node16_insert((art_node16_t *)node, child, key_chunk); - case CROARING_ART_NODE48_TYPE: - return art_node48_insert((art_node48_t *)node, child, key_chunk); - case CROARING_ART_NODE256_TYPE: - return art_node256_insert((art_node256_t *)node, child, key_chunk); - default: - assert(false); - return NULL; - } -} - -// Frees the node and its children. Leaves are freed by the user. -static void art_free_node(art_node_t *node) { - if (art_is_leaf(node)) { - // We leave it up to the user to free leaves. - return; - } - switch (art_get_type((art_inner_node_t *)node)) { - case CROARING_ART_NODE4_TYPE: - art_free_node4((art_node4_t *)node); - break; - case CROARING_ART_NODE16_TYPE: - art_free_node16((art_node16_t *)node); - break; - case CROARING_ART_NODE48_TYPE: - art_free_node48((art_node48_t *)node); - break; - case CROARING_ART_NODE256_TYPE: - art_free_node256((art_node256_t *)node); - break; - default: - assert(false); - } -} - -// Returns the next child in key order, or NULL if called on a leaf. -// Provided index may be in the range [-1, 255]. -static art_indexed_child_t art_node_next_child(const art_node_t *node, - int index) { - if (art_is_leaf(node)) { - art_indexed_child_t indexed_child; - indexed_child.child = NULL; - return indexed_child; - } - switch (art_get_type((art_inner_node_t *)node)) { - case CROARING_ART_NODE4_TYPE: - return art_node4_next_child((art_node4_t *)node, index); - case CROARING_ART_NODE16_TYPE: - return art_node16_next_child((art_node16_t *)node, index); - case CROARING_ART_NODE48_TYPE: - return art_node48_next_child((art_node48_t *)node, index); - case CROARING_ART_NODE256_TYPE: - return art_node256_next_child((art_node256_t *)node, index); - default: - assert(false); - return (art_indexed_child_t){0}; - } -} - -// Returns the previous child in key order, or NULL if called on a leaf. -// Provided index may be in the range [0, 256]. -static art_indexed_child_t art_node_prev_child(const art_node_t *node, - int index) { - if (art_is_leaf(node)) { - art_indexed_child_t indexed_child; - indexed_child.child = NULL; - return indexed_child; - } - switch (art_get_type((art_inner_node_t *)node)) { - case CROARING_ART_NODE4_TYPE: - return art_node4_prev_child((art_node4_t *)node, index); - case CROARING_ART_NODE16_TYPE: - return art_node16_prev_child((art_node16_t *)node, index); - case CROARING_ART_NODE48_TYPE: - return art_node48_prev_child((art_node48_t *)node, index); - case CROARING_ART_NODE256_TYPE: - return art_node256_prev_child((art_node256_t *)node, index); - default: - assert(false); - return (art_indexed_child_t){0}; - } -} - -// Returns the child found at the provided index, or NULL if called on a leaf. -// Provided index is only valid if returned by art_node_(next|prev)_child. -static art_indexed_child_t art_node_child_at(const art_node_t *node, - int index) { - if (art_is_leaf(node)) { - art_indexed_child_t indexed_child; - indexed_child.child = NULL; - return indexed_child; - } - switch (art_get_type((art_inner_node_t *)node)) { - case CROARING_ART_NODE4_TYPE: - return art_node4_child_at((art_node4_t *)node, index); - case CROARING_ART_NODE16_TYPE: - return art_node16_child_at((art_node16_t *)node, index); - case CROARING_ART_NODE48_TYPE: - return art_node48_child_at((art_node48_t *)node, index); - case CROARING_ART_NODE256_TYPE: - return art_node256_child_at((art_node256_t *)node, index); - default: - assert(false); - return (art_indexed_child_t){0}; - } -} - -// Returns the child with the smallest key equal to or greater than the given -// key chunk, NULL if called on a leaf or no such child was found. -static art_indexed_child_t art_node_lower_bound(const art_node_t *node, - art_key_chunk_t key_chunk) { - if (art_is_leaf(node)) { - art_indexed_child_t indexed_child; - indexed_child.child = NULL; - return indexed_child; - } - switch (art_get_type((art_inner_node_t *)node)) { - case CROARING_ART_NODE4_TYPE: - return art_node4_lower_bound((art_node4_t *)node, key_chunk); - case CROARING_ART_NODE16_TYPE: - return art_node16_lower_bound((art_node16_t *)node, key_chunk); - case CROARING_ART_NODE48_TYPE: - return art_node48_lower_bound((art_node48_t *)node, key_chunk); - case CROARING_ART_NODE256_TYPE: - return art_node256_lower_bound((art_node256_t *)node, key_chunk); - default: - assert(false); - return (art_indexed_child_t){0}; - } -} - -// ====================== End of node-specific functions ======================= - -// Compares the given ranges of two keys, returns their relative order: -// * Key range 1 < key range 2: a negative value -// * Key range 1 == key range 2: 0 -// * Key range 1 > key range 2: a positive value -static inline int art_compare_prefix(const art_key_chunk_t key1[], - uint8_t key1_from, - const art_key_chunk_t key2[], - uint8_t key2_from, uint8_t length) { - return memcmp(key1 + key1_from, key2 + key2_from, length); -} - -// Compares two keys in full, see art_compare_prefix. -int art_compare_keys(const art_key_chunk_t key1[], - const art_key_chunk_t key2[]) { - return art_compare_prefix(key1, 0, key2, 0, ART_KEY_BYTES); -} - -// Returns the length of the common prefix between two key ranges. -static uint8_t art_common_prefix(const art_key_chunk_t key1[], - uint8_t key1_from, uint8_t key1_to, - const art_key_chunk_t key2[], - uint8_t key2_from, uint8_t key2_to) { - uint8_t min_len = key1_to - key1_from; - uint8_t key2_len = key2_to - key2_from; - if (key2_len < min_len) { - min_len = key2_len; - } - uint8_t offset = 0; - for (; offset < min_len; ++offset) { - if (key1[key1_from + offset] != key2[key2_from + offset]) { - return offset; - } - } - return offset; -} - -// Returns a pointer to the rootmost node where the value was inserted, may not -// be equal to `node`. -static art_node_t *art_insert_at(art_node_t *node, const art_key_chunk_t key[], - uint8_t depth, art_leaf_t *new_leaf) { - if (art_is_leaf(node)) { - art_leaf_t *leaf = CROARING_CAST_LEAF(node); - uint8_t common_prefix = art_common_prefix( - leaf->key, depth, ART_KEY_BYTES, key, depth, ART_KEY_BYTES); - - // Previously this was a leaf, create an inner node instead and add both - // the existing and new leaf to it. - art_node_t *new_node = - (art_node_t *)art_node4_create(key + depth, common_prefix); - - new_node = art_node_insert_leaf((art_inner_node_t *)new_node, - leaf->key[depth + common_prefix], leaf); - new_node = art_node_insert_leaf((art_inner_node_t *)new_node, - key[depth + common_prefix], new_leaf); - - // The new inner node is now the rootmost node. - return new_node; - } - art_inner_node_t *inner_node = (art_inner_node_t *)node; - // Not a leaf: inner node - uint8_t common_prefix = - art_common_prefix(inner_node->prefix, 0, inner_node->prefix_size, key, - depth, ART_KEY_BYTES); - if (common_prefix != inner_node->prefix_size) { - // Partial prefix match. Create a new internal node to hold the common - // prefix. - art_node4_t *node4 = - art_node4_create(inner_node->prefix, common_prefix); - - // Make the existing internal node a child of the new internal node. - node4 = (art_node4_t *)art_node4_insert( - node4, node, inner_node->prefix[common_prefix]); - - // Correct the prefix of the moved internal node, trimming off the chunk - // inserted into the new internal node. - inner_node->prefix_size = inner_node->prefix_size - common_prefix - 1; - if (inner_node->prefix_size > 0) { - // Move the remaining prefix to the correct position. - memmove(inner_node->prefix, inner_node->prefix + common_prefix + 1, - inner_node->prefix_size); - } - - // Insert the value in the new internal node. - return art_node_insert_leaf(&node4->base, key[common_prefix + depth], - new_leaf); - } - // Prefix matches entirely or node has no prefix. Look for an existing - // child. - art_key_chunk_t key_chunk = key[depth + common_prefix]; - art_node_t *child = art_find_child(inner_node, key_chunk); - if (child != NULL) { - art_node_t *new_child = - art_insert_at(child, key, depth + common_prefix + 1, new_leaf); - if (new_child != child) { - // Node type changed. - art_replace(inner_node, key_chunk, new_child); - } - return node; - } - return art_node_insert_leaf(inner_node, key_chunk, new_leaf); -} - -// Erase helper struct. -typedef struct art_erase_result_s { - // The rootmost node where the value was erased, may not be equal to `node`. - // If no value was removed, this is null. - art_node_t *rootmost_node; - - // Value removed, null if not removed. - art_val_t *value_erased; -} art_erase_result_t; - -// Searches for the given key starting at `node`, erases it if found. -static art_erase_result_t art_erase_at(art_node_t *node, - const art_key_chunk_t *key, - uint8_t depth) { - art_erase_result_t result; - result.rootmost_node = NULL; - result.value_erased = NULL; - - if (art_is_leaf(node)) { - art_leaf_t *leaf = CROARING_CAST_LEAF(node); - uint8_t common_prefix = art_common_prefix(leaf->key, 0, ART_KEY_BYTES, - key, 0, ART_KEY_BYTES); - if (common_prefix != ART_KEY_BYTES) { - // Leaf key mismatch. - return result; - } - result.value_erased = (art_val_t *)leaf; - return result; - } - art_inner_node_t *inner_node = (art_inner_node_t *)node; - uint8_t common_prefix = - art_common_prefix(inner_node->prefix, 0, inner_node->prefix_size, key, - depth, ART_KEY_BYTES); - if (common_prefix != inner_node->prefix_size) { - // Prefix mismatch. - return result; - } - art_key_chunk_t key_chunk = key[depth + common_prefix]; - art_node_t *child = art_find_child(inner_node, key_chunk); - if (child == NULL) { - // No child with key chunk. - return result; - } - // Try to erase the key further down. Skip the key chunk associated with the - // child in the node. - art_erase_result_t child_result = - art_erase_at(child, key, depth + common_prefix + 1); - if (child_result.value_erased == NULL) { - return result; - } - result.value_erased = child_result.value_erased; - result.rootmost_node = node; - if (child_result.rootmost_node == NULL) { - // Child node was fully erased, erase it from this node's children. - result.rootmost_node = art_node_erase(inner_node, key_chunk); - } else if (child_result.rootmost_node != child) { - // Child node was not fully erased, update the pointer to it in this - // node. - art_replace(inner_node, key_chunk, child_result.rootmost_node); - } - return result; -} - -// Searches for the given key starting at `node`, returns NULL if the key was -// not found. -static art_val_t *art_find_at(const art_node_t *node, - const art_key_chunk_t *key, uint8_t depth) { - while (!art_is_leaf(node)) { - art_inner_node_t *inner_node = (art_inner_node_t *)node; - uint8_t common_prefix = - art_common_prefix(inner_node->prefix, 0, inner_node->prefix_size, - key, depth, ART_KEY_BYTES); - if (common_prefix != inner_node->prefix_size) { - return NULL; - } - art_node_t *child = - art_find_child(inner_node, key[depth + inner_node->prefix_size]); - if (child == NULL) { - return NULL; - } - node = child; - // Include both the prefix and the child key chunk in the depth. - depth += inner_node->prefix_size + 1; - } - art_leaf_t *leaf = CROARING_CAST_LEAF(node); - if (depth >= ART_KEY_BYTES) { - return (art_val_t *)leaf; - } - uint8_t common_prefix = - art_common_prefix(leaf->key, 0, ART_KEY_BYTES, key, 0, ART_KEY_BYTES); - if (common_prefix == ART_KEY_BYTES) { - return (art_val_t *)leaf; - } - return NULL; -} - -// Returns the size in bytes of the subtrie. -size_t art_size_in_bytes_at(const art_node_t *node) { - if (art_is_leaf(node)) { - return 0; - } - size_t size = 0; - switch (art_get_type((art_inner_node_t *)node)) { - case CROARING_ART_NODE4_TYPE: { - size += sizeof(art_node4_t); - } break; - case CROARING_ART_NODE16_TYPE: { - size += sizeof(art_node16_t); - } break; - case CROARING_ART_NODE48_TYPE: { - size += sizeof(art_node48_t); - } break; - case CROARING_ART_NODE256_TYPE: { - size += sizeof(art_node256_t); - } break; - default: - assert(false); - break; - } - art_indexed_child_t indexed_child = art_node_next_child(node, -1); - while (indexed_child.child != NULL) { - size += art_size_in_bytes_at(indexed_child.child); - indexed_child = art_node_next_child(node, indexed_child.index); - } - return size; -} - -static void art_node_print_type(const art_node_t *node) { - if (art_is_leaf(node)) { - printf("Leaf"); - return; - } - switch (art_get_type((art_inner_node_t *)node)) { - case CROARING_ART_NODE4_TYPE: - printf("Node4"); - return; - case CROARING_ART_NODE16_TYPE: - printf("Node16"); - return; - case CROARING_ART_NODE48_TYPE: - printf("Node48"); - return; - case CROARING_ART_NODE256_TYPE: - printf("Node256"); - return; - default: - assert(false); - return; - } -} - -void art_node_printf(const art_node_t *node, uint8_t depth) { - if (art_is_leaf(node)) { - printf("{ type: Leaf, key: "); - art_leaf_t *leaf = CROARING_CAST_LEAF(node); - for (size_t i = 0; i < ART_KEY_BYTES; ++i) { - printf("%02x", leaf->key[i]); - } - printf(" }\n"); - return; - } - printf("{\n"); - depth++; - - printf("%*s", depth, ""); - printf("type: "); - art_node_print_type(node); - printf("\n"); - - art_inner_node_t *inner_node = (art_inner_node_t *)node; - printf("%*s", depth, ""); - printf("prefix_size: %d\n", inner_node->prefix_size); - - printf("%*s", depth, ""); - printf("prefix: "); - for (uint8_t i = 0; i < inner_node->prefix_size; ++i) { - printf("%02x", inner_node->prefix[i]); - } - printf("\n"); - - switch (art_get_type(inner_node)) { - case CROARING_ART_NODE4_TYPE: { - art_node4_t *node4 = (art_node4_t *)node; - for (uint8_t i = 0; i < node4->count; ++i) { - printf("%*s", depth, ""); - printf("key: %02x ", node4->keys[i]); - art_node_printf(node4->children[i], depth); - } - } break; - case CROARING_ART_NODE16_TYPE: { - art_node16_t *node16 = (art_node16_t *)node; - for (uint8_t i = 0; i < node16->count; ++i) { - printf("%*s", depth, ""); - printf("key: %02x ", node16->keys[i]); - art_node_printf(node16->children[i], depth); - } - } break; - case CROARING_ART_NODE48_TYPE: { - art_node48_t *node48 = (art_node48_t *)node; - for (int i = 0; i < 256; ++i) { - if (node48->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) { - printf("%*s", depth, ""); - printf("key: %02x ", i); - printf("child: %02x ", node48->keys[i]); - art_node_printf(node48->children[node48->keys[i]], depth); - } - } - } break; - case CROARING_ART_NODE256_TYPE: { - art_node256_t *node256 = (art_node256_t *)node; - for (int i = 0; i < 256; ++i) { - if (node256->children[i] != NULL) { - printf("%*s", depth, ""); - printf("key: %02x ", i); - art_node_printf(node256->children[i], depth); - } - } - } break; - default: - assert(false); - break; - } - depth--; - printf("%*s", depth, ""); - printf("}\n"); -} - -void art_insert(art_t *art, const art_key_chunk_t *key, art_val_t *val) { - art_leaf_t *leaf = (art_leaf_t *)val; - art_leaf_populate(leaf, key); - if (art->root == NULL) { - art->root = (art_node_t *)CROARING_SET_LEAF(leaf); - return; - } - art->root = art_insert_at(art->root, key, 0, leaf); -} - -art_val_t *art_erase(art_t *art, const art_key_chunk_t *key) { - if (art->root == NULL) { - return NULL; - } - art_erase_result_t result = art_erase_at(art->root, key, 0); - if (result.value_erased == NULL) { - return NULL; - } - art->root = result.rootmost_node; - return result.value_erased; -} - -art_val_t *art_find(const art_t *art, const art_key_chunk_t *key) { - if (art->root == NULL) { - return NULL; - } - return art_find_at(art->root, key, 0); -} - -bool art_is_empty(const art_t *art) { return art->root == NULL; } - -void art_free(art_t *art) { - if (art->root == NULL) { - return; - } - art_free_node(art->root); -} - -size_t art_size_in_bytes(const art_t *art) { - size_t size = sizeof(art_t); - if (art->root != NULL) { - size += art_size_in_bytes_at(art->root); - } - return size; -} - -void art_printf(const art_t *art) { - if (art->root == NULL) { - return; - } - art_node_printf(art->root, 0); -} - -// Returns the current node that the iterator is positioned at. -static inline art_node_t *art_iterator_node(art_iterator_t *iterator) { - return iterator->frames[iterator->frame].node; -} - -// Sets the iterator key and value to the leaf's key and value. Always returns -// true for convenience. -static inline bool art_iterator_valid_loc(art_iterator_t *iterator, - art_leaf_t *leaf) { - iterator->frames[iterator->frame].node = CROARING_SET_LEAF(leaf); - iterator->frames[iterator->frame].index_in_node = 0; - memcpy(iterator->key, leaf->key, ART_KEY_BYTES); - iterator->value = (art_val_t *)leaf; - return true; -} - -// Invalidates the iterator key and value. Always returns false for convenience. -static inline bool art_iterator_invalid_loc(art_iterator_t *iterator) { - memset(iterator->key, 0, ART_KEY_BYTES); - iterator->value = NULL; - return false; -} - -// Moves the iterator one level down in the tree, given a node at the current -// level and the index of the child that we're going down to. -// -// Note: does not set the index at the new level. -static void art_iterator_down(art_iterator_t *iterator, - const art_inner_node_t *node, - uint8_t index_in_node) { - iterator->frames[iterator->frame].node = (art_node_t *)node; - iterator->frames[iterator->frame].index_in_node = index_in_node; - iterator->frame++; - art_indexed_child_t indexed_child = - art_node_child_at((art_node_t *)node, index_in_node); - assert(indexed_child.child != NULL); - iterator->frames[iterator->frame].node = indexed_child.child; - iterator->depth += node->prefix_size + 1; -} - -// Moves the iterator to the next/previous child of the current node. Returns -// the child moved to, or NULL if there is no neighboring child. -static art_node_t *art_iterator_neighbor_child( - art_iterator_t *iterator, const art_inner_node_t *inner_node, - bool forward) { - art_iterator_frame_t frame = iterator->frames[iterator->frame]; - art_indexed_child_t indexed_child; - if (forward) { - indexed_child = art_node_next_child(frame.node, frame.index_in_node); - } else { - indexed_child = art_node_prev_child(frame.node, frame.index_in_node); - } - if (indexed_child.child != NULL) { - art_iterator_down(iterator, inner_node, indexed_child.index); - } - return indexed_child.child; -} - -// Moves the iterator one level up in the tree, returns false if not possible. -static bool art_iterator_up(art_iterator_t *iterator) { - if (iterator->frame == 0) { - return false; - } - iterator->frame--; - // We went up, so we are at an inner node. - iterator->depth -= - ((art_inner_node_t *)art_iterator_node(iterator))->prefix_size + 1; - return true; -} - -// Moves the iterator one level, followed by a move to the next / previous leaf. -// Sets the status of the iterator. -static bool art_iterator_up_and_move(art_iterator_t *iterator, bool forward) { - if (!art_iterator_up(iterator)) { - // We're at the root. - return art_iterator_invalid_loc(iterator); - } - return art_iterator_move(iterator, forward); -} - -// Initializes the iterator at the first / last leaf of the given node. -// Returns true for convenience. -static bool art_node_init_iterator(const art_node_t *node, - art_iterator_t *iterator, bool first) { - while (!art_is_leaf(node)) { - art_indexed_child_t indexed_child; - if (first) { - indexed_child = art_node_next_child(node, -1); - } else { - indexed_child = art_node_prev_child(node, 256); - } - art_iterator_down(iterator, (art_inner_node_t *)node, - indexed_child.index); - node = indexed_child.child; - } - // We're at a leaf. - iterator->frames[iterator->frame].node = (art_node_t *)node; - iterator->frames[iterator->frame].index_in_node = 0; // Should not matter. - return art_iterator_valid_loc(iterator, CROARING_CAST_LEAF(node)); -} - -bool art_iterator_move(art_iterator_t *iterator, bool forward) { - if (art_is_leaf(art_iterator_node(iterator))) { - bool went_up = art_iterator_up(iterator); - if (!went_up) { - // This leaf is the root, we're done. - return art_iterator_invalid_loc(iterator); - } - } - // Advance within inner node. - art_node_t *neighbor_child = art_iterator_neighbor_child( - iterator, (art_inner_node_t *)art_iterator_node(iterator), forward); - if (neighbor_child != NULL) { - // There is another child at this level, go down to the first or last - // leaf. - return art_node_init_iterator(neighbor_child, iterator, forward); - } - // No more children at this level, go up. - return art_iterator_up_and_move(iterator, forward); -} - -// Assumes the iterator is positioned at a node with an equal prefix path up to -// the depth of the iterator. -static bool art_node_iterator_lower_bound(const art_node_t *node, - art_iterator_t *iterator, - const art_key_chunk_t key[]) { - while (!art_is_leaf(node)) { - art_inner_node_t *inner_node = (art_inner_node_t *)node; - int prefix_comparison = - art_compare_prefix(inner_node->prefix, 0, key, iterator->depth, - inner_node->prefix_size); - if (prefix_comparison < 0) { - // Prefix so far has been equal, but we've found a smaller key. - // Since we take the lower bound within each node, we can return the - // next leaf. - return art_iterator_up_and_move(iterator, true); - } else if (prefix_comparison > 0) { - // No key equal to the key we're looking for, return the first leaf. - return art_node_init_iterator(node, iterator, true); - } - // Prefix is equal, move to lower bound child. - art_key_chunk_t key_chunk = - key[iterator->depth + inner_node->prefix_size]; - art_indexed_child_t indexed_child = - art_node_lower_bound(node, key_chunk); - if (indexed_child.child == NULL) { - // Only smaller keys among children. - return art_iterator_up_and_move(iterator, true); - } - if (indexed_child.key_chunk > key_chunk) { - // Only larger children, return the first larger child. - art_iterator_down(iterator, inner_node, indexed_child.index); - return art_node_init_iterator(indexed_child.child, iterator, true); - } - // We found a child with an equal prefix. - art_iterator_down(iterator, inner_node, indexed_child.index); - node = indexed_child.child; - } - art_leaf_t *leaf = CROARING_CAST_LEAF(node); - if (art_compare_keys(leaf->key, key) >= 0) { - // Leaf has an equal or larger key. - return art_iterator_valid_loc(iterator, leaf); - } - // Leaf has an equal prefix, but the full key is smaller. Move to the next - // leaf. - return art_iterator_up_and_move(iterator, true); -} - -art_iterator_t art_init_iterator(const art_t *art, bool first) { - art_iterator_t iterator = {0}; - if (art->root == NULL) { - return iterator; - } - art_node_init_iterator(art->root, &iterator, first); - return iterator; -} - -bool art_iterator_next(art_iterator_t *iterator) { - return art_iterator_move(iterator, true); -} - -bool art_iterator_prev(art_iterator_t *iterator) { - return art_iterator_move(iterator, false); -} - -bool art_iterator_lower_bound(art_iterator_t *iterator, - const art_key_chunk_t *key) { - if (iterator->value == NULL) { - // We're beyond the end / start of the ART so the iterator does not have - // a valid key. Start from the root. - iterator->frame = 0; - iterator->depth = 0; - return art_node_iterator_lower_bound(art_iterator_node(iterator), - iterator, key); - } - int compare_result = - art_compare_prefix(iterator->key, 0, key, 0, ART_KEY_BYTES); - // Move up until we have an equal prefix, after which we can do a normal - // lower bound search. - while (compare_result != 0) { - if (!art_iterator_up(iterator)) { - if (compare_result < 0) { - // Only smaller keys found. - return art_iterator_invalid_loc(iterator); - } else { - return art_node_init_iterator(art_iterator_node(iterator), - iterator, true); - } - } - // Since we're only moving up, we can keep comparing against the - // iterator key. - art_inner_node_t *inner_node = - (art_inner_node_t *)art_iterator_node(iterator); - compare_result = - art_compare_prefix(iterator->key, 0, key, 0, - iterator->depth + inner_node->prefix_size); - } - if (compare_result > 0) { - return art_node_init_iterator(art_iterator_node(iterator), iterator, - true); - } - return art_node_iterator_lower_bound(art_iterator_node(iterator), iterator, - key); -} - -art_iterator_t art_lower_bound(const art_t *art, const art_key_chunk_t *key) { - art_iterator_t iterator = {0}; - if (art->root != NULL) { - art_node_iterator_lower_bound(art->root, &iterator, key); - } - return iterator; -} - -art_iterator_t art_upper_bound(const art_t *art, const art_key_chunk_t *key) { - art_iterator_t iterator = {0}; - if (art->root != NULL) { - if (art_node_iterator_lower_bound(art->root, &iterator, key) && - art_compare_keys(iterator.key, key) == 0) { - art_iterator_next(&iterator); - } - } - return iterator; -} - -void art_iterator_insert(art_t *art, art_iterator_t *iterator, - const art_key_chunk_t *key, art_val_t *val) { - // TODO: This can likely be faster. - art_insert(art, key, val); - assert(art->root != NULL); - iterator->frame = 0; - iterator->depth = 0; - art_node_iterator_lower_bound(art->root, iterator, key); -} - -// TODO: consider keeping `art_t *art` in the iterator. -art_val_t *art_iterator_erase(art_t *art, art_iterator_t *iterator) { - if (iterator->value == NULL) { - return NULL; - } - art_key_chunk_t initial_key[ART_KEY_BYTES]; - memcpy(initial_key, iterator->key, ART_KEY_BYTES); - - art_val_t *value_erased = iterator->value; - bool went_up = art_iterator_up(iterator); - if (!went_up) { - // We're erasing the root. - art->root = NULL; - art_iterator_invalid_loc(iterator); - return value_erased; - } - - // Erase the leaf. - art_inner_node_t *parent_node = - (art_inner_node_t *)art_iterator_node(iterator); - art_key_chunk_t key_chunk_in_parent = - iterator->key[iterator->depth + parent_node->prefix_size]; - art_node_t *new_parent_node = - art_node_erase(parent_node, key_chunk_in_parent); - - if (new_parent_node != ((art_node_t *)parent_node)) { - // Replace the pointer to the inner node we erased from in its - // parent (it may be a leaf now). - iterator->frames[iterator->frame].node = new_parent_node; - went_up = art_iterator_up(iterator); - if (went_up) { - art_inner_node_t *grandparent_node = - (art_inner_node_t *)art_iterator_node(iterator); - art_key_chunk_t key_chunk_in_grandparent = - iterator->key[iterator->depth + grandparent_node->prefix_size]; - art_replace(grandparent_node, key_chunk_in_grandparent, - new_parent_node); - } else { - // We were already at the rootmost node. - art->root = new_parent_node; - } - } - - iterator->frame = 0; - iterator->depth = 0; - // Do a lower bound search for the initial key, which will find the first - // greater key if it exists. This can likely be mildly faster if we instead - // start from the current position. - art_node_iterator_lower_bound(art->root, iterator, initial_key); - return value_erased; -} - -static bool art_internal_validate_at(const art_node_t *node, - art_internal_validate_t validator) { - if (node == NULL) { - return art_validate_fail(&validator, "node is null"); - } - if (art_is_leaf(node)) { - art_leaf_t *leaf = CROARING_CAST_LEAF(node); - if (art_compare_prefix(leaf->key, 0, validator.current_key, 0, - validator.depth) != 0) { - return art_validate_fail( - &validator, - "leaf key does not match its position's prefix in the tree"); - } - if (validator.validate_cb != NULL && - !validator.validate_cb(leaf, validator.reason)) { - if (*validator.reason == NULL) { - *validator.reason = "leaf validation failed"; - } - return false; - } - } else { - art_inner_node_t *inner_node = (art_inner_node_t *)node; - - if (validator.depth + inner_node->prefix_size + 1 > ART_KEY_BYTES) { - return art_validate_fail(&validator, - "node has too much prefix at given depth"); - } - memcpy(validator.current_key + validator.depth, inner_node->prefix, - inner_node->prefix_size); - validator.depth += inner_node->prefix_size; - - switch (inner_node->typecode) { - case CROARING_ART_NODE4_TYPE: - if (!art_node4_internal_validate((art_node4_t *)inner_node, - validator)) { - return false; - } - break; - case CROARING_ART_NODE16_TYPE: - if (!art_node16_internal_validate((art_node16_t *)inner_node, - validator)) { - return false; - } - break; - case CROARING_ART_NODE48_TYPE: - if (!art_node48_internal_validate((art_node48_t *)inner_node, - validator)) { - return false; - } - break; - case CROARING_ART_NODE256_TYPE: - if (!art_node256_internal_validate((art_node256_t *)inner_node, - validator)) { - return false; - } - break; - default: - return art_validate_fail(&validator, "invalid node type"); - } - } - return true; -} - -bool art_internal_validate(const art_t *art, const char **reason, - art_validate_cb_t validate_cb) { - const char *reason_local; - if (reason == NULL) { - // Always allow assigning through *reason - reason = &reason_local; - } - *reason = NULL; - if (art->root == NULL) { - return true; - } - art_internal_validate_t validator = { - .reason = reason, - .validate_cb = validate_cb, - .depth = 0, - .current_key = {0}, - }; - return art_internal_validate_at(art->root, validator); -} - -#ifdef __cplusplus -} // extern "C" -} // namespace roaring -} // namespace internal -#endif -/* end file src/art/art.c */ -/* begin file src/bitset.c */ -#include -#include -#include -#include -#include - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -extern inline void bitset_print(const bitset_t *b); -extern inline bool bitset_for_each(const bitset_t *b, bitset_iterator iterator, - void *ptr); -extern inline size_t bitset_next_set_bits(const bitset_t *bitset, - size_t *buffer, size_t capacity, - size_t *startfrom); -extern inline void bitset_set_to_value(bitset_t *bitset, size_t i, bool flag); -extern inline bool bitset_next_set_bit(const bitset_t *bitset, size_t *i); -extern inline void bitset_set(bitset_t *bitset, size_t i); -extern inline bool bitset_get(const bitset_t *bitset, size_t i); -extern inline size_t bitset_size_in_words(const bitset_t *bitset); -extern inline size_t bitset_size_in_bits(const bitset_t *bitset); -extern inline size_t bitset_size_in_bytes(const bitset_t *bitset); - -/* Create a new bitset. Return NULL in case of failure. */ -bitset_t *bitset_create(void) { - bitset_t *bitset = NULL; - /* Allocate the bitset itself. */ - if ((bitset = (bitset_t *)roaring_malloc(sizeof(bitset_t))) == NULL) { - return NULL; - } - bitset->array = NULL; - bitset->arraysize = 0; - bitset->capacity = 0; - return bitset; -} - -/* Create a new bitset able to contain size bits. Return NULL in case of - * failure. */ -bitset_t *bitset_create_with_capacity(size_t size) { - bitset_t *bitset = NULL; - /* Allocate the bitset itself. */ - if ((bitset = (bitset_t *)roaring_malloc(sizeof(bitset_t))) == NULL) { - return NULL; - } - bitset->arraysize = - (size + sizeof(uint64_t) * 8 - 1) / (sizeof(uint64_t) * 8); - bitset->capacity = bitset->arraysize; - if ((bitset->array = (uint64_t *)roaring_calloc( - bitset->arraysize, sizeof(uint64_t))) == NULL) { - roaring_free(bitset); - return NULL; - } - return bitset; -} - -/* Create a copy */ -bitset_t *bitset_copy(const bitset_t *bitset) { - bitset_t *copy = NULL; - /* Allocate the bitset itself. */ - if ((copy = (bitset_t *)roaring_malloc(sizeof(bitset_t))) == NULL) { - return NULL; - } - memcpy(copy, bitset, sizeof(bitset_t)); - copy->capacity = copy->arraysize; - if ((copy->array = (uint64_t *)roaring_malloc(sizeof(uint64_t) * - bitset->arraysize)) == NULL) { - roaring_free(copy); - return NULL; - } - memcpy(copy->array, bitset->array, sizeof(uint64_t) * bitset->arraysize); - return copy; -} - -void bitset_clear(bitset_t *bitset) { - memset(bitset->array, 0, sizeof(uint64_t) * bitset->arraysize); -} - -void bitset_fill(bitset_t *bitset) { - memset(bitset->array, 0xff, sizeof(uint64_t) * bitset->arraysize); -} - -void bitset_shift_left(bitset_t *bitset, size_t s) { - size_t extra_words = s / 64; - int inword_shift = s % 64; - size_t as = bitset->arraysize; - if (inword_shift == 0) { - bitset_resize(bitset, as + extra_words, false); - // could be done with a memmove - for (size_t i = as + extra_words; i > extra_words; i--) { - bitset->array[i - 1] = bitset->array[i - 1 - extra_words]; - } - } else { - bitset_resize(bitset, as + extra_words + 1, true); - bitset->array[as + extra_words] = - bitset->array[as - 1] >> (64 - inword_shift); - for (size_t i = as + extra_words; i >= extra_words + 2; i--) { - bitset->array[i - 1] = - (bitset->array[i - 1 - extra_words] << inword_shift) | - (bitset->array[i - 2 - extra_words] >> (64 - inword_shift)); - } - bitset->array[extra_words] = bitset->array[0] << inword_shift; - } - for (size_t i = 0; i < extra_words; i++) { - bitset->array[i] = 0; - } -} - -void bitset_shift_right(bitset_t *bitset, size_t s) { - size_t extra_words = s / 64; - int inword_shift = s % 64; - size_t as = bitset->arraysize; - if (inword_shift == 0) { - // could be done with a memmove - for (size_t i = 0; i < as - extra_words; i++) { - bitset->array[i] = bitset->array[i + extra_words]; - } - bitset_resize(bitset, as - extra_words, false); - - } else { - for (size_t i = 0; i + extra_words + 1 < as; i++) { - bitset->array[i] = - (bitset->array[i + extra_words] >> inword_shift) | - (bitset->array[i + extra_words + 1] << (64 - inword_shift)); - } - bitset->array[as - extra_words - 1] = - (bitset->array[as - 1] >> inword_shift); - bitset_resize(bitset, as - extra_words, false); - } -} - -/* Free memory. */ -void bitset_free(bitset_t *bitset) { - if (bitset == NULL) { - return; - } - roaring_free(bitset->array); - roaring_free(bitset); -} - -/* Resize the bitset so that it can support newarraysize * 64 bits. Return true - * in case of success, false for failure. */ -bool bitset_resize(bitset_t *bitset, size_t newarraysize, bool padwithzeroes) { - if (newarraysize > SIZE_MAX / 64) { - return false; - } - size_t smallest = - newarraysize < bitset->arraysize ? newarraysize : bitset->arraysize; - if (bitset->capacity < newarraysize) { - uint64_t *newarray; - size_t newcapacity = bitset->capacity; - if (newcapacity == 0) { - newcapacity = 1; - } - while (newcapacity < newarraysize) { - newcapacity *= 2; - } - if ((newarray = (uint64_t *)roaring_realloc( - bitset->array, sizeof(uint64_t) * newcapacity)) == NULL) { - return false; - } - bitset->capacity = newcapacity; - bitset->array = newarray; - } - if (padwithzeroes && (newarraysize > smallest)) - memset(bitset->array + smallest, 0, - sizeof(uint64_t) * (newarraysize - smallest)); - bitset->arraysize = newarraysize; - return true; // success! -} - -size_t bitset_count(const bitset_t *bitset) { - size_t card = 0; - size_t k = 0; - for (; k + 7 < bitset->arraysize; k += 8) { - card += roaring_hamming(bitset->array[k]); - card += roaring_hamming(bitset->array[k + 1]); - card += roaring_hamming(bitset->array[k + 2]); - card += roaring_hamming(bitset->array[k + 3]); - card += roaring_hamming(bitset->array[k + 4]); - card += roaring_hamming(bitset->array[k + 5]); - card += roaring_hamming(bitset->array[k + 6]); - card += roaring_hamming(bitset->array[k + 7]); - } - for (; k + 3 < bitset->arraysize; k += 4) { - card += roaring_hamming(bitset->array[k]); - card += roaring_hamming(bitset->array[k + 1]); - card += roaring_hamming(bitset->array[k + 2]); - card += roaring_hamming(bitset->array[k + 3]); - } - for (; k < bitset->arraysize; k++) { - card += roaring_hamming(bitset->array[k]); - } - return card; -} - -bool bitset_inplace_union(bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2) { - size_t minlength = - b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize; - for (size_t k = 0; k < minlength; ++k) { - b1->array[k] |= b2->array[k]; - } - if (b2->arraysize > b1->arraysize) { - size_t oldsize = b1->arraysize; - if (!bitset_resize(b1, b2->arraysize, false)) return false; - memcpy(b1->array + oldsize, b2->array + oldsize, - (b2->arraysize - oldsize) * sizeof(uint64_t)); - } - return true; -} - -size_t bitset_minimum(const bitset_t *bitset) { - for (size_t k = 0; k < bitset->arraysize; k++) { - uint64_t w = bitset->array[k]; - if (w != 0) { - return roaring_trailing_zeroes(w) + k * 64; - } - } - return 0; -} - -bool bitset_grow(bitset_t *bitset, size_t newarraysize) { - if (newarraysize < bitset->arraysize) { - return false; - } - if (newarraysize > SIZE_MAX / 64) { - return false; - } - if (bitset->capacity < newarraysize) { - uint64_t *newarray; - size_t newcapacity = (UINT64_C(0xFFFFFFFFFFFFFFFF) >> - roaring_leading_zeroes(newarraysize)) + - 1; - while (newcapacity < newarraysize) { - newcapacity *= 2; - } - if ((newarray = (uint64_t *)roaring_realloc( - bitset->array, sizeof(uint64_t) * newcapacity)) == NULL) { - return false; - } - bitset->capacity = newcapacity; - bitset->array = newarray; - } - memset(bitset->array + bitset->arraysize, 0, - sizeof(uint64_t) * (newarraysize - bitset->arraysize)); - bitset->arraysize = newarraysize; - return true; // success! -} - -size_t bitset_maximum(const bitset_t *bitset) { - for (size_t k = bitset->arraysize; k > 0; k--) { - uint64_t w = bitset->array[k - 1]; - if (w != 0) { - return 63 - roaring_leading_zeroes(w) + (k - 1) * 64; - } - } - return 0; -} - -/* Returns true if bitsets share no common elements, false otherwise. - * - * Performs early-out if common element found. */ -bool bitsets_disjoint(const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2) { - size_t minlength = - b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize; - - for (size_t k = 0; k < minlength; k++) { - if ((b1->array[k] & b2->array[k]) != 0) return false; - } - return true; -} - -/* Returns true if bitsets contain at least 1 common element, false if they are - * disjoint. - * - * Performs early-out if common element found. */ -bool bitsets_intersect(const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2) { - size_t minlength = - b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize; - - for (size_t k = 0; k < minlength; k++) { - if ((b1->array[k] & b2->array[k]) != 0) return true; - } - return false; -} - -/* Returns true if b has any bits set in or after b->array[starting_loc]. */ -static bool any_bits_set(const bitset_t *b, size_t starting_loc) { - if (starting_loc >= b->arraysize) { - return false; - } - for (size_t k = starting_loc; k < b->arraysize; k++) { - if (b->array[k] != 0) return true; - } - return false; -} - -/* Returns true if b1 has all of b2's bits set. - * - * Performs early out if a bit is found in b2 that is not found in b1. */ -bool bitset_contains_all(const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2) { - size_t min_size = b1->arraysize; - if (b1->arraysize > b2->arraysize) { - min_size = b2->arraysize; - } - for (size_t k = 0; k < min_size; k++) { - if ((b1->array[k] & b2->array[k]) != b2->array[k]) { - return false; - } - } - if (b2->arraysize > b1->arraysize) { - /* Need to check if b2 has any bits set beyond b1's array */ - return !any_bits_set(b2, b1->arraysize); - } - return true; -} - -size_t bitset_union_count(const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2) { - size_t answer = 0; - size_t minlength = - b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize; - size_t k = 0; - for (; k + 3 < minlength; k += 4) { - answer += roaring_hamming(b1->array[k] | b2->array[k]); - answer += roaring_hamming(b1->array[k + 1] | b2->array[k + 1]); - answer += roaring_hamming(b1->array[k + 2] | b2->array[k + 2]); - answer += roaring_hamming(b1->array[k + 3] | b2->array[k + 3]); - } - for (; k < minlength; ++k) { - answer += roaring_hamming(b1->array[k] | b2->array[k]); - } - if (b2->arraysize > b1->arraysize) { - // k is equal to b1->arraysize - for (; k + 3 < b2->arraysize; k += 4) { - answer += roaring_hamming(b2->array[k]); - answer += roaring_hamming(b2->array[k + 1]); - answer += roaring_hamming(b2->array[k + 2]); - answer += roaring_hamming(b2->array[k + 3]); - } - for (; k < b2->arraysize; ++k) { - answer += roaring_hamming(b2->array[k]); - } - } else { - // k is equal to b2->arraysize - for (; k + 3 < b1->arraysize; k += 4) { - answer += roaring_hamming(b1->array[k]); - answer += roaring_hamming(b1->array[k + 1]); - answer += roaring_hamming(b1->array[k + 2]); - answer += roaring_hamming(b1->array[k + 3]); - } - for (; k < b1->arraysize; ++k) { - answer += roaring_hamming(b1->array[k]); - } - } - return answer; -} - -void bitset_inplace_intersection(bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2) { - size_t minlength = - b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize; - size_t k = 0; - for (; k < minlength; ++k) { - b1->array[k] &= b2->array[k]; - } - for (; k < b1->arraysize; ++k) { - b1->array[k] = 0; // memset could, maybe, be a tiny bit faster - } -} - -size_t bitset_intersection_count(const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2) { - size_t answer = 0; - size_t minlength = - b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize; - for (size_t k = 0; k < minlength; ++k) { - answer += roaring_hamming(b1->array[k] & b2->array[k]); - } - return answer; -} - -void bitset_inplace_difference(bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2) { - size_t minlength = - b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize; - size_t k = 0; - for (; k < minlength; ++k) { - b1->array[k] &= ~(b2->array[k]); - } -} - -size_t bitset_difference_count(const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2) { - size_t minlength = - b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize; - size_t k = 0; - size_t answer = 0; - for (; k < minlength; ++k) { - answer += roaring_hamming(b1->array[k] & ~(b2->array[k])); - } - for (; k < b1->arraysize; ++k) { - answer += roaring_hamming(b1->array[k]); - } - return answer; -} - -bool bitset_inplace_symmetric_difference( - bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2) { - size_t minlength = - b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize; - size_t k = 0; - for (; k < minlength; ++k) { - b1->array[k] ^= b2->array[k]; - } - if (b2->arraysize > b1->arraysize) { - size_t oldsize = b1->arraysize; - if (!bitset_resize(b1, b2->arraysize, false)) return false; - memcpy(b1->array + oldsize, b2->array + oldsize, - (b2->arraysize - oldsize) * sizeof(uint64_t)); - } - return true; -} - -size_t bitset_symmetric_difference_count( - const bitset_t *CROARING_CBITSET_RESTRICT b1, - const bitset_t *CROARING_CBITSET_RESTRICT b2) { - size_t minlength = - b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize; - size_t k = 0; - size_t answer = 0; - for (; k < minlength; ++k) { - answer += roaring_hamming(b1->array[k] ^ b2->array[k]); - } - if (b2->arraysize > b1->arraysize) { - for (; k < b2->arraysize; ++k) { - answer += roaring_hamming(b2->array[k]); - } - } else { - for (; k < b1->arraysize; ++k) { - answer += roaring_hamming(b1->array[k]); - } - } - return answer; -} - -bool bitset_trim(bitset_t *bitset) { - size_t newsize = bitset->arraysize; - while (newsize > 0) { - if (bitset->array[newsize - 1] == 0) - newsize -= 1; - else - break; - } - if (bitset->capacity == newsize) return true; // nothing to do - uint64_t *newarray; - if ((newarray = (uint64_t *)roaring_realloc( - bitset->array, sizeof(uint64_t) * newsize)) == NULL) { - return false; - } - bitset->array = newarray; - bitset->capacity = newsize; - bitset->arraysize = newsize; - return true; -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -/* end file src/bitset.c */ -/* begin file src/bitset_util.c */ -#include -#include -#include -#include -#include - - -#if CROARING_IS_X64 -#ifndef CROARING_COMPILER_SUPPORTS_AVX512 -#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined." -#endif // CROARING_COMPILER_SUPPORTS_AVX512 -#endif -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wuninitialized" -#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" -#endif -#ifdef __cplusplus -using namespace ::roaring::internal; -extern "C" { -namespace roaring { -namespace api { -#endif - -#if CROARING_IS_X64 -static uint8_t lengthTable[256] = { - 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, - 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, - 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, - 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, - 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, - 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8}; -#endif - -#if CROARING_IS_X64 -ALIGNED(32) -static uint32_t vecDecodeTable[256][8] = { - {0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */ - {1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */ - {2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */ - {1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */ - {3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */ - {1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */ - {2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */ - {1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */ - {4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */ - {1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */ - {2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */ - {1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */ - {3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */ - {1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */ - {2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */ - {1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */ - {5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */ - {1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */ - {2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */ - {1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */ - {3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */ - {1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */ - {2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */ - {1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */ - {4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */ - {1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */ - {2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */ - {1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */ - {3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */ - {1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */ - {2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */ - {1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */ - {6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */ - {1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */ - {2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */ - {1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */ - {3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */ - {1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */ - {2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */ - {1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */ - {4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */ - {1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */ - {2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */ - {1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */ - {3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */ - {1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */ - {2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */ - {1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */ - {5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */ - {1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */ - {2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */ - {1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */ - {3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */ - {1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */ - {2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */ - {1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */ - {4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */ - {1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */ - {2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */ - {1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */ - {3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */ - {1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */ - {2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */ - {1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */ - {7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */ - {1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */ - {2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */ - {1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */ - {3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */ - {1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */ - {2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */ - {1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */ - {4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */ - {1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */ - {2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */ - {1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */ - {3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */ - {1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */ - {2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */ - {1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */ - {5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */ - {1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */ - {2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */ - {1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */ - {3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */ - {1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */ - {2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */ - {1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */ - {4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */ - {1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */ - {2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */ - {1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */ - {3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */ - {1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */ - {2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */ - {1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */ - {6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */ - {1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */ - {2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */ - {1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */ - {3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */ - {1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */ - {2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */ - {1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */ - {4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */ - {1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */ - {2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */ - {1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */ - {3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */ - {1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */ - {2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */ - {1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */ - {5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */ - {1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */ - {2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */ - {1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */ - {3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */ - {1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */ - {2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */ - {1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */ - {4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */ - {1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */ - {2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */ - {1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */ - {3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */ - {1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */ - {2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */ - {1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */ - {8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */ - {1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */ - {2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */ - {1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */ - {3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */ - {1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */ - {2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */ - {1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */ - {4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */ - {1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */ - {2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */ - {1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */ - {3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */ - {1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */ - {2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */ - {1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */ - {5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */ - {1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */ - {2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */ - {1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */ - {3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */ - {1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */ - {2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */ - {1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */ - {4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */ - {1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */ - {2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */ - {1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */ - {3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */ - {1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */ - {2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */ - {1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */ - {6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */ - {1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */ - {2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */ - {1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */ - {3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */ - {1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */ - {2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */ - {1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */ - {4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */ - {1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */ - {2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */ - {1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */ - {3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */ - {1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */ - {2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */ - {1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */ - {5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */ - {1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */ - {2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */ - {1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */ - {3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */ - {1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */ - {2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */ - {1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */ - {4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */ - {1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */ - {2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */ - {1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */ - {3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */ - {1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */ - {2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */ - {1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */ - {7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */ - {1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */ - {2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */ - {1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */ - {3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */ - {1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */ - {2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */ - {1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */ - {4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */ - {1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */ - {2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */ - {1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */ - {3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */ - {1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */ - {2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */ - {1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */ - {5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */ - {1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */ - {2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */ - {1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */ - {3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */ - {1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */ - {2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */ - {1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */ - {4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */ - {1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */ - {2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */ - {1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */ - {3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */ - {1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */ - {2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */ - {1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */ - {6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */ - {1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */ - {2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */ - {1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */ - {3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */ - {1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */ - {2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */ - {1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */ - {4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */ - {1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */ - {2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */ - {1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */ - {3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */ - {1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */ - {2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */ - {1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */ - {5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */ - {1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */ - {2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */ - {1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */ - {3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */ - {1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */ - {2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */ - {1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */ - {4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */ - {1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */ - {2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */ - {1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */ - {3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */ - {1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */ - {2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */ - {1, 2, 3, 4, 5, 6, 7, 8} /* 0xFF (11111111) */ -}; - -#endif // #if CROARING_IS_X64 - -#if CROARING_IS_X64 -// same as vecDecodeTable but in 16 bits -ALIGNED(32) -static uint16_t vecDecodeTable_uint16[256][8] = { - {0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */ - {1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */ - {2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */ - {1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */ - {3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */ - {1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */ - {2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */ - {1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */ - {4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */ - {1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */ - {2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */ - {1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */ - {3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */ - {1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */ - {2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */ - {1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */ - {5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */ - {1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */ - {2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */ - {1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */ - {3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */ - {1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */ - {2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */ - {1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */ - {4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */ - {1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */ - {2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */ - {1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */ - {3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */ - {1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */ - {2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */ - {1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */ - {6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */ - {1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */ - {2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */ - {1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */ - {3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */ - {1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */ - {2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */ - {1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */ - {4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */ - {1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */ - {2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */ - {1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */ - {3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */ - {1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */ - {2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */ - {1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */ - {5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */ - {1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */ - {2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */ - {1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */ - {3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */ - {1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */ - {2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */ - {1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */ - {4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */ - {1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */ - {2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */ - {1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */ - {3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */ - {1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */ - {2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */ - {1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */ - {7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */ - {1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */ - {2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */ - {1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */ - {3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */ - {1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */ - {2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */ - {1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */ - {4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */ - {1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */ - {2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */ - {1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */ - {3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */ - {1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */ - {2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */ - {1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */ - {5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */ - {1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */ - {2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */ - {1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */ - {3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */ - {1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */ - {2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */ - {1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */ - {4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */ - {1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */ - {2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */ - {1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */ - {3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */ - {1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */ - {2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */ - {1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */ - {6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */ - {1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */ - {2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */ - {1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */ - {3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */ - {1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */ - {2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */ - {1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */ - {4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */ - {1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */ - {2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */ - {1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */ - {3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */ - {1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */ - {2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */ - {1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */ - {5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */ - {1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */ - {2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */ - {1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */ - {3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */ - {1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */ - {2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */ - {1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */ - {4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */ - {1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */ - {2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */ - {1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */ - {3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */ - {1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */ - {2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */ - {1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */ - {8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */ - {1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */ - {2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */ - {1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */ - {3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */ - {1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */ - {2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */ - {1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */ - {4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */ - {1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */ - {2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */ - {1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */ - {3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */ - {1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */ - {2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */ - {1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */ - {5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */ - {1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */ - {2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */ - {1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */ - {3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */ - {1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */ - {2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */ - {1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */ - {4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */ - {1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */ - {2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */ - {1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */ - {3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */ - {1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */ - {2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */ - {1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */ - {6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */ - {1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */ - {2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */ - {1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */ - {3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */ - {1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */ - {2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */ - {1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */ - {4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */ - {1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */ - {2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */ - {1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */ - {3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */ - {1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */ - {2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */ - {1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */ - {5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */ - {1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */ - {2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */ - {1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */ - {3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */ - {1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */ - {2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */ - {1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */ - {4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */ - {1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */ - {2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */ - {1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */ - {3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */ - {1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */ - {2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */ - {1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */ - {7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */ - {1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */ - {2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */ - {1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */ - {3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */ - {1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */ - {2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */ - {1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */ - {4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */ - {1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */ - {2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */ - {1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */ - {3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */ - {1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */ - {2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */ - {1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */ - {5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */ - {1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */ - {2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */ - {1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */ - {3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */ - {1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */ - {2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */ - {1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */ - {4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */ - {1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */ - {2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */ - {1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */ - {3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */ - {1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */ - {2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */ - {1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */ - {6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */ - {1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */ - {2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */ - {1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */ - {3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */ - {1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */ - {2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */ - {1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */ - {4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */ - {1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */ - {2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */ - {1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */ - {3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */ - {1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */ - {2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */ - {1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */ - {5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */ - {1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */ - {2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */ - {1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */ - {3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */ - {1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */ - {2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */ - {1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */ - {4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */ - {1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */ - {2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */ - {1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */ - {3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */ - {1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */ - {2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */ - {1, 2, 3, 4, 5, 6, 7, 8} /* 0xFF (11111111) */ -}; - -#endif - -#if CROARING_IS_X64 -#if CROARING_COMPILER_SUPPORTS_AVX512 -CROARING_TARGET_AVX512 -const uint8_t vbmi2_table[64] = { - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, - 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, - 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, - 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}; -size_t bitset_extract_setbits_avx512(const uint64_t *words, size_t length, - uint32_t *vout, size_t outcapacity, - uint32_t base) { - uint32_t *out = (uint32_t *)vout; - uint32_t *initout = out; - uint32_t *safeout = out + outcapacity; - __m512i base_v = _mm512_set1_epi32(base); - __m512i index_table = _mm512_loadu_si512(vbmi2_table); - size_t i = 0; - - for (; (i < length) && ((out + 64) < safeout); i += 1) { - uint64_t v = words[i]; - __m512i vec = _mm512_maskz_compress_epi8(v, index_table); - - uint8_t advance = (uint8_t)roaring_hamming(v); - - __m512i vbase = - _mm512_add_epi32(base_v, _mm512_set1_epi32((int)(i * 64))); - __m512i r1 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 0)); - __m512i r2 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 1)); - __m512i r3 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 2)); - __m512i r4 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 3)); - - r1 = _mm512_add_epi32(r1, vbase); - r2 = _mm512_add_epi32(r2, vbase); - r3 = _mm512_add_epi32(r3, vbase); - r4 = _mm512_add_epi32(r4, vbase); - _mm512_storeu_si512((__m512i *)out, r1); - _mm512_storeu_si512((__m512i *)(out + 16), r2); - _mm512_storeu_si512((__m512i *)(out + 32), r3); - _mm512_storeu_si512((__m512i *)(out + 48), r4); - - out += advance; - } - - base += i * 64; - - for (; (i < length) && (out < safeout); ++i) { - uint64_t w = words[i]; - while ((w != 0) && (out < safeout)) { - uint64_t t = - w & (~w + 1); // on x64, should compile to BLSI (careful: the - // Intel compiler seems to fail) - int r = - roaring_trailing_zeroes(w); // on x64, should compile to TZCNT - uint32_t val = r + base; - memcpy(out, &val, - sizeof(uint32_t)); // should be compiled as a MOV on x64 - out++; - w ^= t; - } - base += 64; - } - - return out - initout; -} - -// Reference: -// https://lemire.me/blog/2022/05/10/faster-bitset-decoding-using-intel-avx-512/ -size_t bitset_extract_setbits_avx512_uint16(const uint64_t *array, - size_t length, uint16_t *vout, - size_t capacity, uint16_t base) { - uint16_t *out = (uint16_t *)vout; - uint16_t *initout = out; - uint16_t *safeout = vout + capacity; - - __m512i base_v = _mm512_set1_epi16(base); - __m512i index_table = _mm512_loadu_si512(vbmi2_table); - size_t i = 0; - - for (; (i < length) && ((out + 64) < safeout); i++) { - uint64_t v = array[i]; - __m512i vec = _mm512_maskz_compress_epi8(v, index_table); - - uint8_t advance = (uint8_t)roaring_hamming(v); - - __m512i vbase = - _mm512_add_epi16(base_v, _mm512_set1_epi16((short)(i * 64))); - __m512i r1 = _mm512_cvtepi8_epi16(_mm512_extracti32x8_epi32(vec, 0)); - __m512i r2 = _mm512_cvtepi8_epi16(_mm512_extracti32x8_epi32(vec, 1)); - - r1 = _mm512_add_epi16(r1, vbase); - r2 = _mm512_add_epi16(r2, vbase); - - _mm512_storeu_si512((__m512i *)out, r1); - _mm512_storeu_si512((__m512i *)(out + 32), r2); - out += advance; - } - - base += i * 64; - - for (; (i < length) && (out < safeout); ++i) { - uint64_t w = array[i]; - while ((w != 0) && (out < safeout)) { - uint64_t t = - w & (~w + 1); // on x64, should compile to BLSI (careful: the - // Intel compiler seems to fail) - int r = - roaring_trailing_zeroes(w); // on x64, should compile to TZCNT - uint32_t val = r + base; - memcpy(out, &val, sizeof(uint16_t)); - out++; - w ^= t; - } - base += 64; - } - - return out - initout; -} -CROARING_UNTARGET_AVX512 -#endif - -CROARING_TARGET_AVX2 -size_t bitset_extract_setbits_avx2(const uint64_t *words, size_t length, - uint32_t *out, size_t outcapacity, - uint32_t base) { - uint32_t *initout = out; - __m256i baseVec = _mm256_set1_epi32(base - 1); - __m256i incVec = _mm256_set1_epi32(64); - __m256i add8 = _mm256_set1_epi32(8); - uint32_t *safeout = out + outcapacity; - size_t i = 0; - for (; (i < length) && (out + 64 <= safeout); ++i) { - uint64_t w = words[i]; - if (w == 0) { - baseVec = _mm256_add_epi32(baseVec, incVec); - } else { - for (int k = 0; k < 4; ++k) { - uint8_t byteA = (uint8_t)w; - uint8_t byteB = (uint8_t)(w >> 8); - w >>= 16; - __m256i vecA = - _mm256_loadu_si256((const __m256i *)vecDecodeTable[byteA]); - __m256i vecB = - _mm256_loadu_si256((const __m256i *)vecDecodeTable[byteB]); - uint8_t advanceA = lengthTable[byteA]; - uint8_t advanceB = lengthTable[byteB]; - vecA = _mm256_add_epi32(baseVec, vecA); - baseVec = _mm256_add_epi32(baseVec, add8); - vecB = _mm256_add_epi32(baseVec, vecB); - baseVec = _mm256_add_epi32(baseVec, add8); - _mm256_storeu_si256((__m256i *)out, vecA); - out += advanceA; - _mm256_storeu_si256((__m256i *)out, vecB); - out += advanceB; - } - } - } - base += i * 64; - for (; (i < length) && (out < safeout); ++i) { - uint64_t w = words[i]; - while ((w != 0) && (out < safeout)) { - uint64_t t = - w & (~w + 1); // on x64, should compile to BLSI (careful: the - // Intel compiler seems to fail) - int r = - roaring_trailing_zeroes(w); // on x64, should compile to TZCNT - uint32_t val = r + base; - memcpy(out, &val, - sizeof(uint32_t)); // should be compiled as a MOV on x64 - out++; - w ^= t; - } - base += 64; - } - return out - initout; -} -CROARING_UNTARGET_AVX2 -#endif // CROARING_IS_X64 - -size_t bitset_extract_setbits(const uint64_t *words, size_t length, - uint32_t *out, uint32_t base) { - int outpos = 0; - for (size_t i = 0; i < length; ++i) { - uint64_t w = words[i]; - while (w != 0) { - uint64_t t = - w & (~w + 1); // on x64, should compile to BLSI (careful: the - // Intel compiler seems to fail) - int r = - roaring_trailing_zeroes(w); // on x64, should compile to TZCNT - uint32_t val = r + base; - memcpy(out + outpos, &val, - sizeof(uint32_t)); // should be compiled as a MOV on x64 - outpos++; - w ^= t; - } - base += 64; - } - return outpos; -} - -size_t bitset_extract_intersection_setbits_uint16( - const uint64_t *__restrict__ words1, const uint64_t *__restrict__ words2, - size_t length, uint16_t *out, uint16_t base) { - int outpos = 0; - for (size_t i = 0; i < length; ++i) { - uint64_t w = words1[i] & words2[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = roaring_trailing_zeroes(w); - out[outpos++] = (uint16_t)(r + base); - w ^= t; - } - base += 64; - } - return outpos; -} - -#if CROARING_IS_X64 -/* - * Given a bitset containing "length" 64-bit words, write out the position - * of all the set bits to "out" as 16-bit integers, values start at "base" (can - *be set to zero). - * - * The "out" pointer should be sufficient to store the actual number of bits - *set. - * - * Returns how many values were actually decoded. - * - * This function uses SSE decoding. - */ -CROARING_TARGET_AVX2 -size_t bitset_extract_setbits_sse_uint16(const uint64_t *words, size_t length, - uint16_t *out, size_t outcapacity, - uint16_t base) { - uint16_t *initout = out; - __m128i baseVec = _mm_set1_epi16(base - 1); - __m128i incVec = _mm_set1_epi16(64); - __m128i add8 = _mm_set1_epi16(8); - uint16_t *safeout = out + outcapacity; - const int numberofbytes = 2; // process two bytes at a time - size_t i = 0; - for (; (i < length) && (out + numberofbytes * 8 <= safeout); ++i) { - uint64_t w = words[i]; - if (w == 0) { - baseVec = _mm_add_epi16(baseVec, incVec); - } else { - for (int k = 0; k < 4; ++k) { - uint8_t byteA = (uint8_t)w; - uint8_t byteB = (uint8_t)(w >> 8); - w >>= 16; - __m128i vecA = _mm_loadu_si128( - (const __m128i *)vecDecodeTable_uint16[byteA]); - __m128i vecB = _mm_loadu_si128( - (const __m128i *)vecDecodeTable_uint16[byteB]); - uint8_t advanceA = lengthTable[byteA]; - uint8_t advanceB = lengthTable[byteB]; - vecA = _mm_add_epi16(baseVec, vecA); - baseVec = _mm_add_epi16(baseVec, add8); - vecB = _mm_add_epi16(baseVec, vecB); - baseVec = _mm_add_epi16(baseVec, add8); - _mm_storeu_si128((__m128i *)out, vecA); - out += advanceA; - _mm_storeu_si128((__m128i *)out, vecB); - out += advanceB; - } - } - } - base += (uint16_t)(i * 64); - for (; (i < length) && (out < safeout); ++i) { - uint64_t w = words[i]; - while ((w != 0) && (out < safeout)) { - uint64_t t = w & (~w + 1); - int r = roaring_trailing_zeroes(w); - *out = (uint16_t)(r + base); - out++; - w ^= t; - } - base += 64; - } - return out - initout; -} -CROARING_UNTARGET_AVX2 -#endif - -/* - * Given a bitset containing "length" 64-bit words, write out the position - * of all the set bits to "out", values start at "base" (can be set to zero). - * - * The "out" pointer should be sufficient to store the actual number of bits - *set. - * - * Returns how many values were actually decoded. - */ -size_t bitset_extract_setbits_uint16(const uint64_t *words, size_t length, - uint16_t *out, uint16_t base) { - int outpos = 0; - for (size_t i = 0; i < length; ++i) { - uint64_t w = words[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = roaring_trailing_zeroes(w); - out[outpos++] = (uint16_t)(r + base); - w ^= t; - } - base += 64; - } - return outpos; -} - -#if defined(CROARING_ASMBITMANIPOPTIMIZATION) && defined(CROARING_IS_X64) - -static inline uint64_t _asm_bitset_set_list_withcard(uint64_t *words, - uint64_t card, - const uint16_t *list, - uint64_t length) { - uint64_t offset, load, pos; - uint64_t shift = 6; - const uint16_t *end = list + length; - if (!length) return card; - // TODO: could unroll for performance, see bitset_set_list - // bts is not available as an intrinsic in GCC - __asm volatile( - "1:\n" - "movzwq (%[list]), %[pos]\n" - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[words],%[offset],8), %[load]\n" - "bts %[pos], %[load]\n" - "mov %[load], (%[words],%[offset],8)\n" - "sbb $-1, %[card]\n" - "add $2, %[list]\n" - "cmp %[list], %[end]\n" - "jnz 1b" - : [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load), - [pos] "=&r"(pos), [offset] "=&r"(offset) - : [end] "r"(end), [words] "r"(words), [shift] "r"(shift)); - return card; -} - -static inline void _asm_bitset_set_list(uint64_t *words, const uint16_t *list, - uint64_t length) { - uint64_t pos; - const uint16_t *end = list + length; - - uint64_t shift = 6; - uint64_t offset; - uint64_t load; - for (; list + 3 < end; list += 4) { - pos = list[0]; - __asm volatile( - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[words],%[offset],8), %[load]\n" - "bts %[pos], %[load]\n" - "mov %[load], (%[words],%[offset],8)" - : [load] "=&r"(load), [offset] "=&r"(offset) - : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos)); - pos = list[1]; - __asm volatile( - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[words],%[offset],8), %[load]\n" - "bts %[pos], %[load]\n" - "mov %[load], (%[words],%[offset],8)" - : [load] "=&r"(load), [offset] "=&r"(offset) - : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos)); - pos = list[2]; - __asm volatile( - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[words],%[offset],8), %[load]\n" - "bts %[pos], %[load]\n" - "mov %[load], (%[words],%[offset],8)" - : [load] "=&r"(load), [offset] "=&r"(offset) - : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos)); - pos = list[3]; - __asm volatile( - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[words],%[offset],8), %[load]\n" - "bts %[pos], %[load]\n" - "mov %[load], (%[words],%[offset],8)" - : [load] "=&r"(load), [offset] "=&r"(offset) - : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos)); - } - - while (list != end) { - pos = list[0]; - __asm volatile( - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[words],%[offset],8), %[load]\n" - "bts %[pos], %[load]\n" - "mov %[load], (%[words],%[offset],8)" - : [load] "=&r"(load), [offset] "=&r"(offset) - : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos)); - list++; - } -} - -static inline uint64_t _asm_bitset_clear_list(uint64_t *words, uint64_t card, - const uint16_t *list, - uint64_t length) { - uint64_t offset, load, pos; - uint64_t shift = 6; - const uint16_t *end = list + length; - if (!length) return card; - // btr is not available as an intrinsic in GCC - __asm volatile( - "1:\n" - "movzwq (%[list]), %[pos]\n" - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[words],%[offset],8), %[load]\n" - "btr %[pos], %[load]\n" - "mov %[load], (%[words],%[offset],8)\n" - "sbb $0, %[card]\n" - "add $2, %[list]\n" - "cmp %[list], %[end]\n" - "jnz 1b" - : [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load), - [pos] "=&r"(pos), [offset] "=&r"(offset) - : [end] "r"(end), [words] "r"(words), [shift] "r"(shift) - : - /* clobbers */ "memory"); - return card; -} - -static inline uint64_t _scalar_bitset_clear_list(uint64_t *words, uint64_t card, - const uint16_t *list, - uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *(const uint16_t *)list; - offset = pos >> 6; - index = pos % 64; - load = words[offset]; - newload = load & ~(UINT64_C(1) << index); - card -= (load ^ newload) >> index; - words[offset] = newload; - list++; - } - return card; -} - -static inline uint64_t _scalar_bitset_set_list_withcard(uint64_t *words, - uint64_t card, - const uint16_t *list, - uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *list; - offset = pos >> 6; - index = pos % 64; - load = words[offset]; - newload = load | (UINT64_C(1) << index); - card += (load ^ newload) >> index; - words[offset] = newload; - list++; - } - return card; -} - -static inline void _scalar_bitset_set_list(uint64_t *words, - const uint16_t *list, - uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *list; - offset = pos >> 6; - index = pos % 64; - load = words[offset]; - newload = load | (UINT64_C(1) << index); - words[offset] = newload; - list++; - } -} - -uint64_t bitset_clear_list(uint64_t *words, uint64_t card, const uint16_t *list, - uint64_t length) { - if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) { - return _asm_bitset_clear_list(words, card, list, length); - } else { - return _scalar_bitset_clear_list(words, card, list, length); - } -} - -uint64_t bitset_set_list_withcard(uint64_t *words, uint64_t card, - const uint16_t *list, uint64_t length) { - if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) { - return _asm_bitset_set_list_withcard(words, card, list, length); - } else { - return _scalar_bitset_set_list_withcard(words, card, list, length); - } -} - -void bitset_set_list(uint64_t *words, const uint16_t *list, uint64_t length) { - if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) { - _asm_bitset_set_list(words, list, length); - } else { - _scalar_bitset_set_list(words, list, length); - } -} -#else -uint64_t bitset_clear_list(uint64_t *words, uint64_t card, const uint16_t *list, - uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *(const uint16_t *)list; - offset = pos >> 6; - index = pos % 64; - load = words[offset]; - newload = load & ~(UINT64_C(1) << index); - card -= (load ^ newload) >> index; - words[offset] = newload; - list++; - } - return card; -} - -uint64_t bitset_set_list_withcard(uint64_t *words, uint64_t card, - const uint16_t *list, uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *list; - offset = pos >> 6; - index = pos % 64; - load = words[offset]; - newload = load | (UINT64_C(1) << index); - card += (load ^ newload) >> index; - words[offset] = newload; - list++; - } - return card; -} - -void bitset_set_list(uint64_t *words, const uint16_t *list, uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *list; - offset = pos >> 6; - index = pos % 64; - load = words[offset]; - newload = load | (UINT64_C(1) << index); - words[offset] = newload; - list++; - } -} - -#endif - -/* flip specified bits */ -/* TODO: consider whether worthwhile to make an asm version */ - -uint64_t bitset_flip_list_withcard(uint64_t *words, uint64_t card, - const uint16_t *list, uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *list; - offset = pos >> 6; - index = pos % 64; - load = words[offset]; - newload = load ^ (UINT64_C(1) << index); - // todo: is a branch here all that bad? - card += - (1 - 2 * (((UINT64_C(1) << index) & load) >> index)); // +1 or -1 - words[offset] = newload; - list++; - } - return card; -} - -void bitset_flip_list(uint64_t *words, const uint16_t *list, uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *list; - offset = pos >> 6; - index = pos % 64; - load = words[offset]; - newload = load ^ (UINT64_C(1) << index); - words[offset] = newload; - list++; - } -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace api { -#endif -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC diagnostic pop -#endif/* end file src/bitset_util.c */ -/* begin file src/containers/array.c */ -/* - * array.c - * - */ - -#include -#include -#include - - -#if CROARING_IS_X64 -#ifndef CROARING_COMPILER_SUPPORTS_AVX512 -#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined." -#endif // CROARING_COMPILER_SUPPORTS_AVX512 -#endif - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -extern inline uint16_t array_container_minimum(const array_container_t *arr); -extern inline uint16_t array_container_maximum(const array_container_t *arr); -extern inline int array_container_index_equalorlarger( - const array_container_t *arr, uint16_t x); - -extern inline int array_container_rank(const array_container_t *arr, - uint16_t x); -extern inline uint32_t array_container_rank_many(const array_container_t *arr, - uint64_t start_rank, - const uint32_t *begin, - const uint32_t *end, - uint64_t *ans); -extern inline int array_container_get_index(const array_container_t *arr, - uint16_t x); -extern inline bool array_container_contains(const array_container_t *arr, - uint16_t pos); -extern inline int array_container_cardinality(const array_container_t *array); -extern inline bool array_container_nonzero_cardinality( - const array_container_t *array); -extern inline int32_t array_container_serialized_size_in_bytes(int32_t card); -extern inline bool array_container_empty(const array_container_t *array); -extern inline bool array_container_full(const array_container_t *array); - -/* Create a new array with capacity size. Return NULL in case of failure. */ -array_container_t *array_container_create_given_capacity(int32_t size) { - array_container_t *container; - - if ((container = (array_container_t *)roaring_malloc( - sizeof(array_container_t))) == NULL) { - return NULL; - } - - if (size <= 0) { // we don't want to rely on malloc(0) - container->array = NULL; - } else if ((container->array = (uint16_t *)roaring_malloc(sizeof(uint16_t) * - size)) == NULL) { - roaring_free(container); - return NULL; - } - - container->capacity = size; - container->cardinality = 0; - - return container; -} - -/* Create a new array. Return NULL in case of failure. */ -array_container_t *array_container_create(void) { - return array_container_create_given_capacity(ARRAY_DEFAULT_INIT_SIZE); -} - -/* Create a new array containing all values in [min,max). */ -array_container_t *array_container_create_range(uint32_t min, uint32_t max) { - array_container_t *answer = - array_container_create_given_capacity(max - min + 1); - if (answer == NULL) return answer; - answer->cardinality = 0; - for (uint32_t k = min; k < max; k++) { - answer->array[answer->cardinality++] = k; - } - return answer; -} - -/* Duplicate container */ -ALLOW_UNALIGNED -array_container_t *array_container_clone(const array_container_t *src) { - array_container_t *newcontainer = - array_container_create_given_capacity(src->capacity); - if (newcontainer == NULL) return NULL; - - newcontainer->cardinality = src->cardinality; - - memcpy(newcontainer->array, src->array, - src->cardinality * sizeof(uint16_t)); - - return newcontainer; -} - -void array_container_offset(const array_container_t *c, container_t **loc, - container_t **hic, uint16_t offset) { - array_container_t *lo = NULL, *hi = NULL; - int top, lo_cap, hi_cap; - - top = (1 << 16) - offset; - - lo_cap = count_less(c->array, c->cardinality, top); - if (loc && lo_cap) { - lo = array_container_create_given_capacity(lo_cap); - for (int i = 0; i < lo_cap; ++i) { - array_container_add(lo, c->array[i] + offset); - } - *loc = (container_t *)lo; - } - - hi_cap = c->cardinality - lo_cap; - if (hic && hi_cap) { - hi = array_container_create_given_capacity(hi_cap); - for (int i = lo_cap; i < c->cardinality; ++i) { - array_container_add(hi, c->array[i] + offset); - } - *hic = (container_t *)hi; - } -} - -int array_container_shrink_to_fit(array_container_t *src) { - if (src->cardinality == src->capacity) return 0; // nothing to do - int savings = src->capacity - src->cardinality; - src->capacity = src->cardinality; - if (src->capacity == - 0) { // we do not want to rely on realloc for zero allocs - roaring_free(src->array); - src->array = NULL; - } else { - uint16_t *oldarray = src->array; - src->array = (uint16_t *)roaring_realloc( - oldarray, src->capacity * sizeof(uint16_t)); - if (src->array == NULL) roaring_free(oldarray); // should never happen? - } - return savings; -} - -/* Free memory. */ -void array_container_free(array_container_t *arr) { - if (arr->array != - NULL) { // Jon Strabala reports that some tools complain otherwise - roaring_free(arr->array); - arr->array = NULL; // pedantic - } - roaring_free(arr); -} - -static inline int32_t grow_capacity(int32_t capacity) { - return (capacity <= 0) ? ARRAY_DEFAULT_INIT_SIZE - : capacity < 64 ? capacity * 2 - : capacity < 1024 ? capacity * 3 / 2 - : capacity * 5 / 4; -} - -static inline int32_t clamp(int32_t val, int32_t min, int32_t max) { - return ((val < min) ? min : (val > max) ? max : val); -} - -void array_container_grow(array_container_t *container, int32_t min, - bool preserve) { - int32_t max = (min <= DEFAULT_MAX_SIZE ? DEFAULT_MAX_SIZE : 65536); - int32_t new_capacity = clamp(grow_capacity(container->capacity), min, max); - - container->capacity = new_capacity; - uint16_t *array = container->array; - - if (preserve) { - container->array = - (uint16_t *)roaring_realloc(array, new_capacity * sizeof(uint16_t)); - if (container->array == NULL) roaring_free(array); - } else { - // Jon Strabala reports that some tools complain otherwise - if (array != NULL) { - roaring_free(array); - } - container->array = - (uint16_t *)roaring_malloc(new_capacity * sizeof(uint16_t)); - } - - // if realloc fails, we have container->array == NULL. -} - -/* Copy one container into another. We assume that they are distinct. */ -void array_container_copy(const array_container_t *src, - array_container_t *dst) { - const int32_t cardinality = src->cardinality; - if (cardinality > dst->capacity) { - array_container_grow(dst, cardinality, false); - } - - dst->cardinality = cardinality; - memcpy(dst->array, src->array, cardinality * sizeof(uint16_t)); -} - -void array_container_add_from_range(array_container_t *arr, uint32_t min, - uint32_t max, uint16_t step) { - for (uint32_t value = min; value < max; value += step) { - array_container_append(arr, value); - } -} - -/* Computes the union of array1 and array2 and write the result to arrayout. - * It is assumed that arrayout is distinct from both array1 and array2. - */ -void array_container_union(const array_container_t *array_1, - const array_container_t *array_2, - array_container_t *out) { - const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality; - const int32_t max_cardinality = card_1 + card_2; - - if (out->capacity < max_cardinality) { - array_container_grow(out, max_cardinality, false); - } - out->cardinality = (int32_t)fast_union_uint16( - array_1->array, card_1, array_2->array, card_2, out->array); -} - -/* Computes the difference of array1 and array2 and write the result - * to array out. - * Array out does not need to be distinct from array_1 - */ -void array_container_andnot(const array_container_t *array_1, - const array_container_t *array_2, - array_container_t *out) { - if (out->capacity < array_1->cardinality) - array_container_grow(out, array_1->cardinality, false); -#if CROARING_IS_X64 - if ((croaring_hardware_support() & ROARING_SUPPORTS_AVX2) && - (out != array_1) && (out != array_2)) { - out->cardinality = difference_vector16( - array_1->array, array_1->cardinality, array_2->array, - array_2->cardinality, out->array); - } else { - out->cardinality = - difference_uint16(array_1->array, array_1->cardinality, - array_2->array, array_2->cardinality, out->array); - } -#else - out->cardinality = - difference_uint16(array_1->array, array_1->cardinality, array_2->array, - array_2->cardinality, out->array); -#endif -} - -/* Computes the symmetric difference of array1 and array2 and write the - * result - * to arrayout. - * It is assumed that arrayout is distinct from both array1 and array2. - */ -void array_container_xor(const array_container_t *array_1, - const array_container_t *array_2, - array_container_t *out) { - const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality; - const int32_t max_cardinality = card_1 + card_2; - if (out->capacity < max_cardinality) { - array_container_grow(out, max_cardinality, false); - } - -#if CROARING_IS_X64 - if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) { - out->cardinality = - xor_vector16(array_1->array, array_1->cardinality, array_2->array, - array_2->cardinality, out->array); - } else { - out->cardinality = - xor_uint16(array_1->array, array_1->cardinality, array_2->array, - array_2->cardinality, out->array); - } -#else - out->cardinality = - xor_uint16(array_1->array, array_1->cardinality, array_2->array, - array_2->cardinality, out->array); -#endif -} - -static inline int32_t minimum_int32(int32_t a, int32_t b) { - return (a < b) ? a : b; -} - -/* computes the intersection of array1 and array2 and write the result to - * arrayout. - * It is assumed that arrayout is distinct from both array1 and array2. - * */ -void array_container_intersection(const array_container_t *array1, - const array_container_t *array2, - array_container_t *out) { - int32_t card_1 = array1->cardinality, card_2 = array2->cardinality, - min_card = minimum_int32(card_1, card_2); - const int threshold = 64; // subject to tuning -#if CROARING_IS_X64 - if (out->capacity < min_card) { - array_container_grow(out, min_card + sizeof(__m128i) / sizeof(uint16_t), - false); - } -#else - if (out->capacity < min_card) { - array_container_grow(out, min_card, false); - } -#endif - - if (card_1 * threshold < card_2) { - out->cardinality = intersect_skewed_uint16( - array1->array, card_1, array2->array, card_2, out->array); - } else if (card_2 * threshold < card_1) { - out->cardinality = intersect_skewed_uint16( - array2->array, card_2, array1->array, card_1, out->array); - } else { -#if CROARING_IS_X64 - if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) { - out->cardinality = intersect_vector16( - array1->array, card_1, array2->array, card_2, out->array); - } else { - out->cardinality = intersect_uint16( - array1->array, card_1, array2->array, card_2, out->array); - } -#else - out->cardinality = intersect_uint16(array1->array, card_1, - array2->array, card_2, out->array); -#endif - } -} - -/* computes the size of the intersection of array1 and array2 - * */ -int array_container_intersection_cardinality(const array_container_t *array1, - const array_container_t *array2) { - int32_t card_1 = array1->cardinality, card_2 = array2->cardinality; - const int threshold = 64; // subject to tuning - if (card_1 * threshold < card_2) { - return intersect_skewed_uint16_cardinality(array1->array, card_1, - array2->array, card_2); - } else if (card_2 * threshold < card_1) { - return intersect_skewed_uint16_cardinality(array2->array, card_2, - array1->array, card_1); - } else { -#if CROARING_IS_X64 - if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) { - return intersect_vector16_cardinality(array1->array, card_1, - array2->array, card_2); - } else { - return intersect_uint16_cardinality(array1->array, card_1, - array2->array, card_2); - } -#else - return intersect_uint16_cardinality(array1->array, card_1, - array2->array, card_2); -#endif - } -} - -bool array_container_intersect(const array_container_t *array1, - const array_container_t *array2) { - int32_t card_1 = array1->cardinality, card_2 = array2->cardinality; - const int threshold = 64; // subject to tuning - if (card_1 * threshold < card_2) { - return intersect_skewed_uint16_nonempty(array1->array, card_1, - array2->array, card_2); - } else if (card_2 * threshold < card_1) { - return intersect_skewed_uint16_nonempty(array2->array, card_2, - array1->array, card_1); - } else { - // we do not bother vectorizing - return intersect_uint16_nonempty(array1->array, card_1, array2->array, - card_2); - } -} - -/* computes the intersection of array1 and array2 and write the result to - * array1. - * */ -void array_container_intersection_inplace(array_container_t *src_1, - const array_container_t *src_2) { - int32_t card_1 = src_1->cardinality, card_2 = src_2->cardinality; - const int threshold = 64; // subject to tuning - if (card_1 * threshold < card_2) { - src_1->cardinality = intersect_skewed_uint16( - src_1->array, card_1, src_2->array, card_2, src_1->array); - } else if (card_2 * threshold < card_1) { - src_1->cardinality = intersect_skewed_uint16( - src_2->array, card_2, src_1->array, card_1, src_1->array); - } else { -#if CROARING_IS_X64 - if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) { - src_1->cardinality = intersect_vector16_inplace( - src_1->array, card_1, src_2->array, card_2); - } else { - src_1->cardinality = intersect_uint16( - src_1->array, card_1, src_2->array, card_2, src_1->array); - } -#else - src_1->cardinality = intersect_uint16( - src_1->array, card_1, src_2->array, card_2, src_1->array); -#endif - } -} - -ALLOW_UNALIGNED -int array_container_to_uint32_array(void *vout, const array_container_t *cont, - uint32_t base) { -#if CROARING_IS_X64 - int support = croaring_hardware_support(); -#if CROARING_COMPILER_SUPPORTS_AVX512 - if (support & ROARING_SUPPORTS_AVX512) { - return avx512_array_container_to_uint32_array(vout, cont->array, - cont->cardinality, base); - } -#endif - if (support & ROARING_SUPPORTS_AVX2) { - return array_container_to_uint32_array_vector16( - vout, cont->array, cont->cardinality, base); - } -#endif // CROARING_IS_X64 - int outpos = 0; - uint32_t *out = (uint32_t *)vout; - size_t i = 0; - for (; i < (size_t)cont->cardinality; ++i) { - const uint32_t val = base + cont->array[i]; - memcpy(out + outpos, &val, - sizeof(uint32_t)); // should be compiled as a MOV on x64 - outpos++; - } - return outpos; -} - -void array_container_printf(const array_container_t *v) { - if (v->cardinality == 0) { - printf("{}"); - return; - } - printf("{"); - printf("%d", v->array[0]); - for (int i = 1; i < v->cardinality; ++i) { - printf(",%d", v->array[i]); - } - printf("}"); -} - -void array_container_printf_as_uint32_array(const array_container_t *v, - uint32_t base) { - if (v->cardinality == 0) { - return; - } - printf("%u", v->array[0] + base); - for (int i = 1; i < v->cardinality; ++i) { - printf(",%u", v->array[i] + base); - } -} - -/* - * Validate the container. Returns true if valid. - */ -bool array_container_validate(const array_container_t *v, const char **reason) { - if (v->capacity < 0) { - *reason = "negative capacity"; - return false; - } - if (v->cardinality < 0) { - *reason = "negative cardinality"; - return false; - } - if (v->cardinality > v->capacity) { - *reason = "cardinality exceeds capacity"; - return false; - } - if (v->cardinality > DEFAULT_MAX_SIZE) { - *reason = "cardinality exceeds DEFAULT_MAX_SIZE"; - return false; - } - if (v->cardinality == 0) { - *reason = "zero cardinality"; - return false; - } - - if (v->array == NULL) { - *reason = "NULL array pointer"; - return false; - } - uint16_t prev = v->array[0]; - for (int i = 1; i < v->cardinality; ++i) { - if (v->array[i] <= prev) { - *reason = "array elements not strictly increasing"; - return false; - } - prev = v->array[i]; - } - - return true; -} - -/* Compute the number of runs */ -int32_t array_container_number_of_runs(const array_container_t *ac) { - // Can SIMD work here? - int32_t nr_runs = 0; - int32_t prev = -2; - for (const uint16_t *p = ac->array; p != ac->array + ac->cardinality; ++p) { - if (*p != prev + 1) nr_runs++; - prev = *p; - } - return nr_runs; -} - -/** - * Writes the underlying array to buf, outputs how many bytes were written. - * The number of bytes written should be - * array_container_size_in_bytes(container). - * - */ -int32_t array_container_write(const array_container_t *container, char *buf) { - memcpy(buf, container->array, container->cardinality * sizeof(uint16_t)); - return array_container_size_in_bytes(container); -} - -bool array_container_is_subset(const array_container_t *container1, - const array_container_t *container2) { - if (container1->cardinality > container2->cardinality) { - return false; - } - int i1 = 0, i2 = 0; - while (i1 < container1->cardinality && i2 < container2->cardinality) { - if (container1->array[i1] == container2->array[i2]) { - i1++; - i2++; - } else if (container1->array[i1] > container2->array[i2]) { - i2++; - } else { // container1->array[i1] < container2->array[i2] - return false; - } - } - if (i1 == container1->cardinality) { - return true; - } else { - return false; - } -} - -int32_t array_container_read(int32_t cardinality, array_container_t *container, - const char *buf) { - if (container->capacity < cardinality) { - array_container_grow(container, cardinality, false); - } - container->cardinality = cardinality; - memcpy(container->array, buf, container->cardinality * sizeof(uint16_t)); - - return array_container_size_in_bytes(container); -} - -bool array_container_iterate(const array_container_t *cont, uint32_t base, - roaring_iterator iterator, void *ptr) { - for (int i = 0; i < cont->cardinality; i++) - if (!iterator(cont->array[i] + base, ptr)) return false; - return true; -} - -bool array_container_iterate64(const array_container_t *cont, uint32_t base, - roaring_iterator64 iterator, uint64_t high_bits, - void *ptr) { - for (int i = 0; i < cont->cardinality; i++) - if (!iterator(high_bits | (uint64_t)(cont->array[i] + base), ptr)) - return false; - return true; -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -/* end file src/containers/array.c */ -/* begin file src/containers/bitset.c */ -/* - * bitset.c - * - */ -#ifndef _POSIX_C_SOURCE -#define _POSIX_C_SOURCE 200809L -#endif -#include -#include -#include -#include - - -#if CROARING_IS_X64 -#ifndef CROARING_COMPILER_SUPPORTS_AVX512 -#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined." -#endif // CROARING_COMPILER_SUPPORTS_AVX512 -#endif - -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wuninitialized" -#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" -#endif -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -extern inline int bitset_container_cardinality( - const bitset_container_t *bitset); -extern inline void bitset_container_set(bitset_container_t *bitset, - uint16_t pos); -// unused at this time: -// extern inline void bitset_container_unset(bitset_container_t *bitset, -// uint16_t pos); -extern inline bool bitset_container_get(const bitset_container_t *bitset, - uint16_t pos); -extern inline int32_t bitset_container_serialized_size_in_bytes(void); -extern inline bool bitset_container_add(bitset_container_t *bitset, - uint16_t pos); -extern inline bool bitset_container_remove(bitset_container_t *bitset, - uint16_t pos); -extern inline bool bitset_container_contains(const bitset_container_t *bitset, - uint16_t pos); - -void bitset_container_clear(bitset_container_t *bitset) { - memset(bitset->words, 0, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); - bitset->cardinality = 0; -} - -void bitset_container_set_all(bitset_container_t *bitset) { - memset(bitset->words, INT64_C(-1), - sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); - bitset->cardinality = (1 << 16); -} - -/* Create a new bitset. Return NULL in case of failure. */ -bitset_container_t *bitset_container_create(void) { - bitset_container_t *bitset = - (bitset_container_t *)roaring_malloc(sizeof(bitset_container_t)); - - if (!bitset) { - return NULL; - } - - size_t align_size = 32; -#if CROARING_IS_X64 - int support = croaring_hardware_support(); - if (support & ROARING_SUPPORTS_AVX512) { - // sizeof(__m512i) == 64 - align_size = 64; - } else { - // sizeof(__m256i) == 32 - align_size = 32; - } -#endif - bitset->words = (uint64_t *)roaring_aligned_malloc( - align_size, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); - if (!bitset->words) { - roaring_free(bitset); - return NULL; - } - bitset_container_clear(bitset); - return bitset; -} - -/* Copy one container into another. We assume that they are distinct. */ -void bitset_container_copy(const bitset_container_t *source, - bitset_container_t *dest) { - dest->cardinality = source->cardinality; - memcpy(dest->words, source->words, - sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); -} - -void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min, - uint32_t max, uint16_t step) { - if (step == 0) return; // refuse to crash - if ((64 % step) == 0) { // step divides 64 - uint64_t mask = 0; // construct the repeated mask - for (uint32_t value = (min % step); value < 64; value += step) { - mask |= ((uint64_t)1 << value); - } - uint32_t firstword = min / 64; - uint32_t endword = (max - 1) / 64; - bitset->cardinality = (max - min + step - 1) / step; - if (firstword == endword) { - bitset->words[firstword] |= - mask & (((~UINT64_C(0)) << (min % 64)) & - ((~UINT64_C(0)) >> ((~max + 1) % 64))); - return; - } - bitset->words[firstword] = mask & ((~UINT64_C(0)) << (min % 64)); - for (uint32_t i = firstword + 1; i < endword; i++) - bitset->words[i] = mask; - bitset->words[endword] = mask & ((~UINT64_C(0)) >> ((~max + 1) % 64)); - } else { - for (uint32_t value = min; value < max; value += step) { - bitset_container_add(bitset, value); - } - } -} - -/* Free memory. */ -void bitset_container_free(bitset_container_t *bitset) { - if (bitset->words != - NULL) { // Jon Strabala reports that some tools complain otherwise - roaring_aligned_free(bitset->words); - bitset->words = NULL; // pedantic - } - roaring_free(bitset); -} - -/* duplicate container. */ -ALLOW_UNALIGNED -bitset_container_t *bitset_container_clone(const bitset_container_t *src) { - bitset_container_t *bitset = - (bitset_container_t *)roaring_malloc(sizeof(bitset_container_t)); - - if (!bitset) { - return NULL; - } - - size_t align_size = 32; -#if CROARING_IS_X64 - if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) { - // sizeof(__m512i) == 64 - align_size = 64; - } else { - // sizeof(__m256i) == 32 - align_size = 32; - } -#endif - bitset->words = (uint64_t *)roaring_aligned_malloc( - align_size, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); - if (!bitset->words) { - roaring_free(bitset); - return NULL; - } - bitset->cardinality = src->cardinality; - memcpy(bitset->words, src->words, - sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); - return bitset; -} - -void bitset_container_offset(const bitset_container_t *c, container_t **loc, - container_t **hic, uint16_t offset) { - bitset_container_t *bc = NULL; - uint64_t val; - uint16_t b, i, end; - - b = offset >> 6; - i = offset % 64; - end = 1024 - b; - - if (loc != NULL) { - bc = bitset_container_create(); - if (i == 0) { - memcpy(bc->words + b, c->words, 8 * end); - } else { - bc->words[b] = c->words[0] << i; - for (uint32_t k = 1; k < end; ++k) { - val = c->words[k] << i; - val |= c->words[k - 1] >> (64 - i); - bc->words[b + k] = val; - } - } - - bc->cardinality = bitset_container_compute_cardinality(bc); - if (bc->cardinality != 0) { - *loc = bc; - } - if (bc->cardinality == c->cardinality) { - return; - } - } - - if (hic == NULL) { - // Both hic and loc can't be NULL, so bc is never NULL here - if (bc->cardinality == 0) { - bitset_container_free(bc); - } - return; - } - - if (bc == NULL || bc->cardinality != 0) { - bc = bitset_container_create(); - } - - if (i == 0) { - memcpy(bc->words, c->words + end, 8 * b); - } else { - for (uint32_t k = end; k < 1024; ++k) { - val = c->words[k] << i; - val |= c->words[k - 1] >> (64 - i); - bc->words[k - end] = val; - } - bc->words[b] = c->words[1023] >> (64 - i); - } - - bc->cardinality = bitset_container_compute_cardinality(bc); - if (bc->cardinality == 0) { - bitset_container_free(bc); - return; - } - *hic = bc; -} - -void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin, - uint32_t end) { - bitset_set_range(bitset->words, begin, end); - bitset->cardinality = - bitset_container_compute_cardinality(bitset); // could be smarter -} - -bool bitset_container_intersect(const bitset_container_t *src_1, - const bitset_container_t *src_2) { - // could vectorize, but this is probably already quite fast in practice - const uint64_t *__restrict__ words_1 = src_1->words; - const uint64_t *__restrict__ words_2 = src_2->words; - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) { - if ((words_1[i] & words_2[i]) != 0) return true; - } - return false; -} - -#if CROARING_IS_X64 -#ifndef CROARING_WORDS_IN_AVX2_REG -#define CROARING_WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t) -#endif -#ifndef WORDS_IN_AVX512_REG -#define WORDS_IN_AVX512_REG sizeof(__m512i) / sizeof(uint64_t) -#endif -/* Get the number of bits set (force computation) */ -static inline int _scalar_bitset_container_compute_cardinality( - const bitset_container_t *bitset) { - const uint64_t *words = bitset->words; - int32_t sum = 0; - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 4) { - sum += roaring_hamming(words[i]); - sum += roaring_hamming(words[i + 1]); - sum += roaring_hamming(words[i + 2]); - sum += roaring_hamming(words[i + 3]); - } - return sum; -} -/* Get the number of bits set (force computation) */ -int bitset_container_compute_cardinality(const bitset_container_t *bitset) { - int support = croaring_hardware_support(); -#if CROARING_COMPILER_SUPPORTS_AVX512 - if (support & ROARING_SUPPORTS_AVX512) { - return (int)avx512_vpopcount( - (const __m512i *)bitset->words, - BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX512_REG)); - } else -#endif // CROARING_COMPILER_SUPPORTS_AVX512 - if (support & ROARING_SUPPORTS_AVX2) { - return (int)avx2_harley_seal_popcount256( - (const __m256i *)bitset->words, - BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG)); - } else { - return _scalar_bitset_container_compute_cardinality(bitset); - } -} - -#elif defined(CROARING_USENEON) -int bitset_container_compute_cardinality(const bitset_container_t *bitset) { - uint16x8_t n0 = vdupq_n_u16(0); - uint16x8_t n1 = vdupq_n_u16(0); - uint16x8_t n2 = vdupq_n_u16(0); - uint16x8_t n3 = vdupq_n_u16(0); - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { - uint64x2_t c0 = vld1q_u64(&bitset->words[i + 0]); - n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0)))); - uint64x2_t c1 = vld1q_u64(&bitset->words[i + 2]); - n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1)))); - uint64x2_t c2 = vld1q_u64(&bitset->words[i + 4]); - n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2)))); - uint64x2_t c3 = vld1q_u64(&bitset->words[i + 6]); - n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3)))); - } - uint64x2_t n = vdupq_n_u64(0); - n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0))); - n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1))); - n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2))); - n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3))); - return vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1); -} - -#else // CROARING_IS_X64 - -/* Get the number of bits set (force computation) */ -int bitset_container_compute_cardinality(const bitset_container_t *bitset) { - const uint64_t *words = bitset->words; - int32_t sum = 0; - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 4) { - sum += roaring_hamming(words[i]); - sum += roaring_hamming(words[i + 1]); - sum += roaring_hamming(words[i + 2]); - sum += roaring_hamming(words[i + 3]); - } - return sum; -} - -#endif // CROARING_IS_X64 - -#if CROARING_IS_X64 - -#define CROARING_BITSET_CONTAINER_FN_REPEAT 8 -#ifndef WORDS_IN_AVX512_REG -#define WORDS_IN_AVX512_REG sizeof(__m512i) / sizeof(uint64_t) -#endif // WORDS_IN_AVX512_REG - -/* Computes a binary operation (eg union) on bitset1 and bitset2 and write the - result to bitsetout */ -// clang-format off -#define CROARING_AVX512_BITSET_CONTAINER_FN1(before, opname, opsymbol, avx_intrinsic, \ - neon_intrinsic, after) \ - static inline int _avx512_bitset_container_##opname##_nocard( \ - const bitset_container_t *src_1, const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const uint8_t * __restrict__ words_1 = (const uint8_t *)src_1->words; \ - const uint8_t * __restrict__ words_2 = (const uint8_t *)src_2->words; \ - /* not using the blocking optimization for some reason*/ \ - uint8_t *out = (uint8_t*)dst->words; \ - const int innerloop = 8; \ - for (size_t i = 0; \ - i < BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX512_REG); \ - i+=innerloop) { \ - __m512i A1, A2, AO; \ - A1 = _mm512_loadu_si512((const __m512i *)(words_1)); \ - A2 = _mm512_loadu_si512((const __m512i *)(words_2)); \ - AO = avx_intrinsic(A2, A1); \ - _mm512_storeu_si512((__m512i *)out, AO); \ - A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 64)); \ - A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 64)); \ - AO = avx_intrinsic(A2, A1); \ - _mm512_storeu_si512((__m512i *)(out+64), AO); \ - A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 128)); \ - A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 128)); \ - AO = avx_intrinsic(A2, A1); \ - _mm512_storeu_si512((__m512i *)(out+128), AO); \ - A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 192)); \ - A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 192)); \ - AO = avx_intrinsic(A2, A1); \ - _mm512_storeu_si512((__m512i *)(out+192), AO); \ - A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 256)); \ - A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 256)); \ - AO = avx_intrinsic(A2, A1); \ - _mm512_storeu_si512((__m512i *)(out+256), AO); \ - A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 320)); \ - A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 320)); \ - AO = avx_intrinsic(A2, A1); \ - _mm512_storeu_si512((__m512i *)(out+320), AO); \ - A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 384)); \ - A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 384)); \ - AO = avx_intrinsic(A2, A1); \ - _mm512_storeu_si512((__m512i *)(out+384), AO); \ - A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 448)); \ - A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 448)); \ - AO = avx_intrinsic(A2, A1); \ - _mm512_storeu_si512((__m512i *)(out+448), AO); \ - out+=512; \ - words_1 += 512; \ - words_2 += 512; \ - } \ - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \ - return dst->cardinality; \ - } - -#define CROARING_AVX512_BITSET_CONTAINER_FN2(before, opname, opsymbol, avx_intrinsic, \ - neon_intrinsic, after) \ - /* next, a version that updates cardinality*/ \ - static inline int _avx512_bitset_container_##opname(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const __m512i * __restrict__ words_1 = (const __m512i *) src_1->words; \ - const __m512i * __restrict__ words_2 = (const __m512i *) src_2->words; \ - __m512i *out = (__m512i *) dst->words; \ - dst->cardinality = (int32_t)avx512_harley_seal_popcount512andstore_##opname(words_2,\ - words_1, out,BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX512_REG)); \ - return dst->cardinality; \ - } - -#define CROARING_AVX512_BITSET_CONTAINER_FN3(before, opname, opsymbol, avx_intrinsic, \ - neon_intrinsic, after) \ - /* next, a version that just computes the cardinality*/ \ - static inline int _avx512_bitset_container_##opname##_justcard( \ - const bitset_container_t *src_1, const bitset_container_t *src_2) { \ - const __m512i * __restrict__ data1 = (const __m512i *) src_1->words; \ - const __m512i * __restrict__ data2 = (const __m512i *) src_2->words; \ - return (int)avx512_harley_seal_popcount512_##opname(data2, \ - data1, BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX512_REG)); \ - } - - -// we duplicate the function because other containers use the "or" term, makes API more consistent -#if CROARING_COMPILER_SUPPORTS_AVX512 -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, or, |, _mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, union, |, _mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 - -// we duplicate the function because other containers use the "intersection" term, makes API more consistent -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, and, &, _mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, intersection, &, _mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 - -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, xor, ^, _mm512_xor_si512, veorq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, andnot, &~, _mm512_andnot_si512, vbicq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 - -// we duplicate the function because other containers use the "or" term, makes API more consistent -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, or, |, _mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, union, |, _mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 - -// we duplicate the function because other containers use the "intersection" term, makes API more consistent -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, and, &, _mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, intersection, &, _mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 - -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, xor, ^, _mm512_xor_si512, veorq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, andnot, &~, _mm512_andnot_si512, vbicq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 - -// we duplicate the function because other containers use the "or" term, makes API more consistent -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, or, |, _mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, union, |, _mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 - -// we duplicate the function because other containers use the "intersection" term, makes API more consistent -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, and, &, _mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, intersection, &, _mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 - -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, xor, ^, _mm512_xor_si512, veorq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 -CROARING_TARGET_AVX512 -CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, andnot, &~, _mm512_andnot_si512, vbicq_u64, CROARING_UNTARGET_AVX512) -CROARING_UNTARGET_AVX512 -#endif // CROARING_COMPILER_SUPPORTS_AVX512 - -#ifndef CROARING_WORDS_IN_AVX2_REG -#define CROARING_WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t) -#endif // CROARING_WORDS_IN_AVX2_REG -#define CROARING_LOOP_SIZE \ - BITSET_CONTAINER_SIZE_IN_WORDS / \ - ((CROARING_WORDS_IN_AVX2_REG)*CROARING_BITSET_CONTAINER_FN_REPEAT) - -/* Computes a binary operation (eg union) on bitset1 and bitset2 and write the - result to bitsetout */ -// clang-format off -#define CROARING_AVX_BITSET_CONTAINER_FN1(before, opname, opsymbol, avx_intrinsic, \ - neon_intrinsic, after) \ - static inline int _avx2_bitset_container_##opname##_nocard( \ - const bitset_container_t *src_1, const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const uint8_t *__restrict__ words_1 = (const uint8_t *)src_1->words; \ - const uint8_t *__restrict__ words_2 = (const uint8_t *)src_2->words; \ - /* not using the blocking optimization for some reason*/ \ - uint8_t *out = (uint8_t *)dst->words; \ - const int innerloop = 8; \ - for (size_t i = 0; \ - i < BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG); \ - i += innerloop) { \ - __m256i A1, A2, AO; \ - A1 = _mm256_lddqu_si256((const __m256i *)(words_1)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(words_2)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)out, AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 32)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 32)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out + 32), AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 64)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 64)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out + 64), AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 96)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 96)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out + 96), AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 128)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 128)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out + 128), AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 160)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 160)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out + 160), AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 192)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 192)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out + 192), AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 224)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 224)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out + 224), AO); \ - out += 256; \ - words_1 += 256; \ - words_2 += 256; \ - } \ - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \ - return dst->cardinality; \ - } - -#define CROARING_AVX_BITSET_CONTAINER_FN2(before, opname, opsymbol, avx_intrinsic, \ - neon_intrinsic, after) \ - /* next, a version that updates cardinality*/ \ - static inline int _avx2_bitset_container_##opname(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const __m256i *__restrict__ words_1 = (const __m256i *)src_1->words; \ - const __m256i *__restrict__ words_2 = (const __m256i *)src_2->words; \ - __m256i *out = (__m256i *)dst->words; \ - dst->cardinality = (int32_t)avx2_harley_seal_popcount256andstore_##opname( \ - words_2, words_1, out, \ - BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG)); \ - return dst->cardinality; \ - } \ - -#define CROARING_AVX_BITSET_CONTAINER_FN3(before, opname, opsymbol, avx_intrinsic, \ - neon_intrinsic, after) \ - /* next, a version that just computes the cardinality*/ \ - static inline int _avx2_bitset_container_##opname##_justcard( \ - const bitset_container_t *src_1, const bitset_container_t *src_2) { \ - const __m256i *__restrict__ data1 = (const __m256i *)src_1->words; \ - const __m256i *__restrict__ data2 = (const __m256i *)src_2->words; \ - return (int)avx2_harley_seal_popcount256_##opname( \ - data2, data1, BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG)); \ - } - - -// we duplicate the function because other containers use the "or" term, makes API more consistent -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, or, |, _mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, union, |, _mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 - -// we duplicate the function because other containers use the "intersection" term, makes API more consistent -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, and, &, _mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, intersection, &, _mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 - -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, xor, ^, _mm256_xor_si256, veorq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, andnot, &~, _mm256_andnot_si256, vbicq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 - -// we duplicate the function because other containers use the "or" term, makes API more consistent -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, or, |, _mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, union, |, _mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 - -// we duplicate the function because other containers use the "intersection" term, makes API more consistent -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, and, &, _mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, intersection, &, _mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 - -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, xor, ^, _mm256_xor_si256, veorq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, andnot, &~, _mm256_andnot_si256, vbicq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 - -// we duplicate the function because other containers use the "or" term, makes API more consistent -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, or, |, _mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, union, |, _mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 - -// we duplicate the function because other containers use the "intersection" term, makes API more consistent -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, and, &, _mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, intersection, &, _mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 - -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, xor, ^, _mm256_xor_si256, veorq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 -CROARING_TARGET_AVX2 -CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, andnot, &~, _mm256_andnot_si256, vbicq_u64, CROARING_UNTARGET_AVX2) -CROARING_UNTARGET_AVX2 - - -#define SCALAR_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, \ - neon_intrinsic) \ - static inline int _scalar_bitset_container_##opname(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const uint64_t *__restrict__ words_1 = src_1->words; \ - const uint64_t *__restrict__ words_2 = src_2->words; \ - uint64_t *out = dst->words; \ - int32_t sum = 0; \ - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) { \ - const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]), \ - word_2 = (words_1[i + 1]) opsymbol(words_2[i + 1]); \ - out[i] = word_1; \ - out[i + 1] = word_2; \ - sum += roaring_hamming(word_1); \ - sum += roaring_hamming(word_2); \ - } \ - dst->cardinality = sum; \ - return dst->cardinality; \ - } \ - static inline int _scalar_bitset_container_##opname##_nocard( \ - const bitset_container_t *src_1, const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const uint64_t *__restrict__ words_1 = src_1->words; \ - const uint64_t *__restrict__ words_2 = src_2->words; \ - uint64_t *out = dst->words; \ - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) { \ - out[i] = (words_1[i])opsymbol(words_2[i]); \ - } \ - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \ - return dst->cardinality; \ - } \ - static inline int _scalar_bitset_container_##opname##_justcard( \ - const bitset_container_t *src_1, const bitset_container_t *src_2) { \ - const uint64_t *__restrict__ words_1 = src_1->words; \ - const uint64_t *__restrict__ words_2 = src_2->words; \ - int32_t sum = 0; \ - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) { \ - const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]), \ - word_2 = (words_1[i + 1]) opsymbol(words_2[i + 1]); \ - sum += roaring_hamming(word_1); \ - sum += roaring_hamming(word_2); \ - } \ - return sum; \ - } - -// we duplicate the function because other containers use the "or" term, makes API more consistent -SCALAR_BITSET_CONTAINER_FN(or, |, _mm256_or_si256, vorrq_u64) -SCALAR_BITSET_CONTAINER_FN(union, |, _mm256_or_si256, vorrq_u64) - -// we duplicate the function because other containers use the "intersection" term, makes API more consistent -SCALAR_BITSET_CONTAINER_FN(and, &, _mm256_and_si256, vandq_u64) -SCALAR_BITSET_CONTAINER_FN(intersection, &, _mm256_and_si256, vandq_u64) - -SCALAR_BITSET_CONTAINER_FN(xor, ^, _mm256_xor_si256, veorq_u64) -SCALAR_BITSET_CONTAINER_FN(andnot, &~, _mm256_andnot_si256, vbicq_u64) - -#if CROARING_COMPILER_SUPPORTS_AVX512 -#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, neon_intrinsic) \ - int bitset_container_##opname(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - int support = croaring_hardware_support(); \ - if ( support & ROARING_SUPPORTS_AVX512 ) { \ - return _avx512_bitset_container_##opname(src_1, src_2, dst); \ - } \ - else if ( support & ROARING_SUPPORTS_AVX2 ) { \ - return _avx2_bitset_container_##opname(src_1, src_2, dst); \ - } else { \ - return _scalar_bitset_container_##opname(src_1, src_2, dst); \ - } \ - } \ - int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - int support = croaring_hardware_support(); \ - if ( support & ROARING_SUPPORTS_AVX512 ) { \ - return _avx512_bitset_container_##opname##_nocard(src_1, src_2, dst); \ - } \ - else if ( support & ROARING_SUPPORTS_AVX2 ) { \ - return _avx2_bitset_container_##opname##_nocard(src_1, src_2, dst); \ - } else { \ - return _scalar_bitset_container_##opname##_nocard(src_1, src_2, dst); \ - } \ - } \ - int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \ - const bitset_container_t *src_2) { \ - int support = croaring_hardware_support(); \ - if ( support & ROARING_SUPPORTS_AVX512 ) { \ - return _avx512_bitset_container_##opname##_justcard(src_1, src_2); \ - } \ - else if ( support & ROARING_SUPPORTS_AVX2 ) { \ - return _avx2_bitset_container_##opname##_justcard(src_1, src_2); \ - } else { \ - return _scalar_bitset_container_##opname##_justcard(src_1, src_2); \ - } \ - } - -#else // CROARING_COMPILER_SUPPORTS_AVX512 - - -#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, neon_intrinsic) \ - int bitset_container_##opname(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - if ( croaring_hardware_support() & ROARING_SUPPORTS_AVX2 ) { \ - return _avx2_bitset_container_##opname(src_1, src_2, dst); \ - } else { \ - return _scalar_bitset_container_##opname(src_1, src_2, dst); \ - } \ - } \ - int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - if ( croaring_hardware_support() & ROARING_SUPPORTS_AVX2 ) { \ - return _avx2_bitset_container_##opname##_nocard(src_1, src_2, dst); \ - } else { \ - return _scalar_bitset_container_##opname##_nocard(src_1, src_2, dst); \ - } \ - } \ - int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \ - const bitset_container_t *src_2) { \ - if ( croaring_hardware_support() & ROARING_SUPPORTS_AVX2 ) { \ - return _avx2_bitset_container_##opname##_justcard(src_1, src_2); \ - } else { \ - return _scalar_bitset_container_##opname##_justcard(src_1, src_2); \ - } \ - } - -#endif // CROARING_COMPILER_SUPPORTS_AVX512 - -#elif defined(CROARING_USENEON) - -#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, neon_intrinsic) \ -int bitset_container_##opname(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const uint64_t * __restrict__ words_1 = src_1->words; \ - const uint64_t * __restrict__ words_2 = src_2->words; \ - uint64_t *out = dst->words; \ - uint16x8_t n0 = vdupq_n_u16(0); \ - uint16x8_t n1 = vdupq_n_u16(0); \ - uint16x8_t n2 = vdupq_n_u16(0); \ - uint16x8_t n3 = vdupq_n_u16(0); \ - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { \ - uint64x2_t c0 = neon_intrinsic(vld1q_u64(&words_1[i + 0]), \ - vld1q_u64(&words_2[i + 0])); \ - n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0)))); \ - vst1q_u64(&out[i + 0], c0); \ - uint64x2_t c1 = neon_intrinsic(vld1q_u64(&words_1[i + 2]), \ - vld1q_u64(&words_2[i + 2])); \ - n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1)))); \ - vst1q_u64(&out[i + 2], c1); \ - uint64x2_t c2 = neon_intrinsic(vld1q_u64(&words_1[i + 4]), \ - vld1q_u64(&words_2[i + 4])); \ - n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2)))); \ - vst1q_u64(&out[i + 4], c2); \ - uint64x2_t c3 = neon_intrinsic(vld1q_u64(&words_1[i + 6]), \ - vld1q_u64(&words_2[i + 6])); \ - n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3)))); \ - vst1q_u64(&out[i + 6], c3); \ - } \ - uint64x2_t n = vdupq_n_u64(0); \ - n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0))); \ - n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1))); \ - n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2))); \ - n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3))); \ - dst->cardinality = vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1); \ - return dst->cardinality; \ -} \ -int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const uint64_t * __restrict__ words_1 = src_1->words; \ - const uint64_t * __restrict__ words_2 = src_2->words; \ - uint64_t *out = dst->words; \ - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { \ - vst1q_u64(&out[i + 0], neon_intrinsic(vld1q_u64(&words_1[i + 0]), \ - vld1q_u64(&words_2[i + 0]))); \ - vst1q_u64(&out[i + 2], neon_intrinsic(vld1q_u64(&words_1[i + 2]), \ - vld1q_u64(&words_2[i + 2]))); \ - vst1q_u64(&out[i + 4], neon_intrinsic(vld1q_u64(&words_1[i + 4]), \ - vld1q_u64(&words_2[i + 4]))); \ - vst1q_u64(&out[i + 6], neon_intrinsic(vld1q_u64(&words_1[i + 6]), \ - vld1q_u64(&words_2[i + 6]))); \ - } \ - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \ - return dst->cardinality; \ -} \ -int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \ - const bitset_container_t *src_2) { \ - const uint64_t * __restrict__ words_1 = src_1->words; \ - const uint64_t * __restrict__ words_2 = src_2->words; \ - uint16x8_t n0 = vdupq_n_u16(0); \ - uint16x8_t n1 = vdupq_n_u16(0); \ - uint16x8_t n2 = vdupq_n_u16(0); \ - uint16x8_t n3 = vdupq_n_u16(0); \ - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { \ - uint64x2_t c0 = neon_intrinsic(vld1q_u64(&words_1[i + 0]), \ - vld1q_u64(&words_2[i + 0])); \ - n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0)))); \ - uint64x2_t c1 = neon_intrinsic(vld1q_u64(&words_1[i + 2]), \ - vld1q_u64(&words_2[i + 2])); \ - n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1)))); \ - uint64x2_t c2 = neon_intrinsic(vld1q_u64(&words_1[i + 4]), \ - vld1q_u64(&words_2[i + 4])); \ - n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2)))); \ - uint64x2_t c3 = neon_intrinsic(vld1q_u64(&words_1[i + 6]), \ - vld1q_u64(&words_2[i + 6])); \ - n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3)))); \ - } \ - uint64x2_t n = vdupq_n_u64(0); \ - n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0))); \ - n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1))); \ - n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2))); \ - n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3))); \ - return vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1); \ -} - -#else - -#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, neon_intrinsic) \ -int bitset_container_##opname(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const uint64_t * __restrict__ words_1 = src_1->words; \ - const uint64_t * __restrict__ words_2 = src_2->words; \ - uint64_t *out = dst->words; \ - int32_t sum = 0; \ - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) { \ - const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]), \ - word_2 = (words_1[i + 1])opsymbol(words_2[i + 1]); \ - out[i] = word_1; \ - out[i + 1] = word_2; \ - sum += roaring_hamming(word_1); \ - sum += roaring_hamming(word_2); \ - } \ - dst->cardinality = sum; \ - return dst->cardinality; \ -} \ -int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const uint64_t * __restrict__ words_1 = src_1->words; \ - const uint64_t * __restrict__ words_2 = src_2->words; \ - uint64_t *out = dst->words; \ - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) { \ - out[i] = (words_1[i])opsymbol(words_2[i]); \ - } \ - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \ - return dst->cardinality; \ -} \ -int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \ - const bitset_container_t *src_2) { \ - printf("A1\n"); const uint64_t * __restrict__ words_1 = src_1->words; \ - const uint64_t * __restrict__ words_2 = src_2->words; \ - int32_t sum = 0; \ - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) { \ - const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]), \ - word_2 = (words_1[i + 1])opsymbol(words_2[i + 1]); \ - sum += roaring_hamming(word_1); \ - sum += roaring_hamming(word_2); \ - } \ - return sum; \ -} - -#endif // CROARING_IS_X64 - -// we duplicate the function because other containers use the "or" term, makes API more consistent -CROARING_BITSET_CONTAINER_FN(or, |, _mm256_or_si256, vorrq_u64) -CROARING_BITSET_CONTAINER_FN(union, |, _mm256_or_si256, vorrq_u64) - -// we duplicate the function because other containers use the "intersection" term, makes API more consistent -CROARING_BITSET_CONTAINER_FN(and, &, _mm256_and_si256, vandq_u64) -CROARING_BITSET_CONTAINER_FN(intersection, &, _mm256_and_si256, vandq_u64) - -CROARING_BITSET_CONTAINER_FN(xor, ^, _mm256_xor_si256, veorq_u64) -CROARING_BITSET_CONTAINER_FN(andnot, &~, _mm256_andnot_si256, vbicq_u64) -// clang-format On - - -ALLOW_UNALIGNED -int bitset_container_to_uint32_array( - uint32_t *out, - const bitset_container_t *bc, - uint32_t base -){ -#if CROARING_IS_X64 - int support = croaring_hardware_support(); -#if CROARING_COMPILER_SUPPORTS_AVX512 - if(( support & ROARING_SUPPORTS_AVX512 ) && (bc->cardinality >= 8192)) // heuristic - return (int) bitset_extract_setbits_avx512(bc->words, - BITSET_CONTAINER_SIZE_IN_WORDS, out, bc->cardinality, base); - else -#endif - if(( support & ROARING_SUPPORTS_AVX2 ) && (bc->cardinality >= 8192)) // heuristic - return (int) bitset_extract_setbits_avx2(bc->words, - BITSET_CONTAINER_SIZE_IN_WORDS, out, bc->cardinality, base); - else - return (int) bitset_extract_setbits(bc->words, - BITSET_CONTAINER_SIZE_IN_WORDS, out, base); -#else - return (int) bitset_extract_setbits(bc->words, - BITSET_CONTAINER_SIZE_IN_WORDS, out, base); -#endif -} - -/* - * Print this container using printf (useful for debugging). - */ -void bitset_container_printf(const bitset_container_t * v) { - printf("{"); - uint32_t base = 0; - bool iamfirst = true;// TODO: rework so that this is not necessary yet still readable - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) { - uint64_t w = v->words[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = roaring_trailing_zeroes(w); - if(iamfirst) {// predicted to be false - printf("%u",base + r); - iamfirst = false; - } else { - printf(",%u",base + r); - } - w ^= t; - } - base += 64; - } - printf("}"); -} - - -/* - * Print this container using printf as a comma-separated list of 32-bit integers starting at base. - */ -void bitset_container_printf_as_uint32_array(const bitset_container_t * v, uint32_t base) { - bool iamfirst = true;// TODO: rework so that this is not necessary yet still readable - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) { - uint64_t w = v->words[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = roaring_trailing_zeroes(w); - if(iamfirst) {// predicted to be false - printf("%u", r + base); - iamfirst = false; - } else { - printf(",%u",r + base); - } - w ^= t; - } - base += 64; - } -} - -/* - * Validate the container. Returns true if valid. - */ -bool bitset_container_validate(const bitset_container_t *v, const char **reason) { - if (v->words == NULL) { - *reason = "words is NULL"; - return false; - } - if (v->cardinality != bitset_container_compute_cardinality(v)) { - *reason = "cardinality is incorrect"; - return false; - } - if (v->cardinality <= DEFAULT_MAX_SIZE) { - *reason = "cardinality is too small for a bitmap container"; - return false; - } - // Attempt to forcibly load the first and last words, hopefully causing - // a segfault or an address sanitizer error if words is not allocated. - volatile uint64_t *words = v->words; - (void) words[0]; - (void) words[BITSET_CONTAINER_SIZE_IN_WORDS - 1]; - return true; -} - - -// TODO: use the fast lower bound, also -int bitset_container_number_of_runs(bitset_container_t *bc) { - int num_runs = 0; - uint64_t next_word = bc->words[0]; - - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS-1; ++i) { - uint64_t word = next_word; - next_word = bc->words[i+1]; - num_runs += roaring_hamming((~word) & (word << 1)) + ( (word >> 63) & ~next_word); - } - - uint64_t word = next_word; - num_runs += roaring_hamming((~word) & (word << 1)); - if((word & 0x8000000000000000ULL) != 0) - num_runs++; - return num_runs; -} - - -int32_t bitset_container_write(const bitset_container_t *container, - char *buf) { - memcpy(buf, container->words, BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t)); - return bitset_container_size_in_bytes(container); -} - - -int32_t bitset_container_read(int32_t cardinality, bitset_container_t *container, - const char *buf) { - container->cardinality = cardinality; - memcpy(container->words, buf, BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t)); - return bitset_container_size_in_bytes(container); -} - -bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base, roaring_iterator iterator, void *ptr) { - for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) { - uint64_t w = cont->words[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = roaring_trailing_zeroes(w); - if(!iterator(r + base, ptr)) return false; - w ^= t; - } - base += 64; - } - return true; -} - -bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base, roaring_iterator64 iterator, uint64_t high_bits, void *ptr) { - for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) { - uint64_t w = cont->words[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = roaring_trailing_zeroes(w); - if(!iterator(high_bits | (uint64_t)(r + base), ptr)) return false; - w ^= t; - } - base += 64; - } - return true; -} - -#if CROARING_IS_X64 -#if CROARING_COMPILER_SUPPORTS_AVX512 -CROARING_TARGET_AVX512 -ALLOW_UNALIGNED -static inline bool _avx512_bitset_container_equals(const bitset_container_t *container1, const bitset_container_t *container2) { - const __m512i *ptr1 = (const __m512i*)container1->words; - const __m512i *ptr2 = (const __m512i*)container2->words; - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)/64; i++) { - __m512i r1 = _mm512_loadu_si512(ptr1+i); - __m512i r2 = _mm512_loadu_si512(ptr2+i); - __mmask64 mask = _mm512_cmpeq_epi8_mask(r1, r2); - if ((uint64_t)mask != UINT64_MAX) { - return false; - } - } - return true; -} -CROARING_UNTARGET_AVX512 -#endif // CROARING_COMPILER_SUPPORTS_AVX512 -CROARING_TARGET_AVX2 -ALLOW_UNALIGNED -static inline bool _avx2_bitset_container_equals(const bitset_container_t *container1, const bitset_container_t *container2) { - const __m256i *ptr1 = (const __m256i*)container1->words; - const __m256i *ptr2 = (const __m256i*)container2->words; - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)/32; i++) { - __m256i r1 = _mm256_loadu_si256(ptr1+i); - __m256i r2 = _mm256_loadu_si256(ptr2+i); - int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2)); - if ((uint32_t)mask != UINT32_MAX) { - return false; - } - } - return true; -} -CROARING_UNTARGET_AVX2 -#endif // CROARING_IS_X64 - -ALLOW_UNALIGNED -bool bitset_container_equals(const bitset_container_t *container1, const bitset_container_t *container2) { - if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) && (container2->cardinality != BITSET_UNKNOWN_CARDINALITY)) { - if(container1->cardinality != container2->cardinality) { - return false; - } - if (container1->cardinality == INT32_C(0x10000)) { - return true; - } - } -#if CROARING_IS_X64 - int support = croaring_hardware_support(); -#if CROARING_COMPILER_SUPPORTS_AVX512 - if( support & ROARING_SUPPORTS_AVX512 ) { - return _avx512_bitset_container_equals(container1, container2); - } - else -#endif - if( support & ROARING_SUPPORTS_AVX2 ) { - return _avx2_bitset_container_equals(container1, container2); - } -#endif - return memcmp(container1->words, - container2->words, - BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)) == 0; -} - -bool bitset_container_is_subset(const bitset_container_t *container1, - const bitset_container_t *container2) { - if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) && (container2->cardinality != BITSET_UNKNOWN_CARDINALITY)) { - if(container1->cardinality > container2->cardinality) { - return false; - } - } - for(int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) { - if((container1->words[i] & container2->words[i]) != container1->words[i]) { - return false; - } - } - return true; -} - -bool bitset_container_select(const bitset_container_t *container, uint32_t *start_rank, uint32_t rank, uint32_t *element) { - int card = bitset_container_cardinality(container); - if(rank >= *start_rank + card) { - *start_rank += card; - return false; - } - const uint64_t *words = container->words; - int32_t size; - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 1) { - size = roaring_hamming(words[i]); - if(rank <= *start_rank + size) { - uint64_t w = container->words[i]; - uint16_t base = i*64; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = roaring_trailing_zeroes(w); - if(*start_rank == rank) { - *element = r+base; - return true; - } - w ^= t; - *start_rank += 1; - } - } - else - *start_rank += size; - } - assert(false); - roaring_unreachable; -} - - -/* Returns the smallest value (assumes not empty) */ -uint16_t bitset_container_minimum(const bitset_container_t *container) { - for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) { - uint64_t w = container->words[i]; - if (w != 0) { - int r = roaring_trailing_zeroes(w); - return r + i * 64; - } - } - return UINT16_MAX; -} - -/* Returns the largest value (assumes not empty) */ -uint16_t bitset_container_maximum(const bitset_container_t *container) { - for (int32_t i = BITSET_CONTAINER_SIZE_IN_WORDS - 1; i > 0; --i ) { - uint64_t w = container->words[i]; - if (w != 0) { - int r = roaring_leading_zeroes(w); - return i * 64 + 63 - r; - } - } - return 0; -} - -/* Returns the number of values equal or smaller than x */ -int bitset_container_rank(const bitset_container_t *container, uint16_t x) { - // credit: aqrit - int sum = 0; - int i = 0; - for (int end = x / 64; i < end; i++){ - sum += roaring_hamming(container->words[i]); - } - uint64_t lastword = container->words[i]; - uint64_t lastpos = UINT64_C(1) << (x % 64); - uint64_t mask = lastpos + lastpos - 1; // smear right - sum += roaring_hamming(lastword & mask); - return sum; -} - -uint32_t bitset_container_rank_many(const bitset_container_t *container, uint64_t start_rank, const uint32_t* begin, const uint32_t* end, uint64_t* ans){ - const uint16_t high = (uint16_t)((*begin) >> 16); - int i = 0; - int sum = 0; - const uint32_t* iter = begin; - for(; iter != end; iter++) { - uint32_t x = *iter; - uint16_t xhigh = (uint16_t)(x >> 16); - if(xhigh != high) return iter - begin; // stop at next container - - uint16_t xlow = (uint16_t)x; - for(int count = xlow / 64; i < count; i++){ - sum += roaring_hamming(container->words[i]); - } - uint64_t lastword = container->words[i]; - uint64_t lastpos = UINT64_C(1) << (xlow % 64); - uint64_t mask = lastpos + lastpos - 1; // smear right - *(ans++) = start_rank + sum + roaring_hamming(lastword & mask); - } - return iter - begin; -} - - -/* Returns the index of x , if not exsist return -1 */ -int bitset_container_get_index(const bitset_container_t *container, uint16_t x) { - if (bitset_container_get(container, x)) { - // credit: aqrit - int sum = 0; - int i = 0; - for (int end = x / 64; i < end; i++){ - sum += roaring_hamming(container->words[i]); - } - uint64_t lastword = container->words[i]; - uint64_t lastpos = UINT64_C(1) << (x % 64); - uint64_t mask = lastpos + lastpos - 1; // smear right - sum += roaring_hamming(lastword & mask); - return sum - 1; - } else { - return -1; - } -} - -/* Returns the index of the first value equal or larger than x, or -1 */ -int bitset_container_index_equalorlarger(const bitset_container_t *container, uint16_t x) { - uint32_t x32 = x; - uint32_t k = x32 / 64; - uint64_t word = container->words[k]; - const int diff = x32 - k * 64; // in [0,64) - word = (word >> diff) << diff; // a mask is faster, but we don't care - while(word == 0) { - k++; - if(k == BITSET_CONTAINER_SIZE_IN_WORDS) return -1; - word = container->words[k]; - } - return k * 64 + roaring_trailing_zeroes(word); -} - -#ifdef __cplusplus -} } } // extern "C" { namespace roaring { namespace internal { -#endif -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC diagnostic pop -#endif/* end file src/containers/bitset.c */ -/* begin file src/containers/containers.c */ - - -#ifdef __cplusplus -extern "C" { -// In Windows MSVC C++ compiler, (type){init} does not compile, -// it causes C4576: a parenthesized type followed by an initializer list is a -// non-standard explicit type conversion syntax The correct syntax is type{init} -#define ROARING_INIT_ROARING_CONTAINER_ITERATOR_T roaring_container_iterator_t -namespace roaring { -namespace internal { -#else -#define ROARING_INIT_ROARING_CONTAINER_ITERATOR_T (roaring_container_iterator_t) -#endif - -static inline uint32_t minimum_uint32(uint32_t a, uint32_t b) { - return (a < b) ? a : b; -} - -extern inline const container_t *container_unwrap_shared( - const container_t *candidate_shared_container, uint8_t *type); - -extern inline container_t *container_mutable_unwrap_shared( - container_t *candidate_shared_container, uint8_t *type); - -extern inline int container_get_cardinality(const container_t *c, - uint8_t typecode); - -extern inline container_t *container_iand(container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2, - uint8_t *result_type); - -extern inline container_t *container_ior(container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2, - uint8_t *result_type); - -extern inline container_t *container_ixor(container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2, - uint8_t *result_type); - -extern inline container_t *container_iandnot(container_t *c1, uint8_t type1, - const container_t *c2, - uint8_t type2, - uint8_t *result_type); - -void container_free(container_t *c, uint8_t type) { - switch (type) { - case BITSET_CONTAINER_TYPE: - bitset_container_free(CAST_bitset(c)); - break; - case ARRAY_CONTAINER_TYPE: - array_container_free(CAST_array(c)); - break; - case RUN_CONTAINER_TYPE: - run_container_free(CAST_run(c)); - break; - case SHARED_CONTAINER_TYPE: - shared_container_free(CAST_shared(c)); - break; - default: - assert(false); - roaring_unreachable; - } -} - -void container_printf(const container_t *c, uint8_t type) { - c = container_unwrap_shared(c, &type); - switch (type) { - case BITSET_CONTAINER_TYPE: - bitset_container_printf(const_CAST_bitset(c)); - return; - case ARRAY_CONTAINER_TYPE: - array_container_printf(const_CAST_array(c)); - return; - case RUN_CONTAINER_TYPE: - run_container_printf(const_CAST_run(c)); - return; - default: - roaring_unreachable; - } -} - -void container_printf_as_uint32_array(const container_t *c, uint8_t typecode, - uint32_t base) { - c = container_unwrap_shared(c, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE: - bitset_container_printf_as_uint32_array(const_CAST_bitset(c), base); - return; - case ARRAY_CONTAINER_TYPE: - array_container_printf_as_uint32_array(const_CAST_array(c), base); - return; - case RUN_CONTAINER_TYPE: - run_container_printf_as_uint32_array(const_CAST_run(c), base); - return; - default: - roaring_unreachable; - } -} - -bool container_internal_validate(const container_t *container, uint8_t typecode, - const char **reason) { - if (container == NULL) { - *reason = "container is NULL"; - return false; - } - // Not using container_unwrap_shared because it asserts if shared containers - // are nested - if (typecode == SHARED_CONTAINER_TYPE) { - const shared_container_t *shared_container = - const_CAST_shared(container); - if (croaring_refcount_get(&shared_container->counter) == 0) { - *reason = "shared container has zero refcount"; - return false; - } - if (shared_container->typecode == SHARED_CONTAINER_TYPE) { - *reason = "shared container is nested"; - return false; - } - if (shared_container->container == NULL) { - *reason = "shared container has NULL container"; - return false; - } - container = shared_container->container; - typecode = shared_container->typecode; - } - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return bitset_container_validate(const_CAST_bitset(container), - reason); - case ARRAY_CONTAINER_TYPE: - return array_container_validate(const_CAST_array(container), - reason); - case RUN_CONTAINER_TYPE: - return run_container_validate(const_CAST_run(container), reason); - default: - *reason = "invalid typecode"; - return false; - } -} - -extern inline bool container_nonzero_cardinality(const container_t *c, - uint8_t typecode); - -extern inline int container_to_uint32_array(uint32_t *output, - const container_t *c, - uint8_t typecode, uint32_t base); - -extern inline container_t *container_add(container_t *c, uint16_t val, - uint8_t typecode, // !!! 2nd arg? - uint8_t *new_typecode); - -extern inline bool container_contains(const container_t *c, uint16_t val, - uint8_t typecode); // !!! 2nd arg? - -extern inline container_t *container_and(const container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2, - uint8_t *result_type); - -extern inline container_t *container_or(const container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2, - uint8_t *result_type); - -extern inline container_t *container_xor(const container_t *c1, uint8_t type1, - const container_t *c2, uint8_t type2, - uint8_t *result_type); - -container_t *get_copy_of_container(container_t *c, uint8_t *typecode, - bool copy_on_write) { - if (copy_on_write) { - shared_container_t *shared_container; - if (*typecode == SHARED_CONTAINER_TYPE) { - shared_container = CAST_shared(c); - croaring_refcount_inc(&shared_container->counter); - return shared_container; - } - assert(*typecode != SHARED_CONTAINER_TYPE); - - if ((shared_container = (shared_container_t *)roaring_malloc( - sizeof(shared_container_t))) == NULL) { - return NULL; - } - - shared_container->container = c; - shared_container->typecode = *typecode; - // At this point, we are creating new shared container - // so there should be no other references, and setting - // the counter to 2 - even non-atomically - is safe as - // long as the value is set before the return statement. - shared_container->counter = 2; - *typecode = SHARED_CONTAINER_TYPE; - - return shared_container; - } // copy_on_write - // otherwise, no copy on write... - const container_t *actual_container = container_unwrap_shared(c, typecode); - assert(*typecode != SHARED_CONTAINER_TYPE); - return container_clone(actual_container, *typecode); -} - -/** - * Copies a container, requires a typecode. This allocates new memory, caller - * is responsible for deallocation. - */ -container_t *container_clone(const container_t *c, uint8_t typecode) { - // We do not want to allow cloning of shared containers. - // c = container_unwrap_shared(c, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE: - return bitset_container_clone(const_CAST_bitset(c)); - case ARRAY_CONTAINER_TYPE: - return array_container_clone(const_CAST_array(c)); - case RUN_CONTAINER_TYPE: - return run_container_clone(const_CAST_run(c)); - case SHARED_CONTAINER_TYPE: - // Shared containers are not cloneable. Are you mixing COW and - // non-COW bitmaps? - return NULL; - default: - assert(false); - roaring_unreachable; - return NULL; - } -} - -container_t *shared_container_extract_copy(shared_container_t *sc, - uint8_t *typecode) { - assert(sc->typecode != SHARED_CONTAINER_TYPE); - *typecode = sc->typecode; - container_t *answer; - if (croaring_refcount_dec(&sc->counter)) { - answer = sc->container; - sc->container = NULL; // paranoid - roaring_free(sc); - } else { - answer = container_clone(sc->container, *typecode); - } - assert(*typecode != SHARED_CONTAINER_TYPE); - return answer; -} - -void shared_container_free(shared_container_t *container) { - if (croaring_refcount_dec(&container->counter)) { - assert(container->typecode != SHARED_CONTAINER_TYPE); - container_free(container->container, container->typecode); - container->container = NULL; // paranoid - roaring_free(container); - } -} - -extern inline container_t *container_not(const container_t *c1, uint8_t type1, - uint8_t *result_type); - -extern inline container_t *container_not_range(const container_t *c1, - uint8_t type1, - uint32_t range_start, - uint32_t range_end, - uint8_t *result_type); - -extern inline container_t *container_inot(container_t *c1, uint8_t type1, - uint8_t *result_type); - -extern inline container_t *container_inot_range(container_t *c1, uint8_t type1, - uint32_t range_start, - uint32_t range_end, - uint8_t *result_type); - -extern inline container_t *container_range_of_ones(uint32_t range_start, - uint32_t range_end, - uint8_t *result_type); - -// where are the correponding things for union and intersection?? -extern inline container_t *container_lazy_xor(const container_t *c1, - uint8_t type1, - const container_t *c2, - uint8_t type2, - uint8_t *result_type); - -extern inline container_t *container_lazy_ixor(container_t *c1, uint8_t type1, - const container_t *c2, - uint8_t type2, - uint8_t *result_type); - -extern inline container_t *container_andnot(const container_t *c1, - uint8_t type1, - const container_t *c2, - uint8_t type2, - uint8_t *result_type); - -roaring_container_iterator_t container_init_iterator(const container_t *c, - uint8_t typecode, - uint16_t *value) { - switch (typecode) { - case BITSET_CONTAINER_TYPE: { - const bitset_container_t *bc = const_CAST_bitset(c); - uint32_t wordindex = 0; - uint64_t word; - while ((word = bc->words[wordindex]) == 0) { - wordindex++; - } - // word is non-zero - int32_t index = wordindex * 64 + roaring_trailing_zeroes(word); - *value = index; - return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{ - .index = index, - }; - } - case ARRAY_CONTAINER_TYPE: { - const array_container_t *ac = const_CAST_array(c); - *value = ac->array[0]; - return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{ - .index = 0, - }; - } - case RUN_CONTAINER_TYPE: { - const run_container_t *rc = const_CAST_run(c); - *value = rc->runs[0].value; - return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{ - .index = 0, - }; - } - default: - assert(false); - roaring_unreachable; - return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{0}; - } -} - -roaring_container_iterator_t container_init_iterator_last(const container_t *c, - uint8_t typecode, - uint16_t *value) { - switch (typecode) { - case BITSET_CONTAINER_TYPE: { - const bitset_container_t *bc = const_CAST_bitset(c); - uint32_t wordindex = BITSET_CONTAINER_SIZE_IN_WORDS - 1; - uint64_t word; - while ((word = bc->words[wordindex]) == 0) { - wordindex--; - } - // word is non-zero - int32_t index = - wordindex * 64 + (63 - roaring_leading_zeroes(word)); - *value = index; - return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{ - .index = index, - }; - } - case ARRAY_CONTAINER_TYPE: { - const array_container_t *ac = const_CAST_array(c); - int32_t index = ac->cardinality - 1; - *value = ac->array[index]; - return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{ - .index = index, - }; - } - case RUN_CONTAINER_TYPE: { - const run_container_t *rc = const_CAST_run(c); - int32_t run_index = rc->n_runs - 1; - const rle16_t *last_run = &rc->runs[run_index]; - *value = last_run->value + last_run->length; - return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{ - .index = run_index, - }; - } - default: - assert(false); - roaring_unreachable; - return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{0}; - } -} - -bool container_iterator_next(const container_t *c, uint8_t typecode, - roaring_container_iterator_t *it, - uint16_t *value) { - switch (typecode) { - case BITSET_CONTAINER_TYPE: { - const bitset_container_t *bc = const_CAST_bitset(c); - it->index++; - - uint32_t wordindex = it->index / 64; - if (wordindex >= BITSET_CONTAINER_SIZE_IN_WORDS) { - return false; - } - - uint64_t word = - bc->words[wordindex] & (UINT64_MAX << (it->index % 64)); - // next part could be optimized/simplified - while (word == 0 && - (wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS)) { - wordindex++; - word = bc->words[wordindex]; - } - if (word != 0) { - it->index = wordindex * 64 + roaring_trailing_zeroes(word); - *value = it->index; - return true; - } - return false; - } - case ARRAY_CONTAINER_TYPE: { - const array_container_t *ac = const_CAST_array(c); - it->index++; - if (it->index < ac->cardinality) { - *value = ac->array[it->index]; - return true; - } - return false; - } - case RUN_CONTAINER_TYPE: { - if (*value == UINT16_MAX) { // Avoid overflow to zero - return false; - } - - const run_container_t *rc = const_CAST_run(c); - uint32_t limit = - rc->runs[it->index].value + rc->runs[it->index].length; - if (*value < limit) { - (*value)++; - return true; - } - - it->index++; - if (it->index < rc->n_runs) { - *value = rc->runs[it->index].value; - return true; - } - return false; - } - default: - assert(false); - roaring_unreachable; - return false; - } -} - -bool container_iterator_prev(const container_t *c, uint8_t typecode, - roaring_container_iterator_t *it, - uint16_t *value) { - switch (typecode) { - case BITSET_CONTAINER_TYPE: { - if (--it->index < 0) { - return false; - } - - const bitset_container_t *bc = const_CAST_bitset(c); - int32_t wordindex = it->index / 64; - uint64_t word = - bc->words[wordindex] & (UINT64_MAX >> (63 - (it->index % 64))); - - while (word == 0 && --wordindex >= 0) { - word = bc->words[wordindex]; - } - if (word == 0) { - return false; - } - - it->index = (wordindex * 64) + (63 - roaring_leading_zeroes(word)); - *value = it->index; - return true; - } - case ARRAY_CONTAINER_TYPE: { - if (--it->index < 0) { - return false; - } - const array_container_t *ac = const_CAST_array(c); - *value = ac->array[it->index]; - return true; - } - case RUN_CONTAINER_TYPE: { - if (*value == 0) { - return false; - } - - const run_container_t *rc = const_CAST_run(c); - (*value)--; - if (*value >= rc->runs[it->index].value) { - return true; - } - - if (--it->index < 0) { - return false; - } - - *value = rc->runs[it->index].value + rc->runs[it->index].length; - return true; - } - default: - assert(false); - roaring_unreachable; - return false; - } -} - -bool container_iterator_lower_bound(const container_t *c, uint8_t typecode, - roaring_container_iterator_t *it, - uint16_t *value_out, uint16_t val) { - if (val > container_maximum(c, typecode)) { - return false; - } - switch (typecode) { - case BITSET_CONTAINER_TYPE: { - const bitset_container_t *bc = const_CAST_bitset(c); - it->index = bitset_container_index_equalorlarger(bc, val); - *value_out = it->index; - return true; - } - case ARRAY_CONTAINER_TYPE: { - const array_container_t *ac = const_CAST_array(c); - it->index = array_container_index_equalorlarger(ac, val); - *value_out = ac->array[it->index]; - return true; - } - case RUN_CONTAINER_TYPE: { - const run_container_t *rc = const_CAST_run(c); - it->index = run_container_index_equalorlarger(rc, val); - if (rc->runs[it->index].value <= val) { - *value_out = val; - } else { - *value_out = rc->runs[it->index].value; - } - return true; - } - default: - assert(false); - roaring_unreachable; - return false; - } -} - -bool container_iterator_read_into_uint32(const container_t *c, uint8_t typecode, - roaring_container_iterator_t *it, - uint32_t high16, uint32_t *buf, - uint32_t count, uint32_t *consumed, - uint16_t *value_out) { - *consumed = 0; - if (count == 0) { - return false; - } - switch (typecode) { - case BITSET_CONTAINER_TYPE: { - const bitset_container_t *bc = const_CAST_bitset(c); - uint32_t wordindex = it->index / 64; - uint64_t word = - bc->words[wordindex] & (UINT64_MAX << (it->index % 64)); - do { - // Read set bits. - while (word != 0 && *consumed < count) { - *buf = high16 | - (wordindex * 64 + roaring_trailing_zeroes(word)); - word = word & (word - 1); - buf++; - (*consumed)++; - } - // Skip unset bits. - while (word == 0 && - wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS) { - wordindex++; - word = bc->words[wordindex]; - } - } while (word != 0 && *consumed < count); - - if (word != 0) { - it->index = wordindex * 64 + roaring_trailing_zeroes(word); - *value_out = it->index; - return true; - } - return false; - } - case ARRAY_CONTAINER_TYPE: { - const array_container_t *ac = const_CAST_array(c); - uint32_t num_values = - minimum_uint32(ac->cardinality - it->index, count); - for (uint32_t i = 0; i < num_values; i++) { - buf[i] = high16 | ac->array[it->index + i]; - } - *consumed += num_values; - it->index += num_values; - if (it->index < ac->cardinality) { - *value_out = ac->array[it->index]; - return true; - } - return false; - } - case RUN_CONTAINER_TYPE: { - const run_container_t *rc = const_CAST_run(c); - do { - uint32_t largest_run_value = - rc->runs[it->index].value + rc->runs[it->index].length; - uint32_t num_values = minimum_uint32( - largest_run_value - *value_out + 1, count - *consumed); - for (uint32_t i = 0; i < num_values; i++) { - buf[i] = high16 | (*value_out + i); - } - *value_out += num_values; - buf += num_values; - *consumed += num_values; - - // We check for `value == 0` because `it->value += num_values` - // can overflow when `value == UINT16_MAX`, and `count > - // length`. In this case `value` will overflow to 0. - if (*value_out > largest_run_value || *value_out == 0) { - it->index++; - if (it->index < rc->n_runs) { - *value_out = rc->runs[it->index].value; - } else { - return false; - } - } - } while (*consumed < count); - return true; - } - default: - assert(false); - roaring_unreachable; - return 0; - } -} - -bool container_iterator_read_into_uint64(const container_t *c, uint8_t typecode, - roaring_container_iterator_t *it, - uint64_t high48, uint64_t *buf, - uint32_t count, uint32_t *consumed, - uint16_t *value_out) { - *consumed = 0; - if (count == 0) { - return false; - } - switch (typecode) { - case BITSET_CONTAINER_TYPE: { - const bitset_container_t *bc = const_CAST_bitset(c); - uint32_t wordindex = it->index / 64; - uint64_t word = - bc->words[wordindex] & (UINT64_MAX << (it->index % 64)); - do { - // Read set bits. - while (word != 0 && *consumed < count) { - *buf = high48 | - (wordindex * 64 + roaring_trailing_zeroes(word)); - word = word & (word - 1); - buf++; - (*consumed)++; - } - // Skip unset bits. - while (word == 0 && - wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS) { - wordindex++; - word = bc->words[wordindex]; - } - } while (word != 0 && *consumed < count); - - if (word != 0) { - it->index = wordindex * 64 + roaring_trailing_zeroes(word); - *value_out = it->index; - return true; - } - return false; - } - case ARRAY_CONTAINER_TYPE: { - const array_container_t *ac = const_CAST_array(c); - uint32_t num_values = - minimum_uint32(ac->cardinality - it->index, count); - for (uint32_t i = 0; i < num_values; i++) { - buf[i] = high48 | ac->array[it->index + i]; - } - *consumed += num_values; - it->index += num_values; - if (it->index < ac->cardinality) { - *value_out = ac->array[it->index]; - return true; - } - return false; - } - case RUN_CONTAINER_TYPE: { - const run_container_t *rc = const_CAST_run(c); - do { - uint32_t largest_run_value = - rc->runs[it->index].value + rc->runs[it->index].length; - uint32_t num_values = minimum_uint32( - largest_run_value - *value_out + 1, count - *consumed); - for (uint32_t i = 0; i < num_values; i++) { - buf[i] = high48 | (*value_out + i); - } - *value_out += num_values; - buf += num_values; - *consumed += num_values; - - // We check for `value == 0` because `it->value += num_values` - // can overflow when `value == UINT16_MAX`, and `count > - // length`. In this case `value` will overflow to 0. - if (*value_out > largest_run_value || *value_out == 0) { - it->index++; - if (it->index < rc->n_runs) { - *value_out = rc->runs[it->index].value; - } else { - return false; - } - } - } while (*consumed < count); - return true; - } - default: - assert(false); - roaring_unreachable; - return 0; - } -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif - -#undef ROARING_INIT_ROARING_CONTAINER_ITERATOR_T -/* end file src/containers/containers.c */ -/* begin file src/containers/convert.c */ -#include - - -#if CROARING_IS_X64 -#ifndef CROARING_COMPILER_SUPPORTS_AVX512 -#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined." -#endif // CROARING_COMPILER_SUPPORTS_AVX512 -#endif - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -// file contains grubby stuff that must know impl. details of all container -// types. -bitset_container_t *bitset_container_from_array(const array_container_t *ac) { - bitset_container_t *ans = bitset_container_create(); - int limit = array_container_cardinality(ac); - for (int i = 0; i < limit; ++i) bitset_container_set(ans, ac->array[i]); - return ans; -} - -bitset_container_t *bitset_container_from_run(const run_container_t *arr) { - int card = run_container_cardinality(arr); - bitset_container_t *answer = bitset_container_create(); - for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) { - rle16_t vl = arr->runs[rlepos]; - bitset_set_lenrange(answer->words, vl.value, vl.length); - } - answer->cardinality = card; - return answer; -} - -array_container_t *array_container_from_run(const run_container_t *arr) { - array_container_t *answer = - array_container_create_given_capacity(run_container_cardinality(arr)); - answer->cardinality = 0; - for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) { - int run_start = arr->runs[rlepos].value; - int run_end = run_start + arr->runs[rlepos].length; - - for (int run_value = run_start; run_value <= run_end; ++run_value) { - answer->array[answer->cardinality++] = (uint16_t)run_value; - } - } - return answer; -} - -array_container_t *array_container_from_bitset(const bitset_container_t *bits) { - array_container_t *result = - array_container_create_given_capacity(bits->cardinality); - result->cardinality = bits->cardinality; -#if CROARING_IS_X64 -#if CROARING_COMPILER_SUPPORTS_AVX512 - if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) { - bitset_extract_setbits_avx512_uint16( - bits->words, BITSET_CONTAINER_SIZE_IN_WORDS, result->array, - bits->cardinality, 0); - } else -#endif - { - // sse version ends up being slower here - // (bitset_extract_setbits_sse_uint16) - // because of the sparsity of the data - bitset_extract_setbits_uint16( - bits->words, BITSET_CONTAINER_SIZE_IN_WORDS, result->array, 0); - } -#else - // If the system is not x64, then we have no accelerated function. - bitset_extract_setbits_uint16(bits->words, BITSET_CONTAINER_SIZE_IN_WORDS, - result->array, 0); -#endif - - return result; -} - -/* assumes that container has adequate space. Run from [s,e] (inclusive) */ -static void add_run(run_container_t *rc, int s, int e) { - rc->runs[rc->n_runs].value = s; - rc->runs[rc->n_runs].length = e - s; - rc->n_runs++; -} - -run_container_t *run_container_from_array(const array_container_t *c) { - int32_t n_runs = array_container_number_of_runs(c); - run_container_t *answer = run_container_create_given_capacity(n_runs); - int prev = -2; - int run_start = -1; - int32_t card = c->cardinality; - if (card == 0) return answer; - for (int i = 0; i < card; ++i) { - const uint16_t cur_val = c->array[i]; - if (cur_val != prev + 1) { - // new run starts; flush old one, if any - if (run_start != -1) add_run(answer, run_start, prev); - run_start = cur_val; - } - prev = c->array[i]; - } - // now prev is the last seen value - add_run(answer, run_start, prev); - // assert(run_container_cardinality(answer) == c->cardinality); - return answer; -} - -/** - * Convert the runcontainer to either a Bitmap or an Array Container, depending - * on the cardinality. Frees the container. - * Allocates and returns new container, which caller is responsible for freeing. - * It does not free the run container. - */ -container_t *convert_to_bitset_or_array_container(run_container_t *rc, - int32_t card, - uint8_t *resulttype) { - if (card <= DEFAULT_MAX_SIZE) { - array_container_t *answer = array_container_create_given_capacity(card); - answer->cardinality = 0; - for (int rlepos = 0; rlepos < rc->n_runs; ++rlepos) { - uint16_t run_start = rc->runs[rlepos].value; - uint16_t run_end = run_start + rc->runs[rlepos].length; - for (uint16_t run_value = run_start; run_value < run_end; - ++run_value) { - answer->array[answer->cardinality++] = run_value; - } - answer->array[answer->cardinality++] = run_end; - } - assert(card == answer->cardinality); - *resulttype = ARRAY_CONTAINER_TYPE; - // run_container_free(r); - return answer; - } - bitset_container_t *answer = bitset_container_create(); - for (int rlepos = 0; rlepos < rc->n_runs; ++rlepos) { - uint16_t run_start = rc->runs[rlepos].value; - bitset_set_lenrange(answer->words, run_start, rc->runs[rlepos].length); - } - answer->cardinality = card; - *resulttype = BITSET_CONTAINER_TYPE; - // run_container_free(r); - return answer; -} - -/* Converts a run container to either an array or a bitset, IF it saves space. - */ -/* If a conversion occurs, the caller is responsible to free the original - * container and - * he becomes responsible to free the new one. */ -container_t *convert_run_to_efficient_container(run_container_t *c, - uint8_t *typecode_after) { - int32_t size_as_run_container = - run_container_serialized_size_in_bytes(c->n_runs); - - int32_t size_as_bitset_container = - bitset_container_serialized_size_in_bytes(); - int32_t card = run_container_cardinality(c); - int32_t size_as_array_container = - array_container_serialized_size_in_bytes(card); - - int32_t min_size_non_run = - size_as_bitset_container < size_as_array_container - ? size_as_bitset_container - : size_as_array_container; - if (size_as_run_container <= min_size_non_run) { // no conversion - *typecode_after = RUN_CONTAINER_TYPE; - return c; - } - if (card <= DEFAULT_MAX_SIZE) { - // to array - array_container_t *answer = array_container_create_given_capacity(card); - answer->cardinality = 0; - for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) { - int run_start = c->runs[rlepos].value; - int run_end = run_start + c->runs[rlepos].length; - - for (int run_value = run_start; run_value <= run_end; ++run_value) { - answer->array[answer->cardinality++] = (uint16_t)run_value; - } - } - *typecode_after = ARRAY_CONTAINER_TYPE; - return answer; - } - - // else to bitset - bitset_container_t *answer = bitset_container_create(); - - for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) { - int start = c->runs[rlepos].value; - int end = start + c->runs[rlepos].length; - bitset_set_range(answer->words, start, end + 1); - } - answer->cardinality = card; - *typecode_after = BITSET_CONTAINER_TYPE; - return answer; -} - -// like convert_run_to_efficient_container but frees the old result if needed -container_t *convert_run_to_efficient_container_and_free( - run_container_t *c, uint8_t *typecode_after) { - container_t *answer = convert_run_to_efficient_container(c, typecode_after); - if (answer != c) run_container_free(c); - return answer; -} - -/* once converted, the original container is disposed here, rather than - in roaring_array -*/ - -// TODO: split into run- array- and bitset- subfunctions for sanity; -// a few function calls won't really matter. - -container_t *convert_run_optimize(container_t *c, uint8_t typecode_original, - uint8_t *typecode_after) { - if (typecode_original == RUN_CONTAINER_TYPE) { - container_t *newc = - convert_run_to_efficient_container(CAST_run(c), typecode_after); - if (newc != c) { - container_free(c, typecode_original); - } - return newc; - } else if (typecode_original == ARRAY_CONTAINER_TYPE) { - // it might need to be converted to a run container. - array_container_t *c_qua_array = CAST_array(c); - int32_t n_runs = array_container_number_of_runs(c_qua_array); - int32_t size_as_run_container = - run_container_serialized_size_in_bytes(n_runs); - int32_t card = array_container_cardinality(c_qua_array); - int32_t size_as_array_container = - array_container_serialized_size_in_bytes(card); - - if (size_as_run_container >= size_as_array_container) { - *typecode_after = ARRAY_CONTAINER_TYPE; - return c; - } - // else convert array to run container - run_container_t *answer = run_container_create_given_capacity(n_runs); - int prev = -2; - int run_start = -1; - - assert(card > 0); - for (int i = 0; i < card; ++i) { - uint16_t cur_val = c_qua_array->array[i]; - if (cur_val != prev + 1) { - // new run starts; flush old one, if any - if (run_start != -1) add_run(answer, run_start, prev); - run_start = cur_val; - } - prev = c_qua_array->array[i]; - } - assert(run_start >= 0); - // now prev is the last seen value - add_run(answer, run_start, prev); - *typecode_after = RUN_CONTAINER_TYPE; - array_container_free(c_qua_array); - return answer; - } else if (typecode_original == - BITSET_CONTAINER_TYPE) { // run conversions on bitset - // does bitset need conversion to run? - bitset_container_t *c_qua_bitset = CAST_bitset(c); - int32_t n_runs = bitset_container_number_of_runs(c_qua_bitset); - int32_t size_as_run_container = - run_container_serialized_size_in_bytes(n_runs); - int32_t size_as_bitset_container = - bitset_container_serialized_size_in_bytes(); - - if (size_as_bitset_container <= size_as_run_container) { - // no conversion needed. - *typecode_after = BITSET_CONTAINER_TYPE; - return c; - } - // bitset to runcontainer (ported from Java RunContainer( - // BitmapContainer bc, int nbrRuns)) - assert(n_runs > 0); // no empty bitmaps - run_container_t *answer = run_container_create_given_capacity(n_runs); - - int long_ctr = 0; - uint64_t cur_word = c_qua_bitset->words[0]; - while (true) { - while (cur_word == UINT64_C(0) && - long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1) - cur_word = c_qua_bitset->words[++long_ctr]; - - if (cur_word == UINT64_C(0)) { - bitset_container_free(c_qua_bitset); - *typecode_after = RUN_CONTAINER_TYPE; - return answer; - } - - int local_run_start = roaring_trailing_zeroes(cur_word); - int run_start = local_run_start + 64 * long_ctr; - uint64_t cur_word_with_1s = cur_word | (cur_word - 1); - - int run_end = 0; - while (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF) && - long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1) - cur_word_with_1s = c_qua_bitset->words[++long_ctr]; - - if (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF)) { - run_end = 64 + long_ctr * 64; // exclusive, I guess - add_run(answer, run_start, run_end - 1); - bitset_container_free(c_qua_bitset); - *typecode_after = RUN_CONTAINER_TYPE; - return answer; - } - int local_run_end = roaring_trailing_zeroes(~cur_word_with_1s); - run_end = local_run_end + long_ctr * 64; - add_run(answer, run_start, run_end - 1); - cur_word = cur_word_with_1s & (cur_word_with_1s + 1); - } - return answer; - } else { - assert(false); - roaring_unreachable; - return NULL; - } -} - -container_t *container_from_run_range(const run_container_t *run, uint32_t min, - uint32_t max, uint8_t *typecode_after) { - // We expect most of the time to end up with a bitset container - bitset_container_t *bitset = bitset_container_create(); - *typecode_after = BITSET_CONTAINER_TYPE; - int32_t union_cardinality = 0; - for (int32_t i = 0; i < run->n_runs; ++i) { - uint32_t rle_min = run->runs[i].value; - uint32_t rle_max = rle_min + run->runs[i].length; - bitset_set_lenrange(bitset->words, rle_min, rle_max - rle_min); - union_cardinality += run->runs[i].length + 1; - } - union_cardinality += max - min + 1; - union_cardinality -= - bitset_lenrange_cardinality(bitset->words, min, max - min); - bitset_set_lenrange(bitset->words, min, max - min); - bitset->cardinality = union_cardinality; - if (bitset->cardinality <= DEFAULT_MAX_SIZE) { - // we need to convert to an array container - array_container_t *array = array_container_from_bitset(bitset); - *typecode_after = ARRAY_CONTAINER_TYPE; - bitset_container_free(bitset); - return array; - } - return bitset; -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -/* end file src/containers/convert.c */ -/* begin file src/containers/mixed_andnot.c */ -/* - * mixed_andnot.c. More methods since operation is not symmetric, - * except no "wide" andnot , so no lazy options motivated. - */ - -#include -#include - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst, a valid array container that could be the same as dst.*/ -void array_bitset_container_andnot(const array_container_t *src_1, - const bitset_container_t *src_2, - array_container_t *dst) { - // follows Java implementation as of June 2016 - if (dst->capacity < src_1->cardinality) { - array_container_grow(dst, src_1->cardinality, false); - } - int32_t newcard = 0; - const int32_t origcard = src_1->cardinality; - for (int i = 0; i < origcard; ++i) { - uint16_t key = src_1->array[i]; - dst->array[newcard] = key; - newcard += 1 - bitset_container_contains(src_2, key); - } - dst->cardinality = newcard; -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * src_1 */ - -void array_bitset_container_iandnot(array_container_t *src_1, - const bitset_container_t *src_2) { - array_bitset_container_andnot(src_1, src_2, src_1); -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst, which does not initially have a valid container. - * Return true for a bitset result; false for array - */ - -bool bitset_array_container_andnot(const bitset_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - // Java did this directly, but we have option of asm or avx - bitset_container_t *result = bitset_container_create(); - bitset_container_copy(src_1, result); - result->cardinality = - (int32_t)bitset_clear_list(result->words, (uint64_t)result->cardinality, - src_2->array, (uint64_t)src_2->cardinality); - - // do required type conversions. - if (result->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(result); - bitset_container_free(result); - return false; - } - *dst = result; - return true; -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_array_container_iandnot(bitset_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - *dst = src_1; - src_1->cardinality = - (int32_t)bitset_clear_list(src_1->words, (uint64_t)src_1->cardinality, - src_2->array, (uint64_t)src_2->cardinality); - - if (src_1->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(src_1); - bitset_container_free(src_1); - return false; // not bitset - } else - return true; -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_andnot(const run_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst) { - // follows the Java implementation as of June 2016 - int card = run_container_cardinality(src_1); - if (card <= DEFAULT_MAX_SIZE) { - // must be an array - array_container_t *answer = array_container_create_given_capacity(card); - answer->cardinality = 0; - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - for (int run_value = rle.value; run_value <= rle.value + rle.length; - ++run_value) { - if (!bitset_container_get(src_2, (uint16_t)run_value)) { - answer->array[answer->cardinality++] = (uint16_t)run_value; - } - } - } - *dst = answer; - return false; - } else { // we guess it will be a bitset, though have to check guess when - // done - bitset_container_t *answer = bitset_container_clone(src_2); - - uint32_t last_pos = 0; - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - - uint32_t start = rle.value; - uint32_t end = start + rle.length + 1; - bitset_reset_range(answer->words, last_pos, start); - bitset_flip_range(answer->words, start, end); - last_pos = end; - } - bitset_reset_range(answer->words, last_pos, (uint32_t)(1 << 16)); - - answer->cardinality = bitset_container_compute_cardinality(answer); - - if (answer->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(answer); - bitset_container_free(answer); - return false; // not bitset - } - *dst = answer; - return true; // bitset - } -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_iandnot(run_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst) { - // dummy implementation - bool ans = run_bitset_container_andnot(src_1, src_2, dst); - run_container_free(src_1); - return ans; -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool bitset_run_container_andnot(const bitset_container_t *src_1, - const run_container_t *src_2, - container_t **dst) { - // follows Java implementation - bitset_container_t *result = bitset_container_create(); - - bitset_container_copy(src_1, result); - for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) { - rle16_t rle = src_2->runs[rlepos]; - bitset_reset_range(result->words, rle.value, - rle.value + rle.length + UINT32_C(1)); - } - result->cardinality = bitset_container_compute_cardinality(result); - - if (result->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(result); - bitset_container_free(result); - return false; // not bitset - } - *dst = result; - return true; // bitset -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_run_container_iandnot(bitset_container_t *src_1, - const run_container_t *src_2, - container_t **dst) { - *dst = src_1; - - for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) { - rle16_t rle = src_2->runs[rlepos]; - bitset_reset_range(src_1->words, rle.value, - rle.value + rle.length + UINT32_C(1)); - } - src_1->cardinality = bitset_container_compute_cardinality(src_1); - - if (src_1->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(src_1); - bitset_container_free(src_1); - return false; // not bitset - } else - return true; -} - -/* helper. a_out must be a valid array container with adequate capacity. - * Returns the cardinality of the output container. Partly Based on Java - * implementation Util.unsignedDifference. - * - * TODO: Util.unsignedDifference does not use advanceUntil. Is it cheaper - * to avoid advanceUntil? - */ - -static int run_array_array_subtract(const run_container_t *rc, - const array_container_t *a_in, - array_container_t *a_out) { - int out_card = 0; - int32_t in_array_pos = - -1; // since advanceUntil always assumes we start the search AFTER this - - for (int rlepos = 0; rlepos < rc->n_runs; rlepos++) { - int32_t start = rc->runs[rlepos].value; - int32_t end = start + rc->runs[rlepos].length + 1; - - in_array_pos = advanceUntil(a_in->array, in_array_pos, - a_in->cardinality, (uint16_t)start); - - if (in_array_pos >= a_in->cardinality) { // run has no items subtracted - for (int32_t i = start; i < end; ++i) - a_out->array[out_card++] = (uint16_t)i; - } else { - uint16_t next_nonincluded = a_in->array[in_array_pos]; - if (next_nonincluded >= end) { - // another case when run goes unaltered - for (int32_t i = start; i < end; ++i) - a_out->array[out_card++] = (uint16_t)i; - in_array_pos--; // ensure we see this item again if necessary - } else { - for (int32_t i = start; i < end; ++i) - if (i != next_nonincluded) - a_out->array[out_card++] = (uint16_t)i; - else // 0 should ensure we don't match - next_nonincluded = - (in_array_pos + 1 >= a_in->cardinality) - ? 0 - : a_in->array[++in_array_pos]; - in_array_pos--; // see again - } - } - } - return out_card; -} - -/* dst does not indicate a valid container initially. Eventually it - * can become any type of container. - */ - -int run_array_container_andnot(const run_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - // follows the Java impl as of June 2016 - - int card = run_container_cardinality(src_1); - const int arbitrary_threshold = 32; - - if (card <= arbitrary_threshold) { - if (src_2->cardinality == 0) { - *dst = run_container_clone(src_1); - return RUN_CONTAINER_TYPE; - } - // Java's "lazyandNot.toEfficientContainer" thing - run_container_t *answer = run_container_create_given_capacity( - card + array_container_cardinality(src_2)); - - int rlepos = 0; - int xrlepos = 0; // "x" is src_2 - rle16_t rle = src_1->runs[rlepos]; - int32_t start = rle.value; - int32_t end = start + rle.length + 1; - int32_t xstart = src_2->array[xrlepos]; - - while ((rlepos < src_1->n_runs) && (xrlepos < src_2->cardinality)) { - if (end <= xstart) { - // output the first run - answer->runs[answer->n_runs++] = - CROARING_MAKE_RLE16(start, end - start - 1); - rlepos++; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - } else if (xstart + 1 <= start) { - // exit the second run - xrlepos++; - if (xrlepos < src_2->cardinality) { - xstart = src_2->array[xrlepos]; - } - } else { - if (start < xstart) { - answer->runs[answer->n_runs++] = - CROARING_MAKE_RLE16(start, xstart - start - 1); - } - if (xstart + 1 < end) { - start = xstart + 1; - } else { - rlepos++; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - } - } - } - if (rlepos < src_1->n_runs) { - answer->runs[answer->n_runs++] = - CROARING_MAKE_RLE16(start, end - start - 1); - rlepos++; - if (rlepos < src_1->n_runs) { - memcpy(answer->runs + answer->n_runs, src_1->runs + rlepos, - (src_1->n_runs - rlepos) * sizeof(rle16_t)); - answer->n_runs += (src_1->n_runs - rlepos); - } - } - uint8_t return_type; - *dst = convert_run_to_efficient_container(answer, &return_type); - if (answer != *dst) run_container_free(answer); - return return_type; - } - // else it's a bitmap or array - - if (card <= DEFAULT_MAX_SIZE) { - array_container_t *ac = array_container_create_given_capacity(card); - // nb Java code used a generic iterator-based merge to compute - // difference - ac->cardinality = run_array_array_subtract(src_1, src_2, ac); - *dst = ac; - return ARRAY_CONTAINER_TYPE; - } - bitset_container_t *ans = bitset_container_from_run(src_1); - bool result_is_bitset = bitset_array_container_iandnot(ans, src_2, dst); - return (result_is_bitset ? BITSET_CONTAINER_TYPE : ARRAY_CONTAINER_TYPE); -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -int run_array_container_iandnot(run_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - // dummy implementation same as June 2016 Java - int ans = run_array_container_andnot(src_1, src_2, dst); - run_container_free(src_1); - return ans; -} - -/* dst must be a valid array container, allowed to be src_1 */ - -void array_run_container_andnot(const array_container_t *src_1, - const run_container_t *src_2, - array_container_t *dst) { - // basically following Java impl as of June 2016 - if (src_1->cardinality > dst->capacity) { - array_container_grow(dst, src_1->cardinality, false); - } - - if (src_2->n_runs == 0) { - memmove(dst->array, src_1->array, - sizeof(uint16_t) * src_1->cardinality); - dst->cardinality = src_1->cardinality; - return; - } - int32_t run_start = src_2->runs[0].value; - int32_t run_end = run_start + src_2->runs[0].length; - int which_run = 0; - - uint16_t val = 0; - int dest_card = 0; - for (int i = 0; i < src_1->cardinality; ++i) { - val = src_1->array[i]; - if (val < run_start) - dst->array[dest_card++] = val; - else if (val <= run_end) { - ; // omitted item - } else { - do { - if (which_run + 1 < src_2->n_runs) { - ++which_run; - run_start = src_2->runs[which_run].value; - run_end = run_start + src_2->runs[which_run].length; - - } else - run_start = run_end = (1 << 16) + 1; - } while (val > run_end); - --i; - } - } - dst->cardinality = dest_card; -} - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -void array_run_container_iandnot(array_container_t *src_1, - const run_container_t *src_2) { - array_run_container_andnot(src_1, src_2, src_1); -} - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int run_run_container_andnot(const run_container_t *src_1, - const run_container_t *src_2, container_t **dst) { - run_container_t *ans = run_container_create(); - run_container_andnot(src_1, src_2, ans); - uint8_t typecode_after; - *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after); - return typecode_after; -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -int run_run_container_iandnot(run_container_t *src_1, - const run_container_t *src_2, container_t **dst) { - // following Java impl as of June 2016 (dummy) - int ans = run_run_container_andnot(src_1, src_2, dst); - run_container_free(src_1); - return ans; -} - -/* - * dst is a valid array container and may be the same as src_1 - */ - -void array_array_container_andnot(const array_container_t *src_1, - const array_container_t *src_2, - array_container_t *dst) { - array_container_andnot(src_1, src_2, dst); -} - -/* inplace array-array andnot will always be able to reuse the space of - * src_1 */ -void array_array_container_iandnot(array_container_t *src_1, - const array_container_t *src_2) { - array_container_andnot(src_1, src_2, src_1); -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). Return value is - * "dst is a bitset" - */ - -bool bitset_bitset_container_andnot(const bitset_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst) { - bitset_container_t *ans = bitset_container_create(); - int card = bitset_container_andnot(src_1, src_2, ans); - if (card <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(ans); - bitset_container_free(ans); - return false; // not bitset - } else { - *dst = ans; - return true; - } -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_bitset_container_iandnot(bitset_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst) { - int card = bitset_container_andnot(src_1, src_2, src_1); - if (card <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(src_1); - bitset_container_free(src_1); - return false; // not bitset - } else { - *dst = src_1; - return true; - } -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -/* end file src/containers/mixed_andnot.c */ -/* begin file src/containers/mixed_equal.c */ - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -bool array_container_equal_bitset(const array_container_t* container1, - const bitset_container_t* container2) { - if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) { - if (container2->cardinality != container1->cardinality) { - return false; - } - } - int32_t pos = 0; - for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) { - uint64_t w = container2->words[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - uint16_t r = i * 64 + roaring_trailing_zeroes(w); - if (pos >= container1->cardinality) { - return false; - } - if (container1->array[pos] != r) { - return false; - } - ++pos; - w ^= t; - } - } - return (pos == container1->cardinality); -} - -bool run_container_equals_array(const run_container_t* container1, - const array_container_t* container2) { - if (run_container_cardinality(container1) != container2->cardinality) - return false; - int32_t pos = 0; - for (int i = 0; i < container1->n_runs; ++i) { - const uint32_t run_start = container1->runs[i].value; - const uint32_t le = container1->runs[i].length; - - if (container2->array[pos] != run_start) { - return false; - } - - if (container2->array[pos + le] != run_start + le) { - return false; - } - - pos += le + 1; - } - return true; -} - -bool run_container_equals_bitset(const run_container_t* container1, - const bitset_container_t* container2) { - int run_card = run_container_cardinality(container1); - int bitset_card = (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) - ? container2->cardinality - : bitset_container_compute_cardinality(container2); - if (bitset_card != run_card) { - return false; - } - - for (int32_t i = 0; i < container1->n_runs; i++) { - uint32_t begin = container1->runs[i].value; - if (container1->runs[i].length) { - uint32_t end = begin + container1->runs[i].length + 1; - if (!bitset_container_contains_range(container2, begin, end)) { - return false; - } - } else { - if (!bitset_container_contains(container2, begin)) { - return false; - } - } - } - - return true; -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -/* end file src/containers/mixed_equal.c */ -/* begin file src/containers/mixed_intersection.c */ -/* - * mixed_intersection.c - * - */ - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/* Compute the intersection of src_1 and src_2 and write the result to - * dst. */ -void array_bitset_container_intersection(const array_container_t *src_1, - const bitset_container_t *src_2, - array_container_t *dst) { - if (dst->capacity < src_1->cardinality) { - array_container_grow(dst, src_1->cardinality, false); - } - int32_t newcard = 0; // dst could be src_1 - const int32_t origcard = src_1->cardinality; - for (int i = 0; i < origcard; ++i) { - uint16_t key = src_1->array[i]; - // this branchless approach is much faster... - dst->array[newcard] = key; - newcard += bitset_container_contains(src_2, key); - /** - * we could do it this way instead... - * if (bitset_container_contains(src_2, key)) { - * dst->array[newcard++] = key; - * } - * but if the result is unpredictible, the processor generates - * many mispredicted branches. - * Difference can be huge (from 3 cycles when predictible all the way - * to 16 cycles when unpredictible. - * See - * https://github.com/lemire/Code-used-on-Daniel-Lemire-s-blog/blob/master/extra/bitset/c/arraybitsetintersection.c - */ - } - dst->cardinality = newcard; -} - -/* Compute the size of the intersection of src_1 and src_2. */ -int array_bitset_container_intersection_cardinality( - const array_container_t *src_1, const bitset_container_t *src_2) { - int32_t newcard = 0; - const int32_t origcard = src_1->cardinality; - for (int i = 0; i < origcard; ++i) { - uint16_t key = src_1->array[i]; - newcard += bitset_container_contains(src_2, key); - } - return newcard; -} - -bool array_bitset_container_intersect(const array_container_t *src_1, - const bitset_container_t *src_2) { - const int32_t origcard = src_1->cardinality; - for (int i = 0; i < origcard; ++i) { - uint16_t key = src_1->array[i]; - if (bitset_container_contains(src_2, key)) return true; - } - return false; -} - -/* Compute the intersection of src_1 and src_2 and write the result to - * dst. It is allowed for dst to be equal to src_1. We assume that dst is a - * valid container. */ -void array_run_container_intersection(const array_container_t *src_1, - const run_container_t *src_2, - array_container_t *dst) { - if (run_container_is_full(src_2)) { - if (dst != src_1) array_container_copy(src_1, dst); - return; - } - if (dst->capacity < src_1->cardinality) { - array_container_grow(dst, src_1->cardinality, false); - } - if (src_2->n_runs == 0) { - return; - } - int32_t rlepos = 0; - int32_t arraypos = 0; - rle16_t rle = src_2->runs[rlepos]; - int32_t newcard = 0; - while (arraypos < src_1->cardinality) { - const uint16_t arrayval = src_1->array[arraypos]; - while (rle.value + rle.length < - arrayval) { // this will frequently be false - ++rlepos; - if (rlepos == src_2->n_runs) { - dst->cardinality = newcard; - return; // we are done - } - rle = src_2->runs[rlepos]; - } - if (rle.value > arrayval) { - arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality, - rle.value); - } else { - dst->array[newcard] = arrayval; - newcard++; - arraypos++; - } - } - dst->cardinality = newcard; -} - -/* Compute the intersection of src_1 and src_2 and write the result to - * *dst. If the result is true then the result is a bitset_container_t - * otherwise is a array_container_t. If *dst == src_2, an in-place processing - * is attempted.*/ -bool run_bitset_container_intersection(const run_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst) { - if (run_container_is_full(src_1)) { - if (*dst != src_2) *dst = bitset_container_clone(src_2); - return true; - } - int32_t card = run_container_cardinality(src_1); - if (card <= DEFAULT_MAX_SIZE) { - // result can only be an array (assuming that we never make a - // RunContainer) - if (card > src_2->cardinality) { - card = src_2->cardinality; - } - array_container_t *answer = array_container_create_given_capacity(card); - *dst = answer; - if (*dst == NULL) { - return false; - } - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - uint32_t endofrun = (uint32_t)rle.value + rle.length; - for (uint32_t runValue = rle.value; runValue <= endofrun; - ++runValue) { - answer->array[answer->cardinality] = (uint16_t)runValue; - answer->cardinality += - bitset_container_contains(src_2, runValue); - } - } - return false; - } - if (*dst == src_2) { // we attempt in-place - bitset_container_t *answer = CAST_bitset(*dst); - uint32_t start = 0; - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - const rle16_t rle = src_1->runs[rlepos]; - uint32_t end = rle.value; - bitset_reset_range(src_2->words, start, end); - - start = end + rle.length + 1; - } - bitset_reset_range(src_2->words, start, UINT32_C(1) << 16); - answer->cardinality = bitset_container_compute_cardinality(answer); - if (src_2->cardinality > DEFAULT_MAX_SIZE) { - return true; - } else { - array_container_t *newanswer = array_container_from_bitset(src_2); - if (newanswer == NULL) { - *dst = NULL; - return false; - } - *dst = newanswer; - return false; - } - } else { // no inplace - // we expect the answer to be a bitmap (if we are lucky) - bitset_container_t *answer = bitset_container_clone(src_2); - - *dst = answer; - if (answer == NULL) { - return true; - } - uint32_t start = 0; - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - const rle16_t rle = src_1->runs[rlepos]; - uint32_t end = rle.value; - bitset_reset_range(answer->words, start, end); - start = end + rle.length + 1; - } - bitset_reset_range(answer->words, start, UINT32_C(1) << 16); - answer->cardinality = bitset_container_compute_cardinality(answer); - - if (answer->cardinality > DEFAULT_MAX_SIZE) { - return true; - } else { - array_container_t *newanswer = array_container_from_bitset(answer); - bitset_container_free(CAST_bitset(*dst)); - if (newanswer == NULL) { - *dst = NULL; - return false; - } - *dst = newanswer; - return false; - } - } -} - -/* Compute the size of the intersection between src_1 and src_2 . */ -int array_run_container_intersection_cardinality(const array_container_t *src_1, - const run_container_t *src_2) { - if (run_container_is_full(src_2)) { - return src_1->cardinality; - } - if (src_2->n_runs == 0) { - return 0; - } - int32_t rlepos = 0; - int32_t arraypos = 0; - rle16_t rle = src_2->runs[rlepos]; - int32_t newcard = 0; - while (arraypos < src_1->cardinality) { - const uint16_t arrayval = src_1->array[arraypos]; - while (rle.value + rle.length < - arrayval) { // this will frequently be false - ++rlepos; - if (rlepos == src_2->n_runs) { - return newcard; // we are done - } - rle = src_2->runs[rlepos]; - } - if (rle.value > arrayval) { - arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality, - rle.value); - } else { - newcard++; - arraypos++; - } - } - return newcard; -} - -/* Compute the intersection between src_1 and src_2 - **/ -int run_bitset_container_intersection_cardinality( - const run_container_t *src_1, const bitset_container_t *src_2) { - if (run_container_is_full(src_1)) { - return bitset_container_cardinality(src_2); - } - int answer = 0; - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - answer += - bitset_lenrange_cardinality(src_2->words, rle.value, rle.length); - } - return answer; -} - -bool array_run_container_intersect(const array_container_t *src_1, - const run_container_t *src_2) { - if (run_container_is_full(src_2)) { - return !array_container_empty(src_1); - } - if (src_2->n_runs == 0) { - return false; - } - int32_t rlepos = 0; - int32_t arraypos = 0; - rle16_t rle = src_2->runs[rlepos]; - while (arraypos < src_1->cardinality) { - const uint16_t arrayval = src_1->array[arraypos]; - while (rle.value + rle.length < - arrayval) { // this will frequently be false - ++rlepos; - if (rlepos == src_2->n_runs) { - return false; // we are done - } - rle = src_2->runs[rlepos]; - } - if (rle.value > arrayval) { - arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality, - rle.value); - } else { - return true; - } - } - return false; -} - -/* Compute the intersection between src_1 and src_2 - **/ -bool run_bitset_container_intersect(const run_container_t *src_1, - const bitset_container_t *src_2) { - if (run_container_is_full(src_1)) { - return !bitset_container_empty(src_2); - } - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - if (!bitset_lenrange_empty(src_2->words, rle.value, rle.length)) - return true; - } - return false; -} - -/* - * Compute the intersection between src_1 and src_2 and write the result - * to *dst. If the return function is true, the result is a bitset_container_t - * otherwise is a array_container_t. - */ -bool bitset_bitset_container_intersection(const bitset_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst) { - const int newCardinality = bitset_container_and_justcard(src_1, src_2); - if (newCardinality > DEFAULT_MAX_SIZE) { - *dst = bitset_container_create(); - if (*dst != NULL) { - bitset_container_and_nocard(src_1, src_2, CAST_bitset(*dst)); - CAST_bitset(*dst)->cardinality = newCardinality; - } - return true; // it is a bitset - } - *dst = array_container_create_given_capacity(newCardinality); - if (*dst != NULL) { - CAST_array(*dst)->cardinality = newCardinality; - bitset_extract_intersection_setbits_uint16( - src_1->words, src_2->words, BITSET_CONTAINER_SIZE_IN_WORDS, - CAST_array(*dst)->array, 0); - } - return false; // not a bitset -} - -bool bitset_bitset_container_intersection_inplace( - bitset_container_t *src_1, const bitset_container_t *src_2, - container_t **dst) { - const int newCardinality = bitset_container_and_justcard(src_1, src_2); - if (newCardinality > DEFAULT_MAX_SIZE) { - *dst = src_1; - bitset_container_and_nocard(src_1, src_2, src_1); - CAST_bitset(*dst)->cardinality = newCardinality; - return true; // it is a bitset - } - *dst = array_container_create_given_capacity(newCardinality); - if (*dst != NULL) { - CAST_array(*dst)->cardinality = newCardinality; - bitset_extract_intersection_setbits_uint16( - src_1->words, src_2->words, BITSET_CONTAINER_SIZE_IN_WORDS, - CAST_array(*dst)->array, 0); - } - return false; // not a bitset -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -/* end file src/containers/mixed_intersection.c */ -/* begin file src/containers/mixed_negation.c */ -/* - * mixed_negation.c - * - */ - -#include -#include - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -// TODO: make simplified and optimized negation code across -// the full range. - -/* Negation across the entire range of the container. - * Compute the negation of src and write the result - * to *dst. The complement of a - * sufficiently sparse set will always be dense and a hence a bitmap -' * We assume that dst is pre-allocated and a valid bitset container - * There can be no in-place version. - */ -void array_container_negation(const array_container_t *src, - bitset_container_t *dst) { - uint64_t card = UINT64_C(1 << 16); - bitset_container_set_all(dst); - - if (src->cardinality == 0) { - return; - } - - dst->cardinality = (int32_t)bitset_clear_list(dst->words, card, src->array, - (uint64_t)src->cardinality); -} - -/* Negation across the entire range of the container - * Compute the negation of src and write the result - * to *dst. A true return value indicates a bitset result, - * otherwise the result is an array container. - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -bool bitset_container_negation(const bitset_container_t *src, - container_t **dst) { - return bitset_container_negation_range(src, 0, (1 << 16), dst); -} - -/* inplace version */ -/* - * Same as bitset_container_negation except that if the output is to - * be a - * bitset_container_t, then src is modified and no allocation is made. - * If the output is to be an array_container_t, then caller is responsible - * to free the container. - * In all cases, the result is in *dst. - */ -bool bitset_container_negation_inplace(bitset_container_t *src, - container_t **dst) { - return bitset_container_negation_range_inplace(src, 0, (1 << 16), dst); -} - -/* Negation across the entire range of container - * Compute the negation of src and write the result - * to *dst. Return values are the *_TYPECODES as defined * in containers.h - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -int run_container_negation(const run_container_t *src, container_t **dst) { - return run_container_negation_range(src, 0, (1 << 16), dst); -} - -/* - * Same as run_container_negation except that if the output is to - * be a - * run_container_t, and has the capacity to hold the result, - * then src is modified and no allocation is made. - * In all cases, the result is in *dst. - */ -int run_container_negation_inplace(run_container_t *src, container_t **dst) { - return run_container_negation_range_inplace(src, 0, (1 << 16), dst); -} - -/* Negation across a range of the container. - * Compute the negation of src and write the result - * to *dst. Returns true if the result is a bitset container - * and false for an array container. *dst is not preallocated. - */ -bool array_container_negation_range(const array_container_t *src, - const int range_start, const int range_end, - container_t **dst) { - /* close port of the Java implementation */ - if (range_start >= range_end) { - *dst = array_container_clone(src); - return false; - } - - int32_t start_index = - binarySearch(src->array, src->cardinality, (uint16_t)range_start); - if (start_index < 0) start_index = -start_index - 1; - - int32_t last_index = - binarySearch(src->array, src->cardinality, (uint16_t)(range_end - 1)); - if (last_index < 0) last_index = -last_index - 2; - - const int32_t current_values_in_range = last_index - start_index + 1; - const int32_t span_to_be_flipped = range_end - range_start; - const int32_t new_values_in_range = - span_to_be_flipped - current_values_in_range; - const int32_t cardinality_change = - new_values_in_range - current_values_in_range; - const int32_t new_cardinality = src->cardinality + cardinality_change; - - if (new_cardinality > DEFAULT_MAX_SIZE) { - bitset_container_t *temp = bitset_container_from_array(src); - bitset_flip_range(temp->words, (uint32_t)range_start, - (uint32_t)range_end); - temp->cardinality = new_cardinality; - *dst = temp; - return true; - } - - array_container_t *arr = - array_container_create_given_capacity(new_cardinality); - *dst = (container_t *)arr; - if (new_cardinality == 0) { - arr->cardinality = new_cardinality; - return false; // we are done. - } - // copy stuff before the active area - memcpy(arr->array, src->array, start_index * sizeof(uint16_t)); - - // work on the range - int32_t out_pos = start_index, in_pos = start_index; - int32_t val_in_range = range_start; - for (; val_in_range < range_end && in_pos <= last_index; ++val_in_range) { - if ((uint16_t)val_in_range != src->array[in_pos]) { - arr->array[out_pos++] = (uint16_t)val_in_range; - } else { - ++in_pos; - } - } - for (; val_in_range < range_end; ++val_in_range) - arr->array[out_pos++] = (uint16_t)val_in_range; - - // content after the active range - memcpy(arr->array + out_pos, src->array + (last_index + 1), - (src->cardinality - (last_index + 1)) * sizeof(uint16_t)); - arr->cardinality = new_cardinality; - return false; -} - -/* Even when the result would fit, it is unclear how to make an - * inplace version without inefficient copying. - */ - -bool array_container_negation_range_inplace(array_container_t *src, - const int range_start, - const int range_end, - container_t **dst) { - bool ans = array_container_negation_range(src, range_start, range_end, dst); - // TODO : try a real inplace version - array_container_free(src); - return ans; -} - -/* Negation across a range of the container - * Compute the negation of src and write the result - * to *dst. A true return value indicates a bitset result, - * otherwise the result is an array container. - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -bool bitset_container_negation_range(const bitset_container_t *src, - const int range_start, const int range_end, - container_t **dst) { - // TODO maybe consider density-based estimate - // and sometimes build result directly as array, with - // conversion back to bitset if wrong. Or determine - // actual result cardinality, then go directly for the known final cont. - - // keep computation using bitsets as long as possible. - bitset_container_t *t = bitset_container_clone(src); - bitset_flip_range(t->words, (uint32_t)range_start, (uint32_t)range_end); - t->cardinality = bitset_container_compute_cardinality(t); - - if (t->cardinality > DEFAULT_MAX_SIZE) { - *dst = t; - return true; - } else { - *dst = array_container_from_bitset(t); - bitset_container_free(t); - return false; - } -} - -/* inplace version */ -/* - * Same as bitset_container_negation except that if the output is to - * be a - * bitset_container_t, then src is modified and no allocation is made. - * If the output is to be an array_container_t, then caller is responsible - * to free the container. - * In all cases, the result is in *dst. - */ -bool bitset_container_negation_range_inplace(bitset_container_t *src, - const int range_start, - const int range_end, - container_t **dst) { - bitset_flip_range(src->words, (uint32_t)range_start, (uint32_t)range_end); - src->cardinality = bitset_container_compute_cardinality(src); - if (src->cardinality > DEFAULT_MAX_SIZE) { - *dst = src; - return true; - } - *dst = array_container_from_bitset(src); - bitset_container_free(src); - return false; -} - -/* Negation across a range of container - * Compute the negation of src and write the result - * to *dst. Return values are the *_TYPECODES as defined * in containers.h - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -int run_container_negation_range(const run_container_t *src, - const int range_start, const int range_end, - container_t **dst) { - uint8_t return_typecode; - - // follows the Java implementation - if (range_end <= range_start) { - *dst = run_container_clone(src); - return RUN_CONTAINER_TYPE; - } - - run_container_t *ans = run_container_create_given_capacity( - src->n_runs + 1); // src->n_runs + 1); - int k = 0; - for (; k < src->n_runs && src->runs[k].value < range_start; ++k) { - ans->runs[k] = src->runs[k]; - ans->n_runs++; - } - - run_container_smart_append_exclusive( - ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1)); - - for (; k < src->n_runs; ++k) { - run_container_smart_append_exclusive(ans, src->runs[k].value, - src->runs[k].length); - } - - *dst = convert_run_to_efficient_container(ans, &return_typecode); - if (return_typecode != RUN_CONTAINER_TYPE) run_container_free(ans); - - return return_typecode; -} - -/* - * Same as run_container_negation except that if the output is to - * be a - * run_container_t, and has the capacity to hold the result, - * then src is modified and no allocation is made. - * In all cases, the result is in *dst. - */ -int run_container_negation_range_inplace(run_container_t *src, - const int range_start, - const int range_end, - container_t **dst) { - uint8_t return_typecode; - - if (range_end <= range_start) { - *dst = src; - return RUN_CONTAINER_TYPE; - } - - // TODO: efficient special case when range is 0 to 65535 inclusive - - if (src->capacity == src->n_runs) { - // no excess room. More checking to see if result can fit - bool last_val_before_range = false; - bool first_val_in_range = false; - bool last_val_in_range = false; - bool first_val_past_range = false; - - if (range_start > 0) - last_val_before_range = - run_container_contains(src, (uint16_t)(range_start - 1)); - first_val_in_range = run_container_contains(src, (uint16_t)range_start); - - if (last_val_before_range == first_val_in_range) { - last_val_in_range = - run_container_contains(src, (uint16_t)(range_end - 1)); - if (range_end != 0x10000) - first_val_past_range = - run_container_contains(src, (uint16_t)range_end); - - if (last_val_in_range == - first_val_past_range) { // no space for inplace - int ans = run_container_negation_range(src, range_start, - range_end, dst); - run_container_free(src); - return ans; - } - } - } - // all other cases: result will fit - - run_container_t *ans = src; - int my_nbr_runs = src->n_runs; - - ans->n_runs = 0; - int k = 0; - for (; (k < my_nbr_runs) && (src->runs[k].value < range_start); ++k) { - // ans->runs[k] = src->runs[k]; (would be self-copy) - ans->n_runs++; - } - - // as with Java implementation, use locals to give self a buffer of depth 1 - rle16_t buffered = CROARING_MAKE_RLE16(0, 0); - rle16_t next = buffered; - if (k < my_nbr_runs) buffered = src->runs[k]; - - run_container_smart_append_exclusive( - ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1)); - - for (; k < my_nbr_runs; ++k) { - if (k + 1 < my_nbr_runs) next = src->runs[k + 1]; - - run_container_smart_append_exclusive(ans, buffered.value, - buffered.length); - buffered = next; - } - - *dst = convert_run_to_efficient_container(ans, &return_typecode); - if (return_typecode != RUN_CONTAINER_TYPE) run_container_free(ans); - - return return_typecode; -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -/* end file src/containers/mixed_negation.c */ -/* begin file src/containers/mixed_subset.c */ - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -bool array_container_is_subset_bitset(const array_container_t* container1, - const bitset_container_t* container2) { - if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) { - if (container2->cardinality < container1->cardinality) { - return false; - } - } - for (int i = 0; i < container1->cardinality; ++i) { - if (!bitset_container_contains(container2, container1->array[i])) { - return false; - } - } - return true; -} - -bool run_container_is_subset_array(const run_container_t* container1, - const array_container_t* container2) { - if (run_container_cardinality(container1) > container2->cardinality) - return false; - int32_t start_pos = -1, stop_pos = -1; - for (int i = 0; i < container1->n_runs; ++i) { - int32_t start = container1->runs[i].value; - int32_t stop = start + container1->runs[i].length; - start_pos = advanceUntil(container2->array, stop_pos, - container2->cardinality, start); - stop_pos = advanceUntil(container2->array, stop_pos, - container2->cardinality, stop); - if (stop_pos == container2->cardinality) { - return false; - } else if (stop_pos - start_pos != stop - start || - container2->array[start_pos] != start || - container2->array[stop_pos] != stop) { - return false; - } - } - return true; -} - -bool array_container_is_subset_run(const array_container_t* container1, - const run_container_t* container2) { - if (container1->cardinality > run_container_cardinality(container2)) - return false; - int i_array = 0, i_run = 0; - while (i_array < container1->cardinality && i_run < container2->n_runs) { - uint32_t start = container2->runs[i_run].value; - uint32_t stop = start + container2->runs[i_run].length; - if (container1->array[i_array] < start) { - return false; - } else if (container1->array[i_array] > stop) { - i_run++; - } else { // the value of the array is in the run - i_array++; - } - } - if (i_array == container1->cardinality) { - return true; - } else { - return false; - } -} - -bool run_container_is_subset_bitset(const run_container_t* container1, - const bitset_container_t* container2) { - // todo: this code could be much faster - if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) { - if (container2->cardinality < run_container_cardinality(container1)) { - return false; - } - } else { - int32_t card = bitset_container_compute_cardinality( - container2); // modify container2? - if (card < run_container_cardinality(container1)) { - return false; - } - } - for (int i = 0; i < container1->n_runs; ++i) { - uint32_t run_start = container1->runs[i].value; - uint32_t le = container1->runs[i].length; - for (uint32_t j = run_start; j <= run_start + le; ++j) { - if (!bitset_container_contains(container2, j)) { - return false; - } - } - } - return true; -} - -bool bitset_container_is_subset_run(const bitset_container_t* container1, - const run_container_t* container2) { - // todo: this code could be much faster - if (container1->cardinality != BITSET_UNKNOWN_CARDINALITY) { - if (container1->cardinality > run_container_cardinality(container2)) { - return false; - } - } - int32_t i_bitset = 0, i_run = 0; - while (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS && - i_run < container2->n_runs) { - uint64_t w = container1->words[i_bitset]; - while (w != 0 && i_run < container2->n_runs) { - uint32_t start = container2->runs[i_run].value; - uint32_t stop = start + container2->runs[i_run].length; - uint64_t t = w & (~w + 1); - uint16_t r = i_bitset * 64 + roaring_trailing_zeroes(w); - if (r < start) { - return false; - } else if (r > stop) { - i_run++; - continue; - } else { - w ^= t; - } - } - if (w == 0) { - i_bitset++; - } else { - return false; - } - } - if (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS) { - // terminated iterating on the run containers, check that rest of bitset - // is empty - for (; i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS; i_bitset++) { - if (container1->words[i_bitset] != 0) { - return false; - } - } - } - return true; -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -/* end file src/containers/mixed_subset.c */ -/* begin file src/containers/mixed_union.c */ -/* - * mixed_union.c - * - */ - -#include -#include - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/* Compute the union of src_1 and src_2 and write the result to - * dst. */ -void array_bitset_container_union(const array_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst) { - if (src_2 != dst) bitset_container_copy(src_2, dst); - dst->cardinality = (int32_t)bitset_set_list_withcard( - dst->words, dst->cardinality, src_1->array, src_1->cardinality); -} - -/* Compute the union of src_1 and src_2 and write the result to - * dst. It is allowed for src_2 to be dst. This version does not - * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */ -void array_bitset_container_lazy_union(const array_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst) { - if (src_2 != dst) bitset_container_copy(src_2, dst); - bitset_set_list(dst->words, src_1->array, src_1->cardinality); - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; -} - -void run_bitset_container_union(const run_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst) { - assert(!run_container_is_full(src_1)); // catch this case upstream - if (src_2 != dst) bitset_container_copy(src_2, dst); - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - bitset_set_lenrange(dst->words, rle.value, rle.length); - } - dst->cardinality = bitset_container_compute_cardinality(dst); -} - -void run_bitset_container_lazy_union(const run_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst) { - assert(!run_container_is_full(src_1)); // catch this case upstream - if (src_2 != dst) bitset_container_copy(src_2, dst); - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - bitset_set_lenrange(dst->words, rle.value, rle.length); - } - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; -} - -// why do we leave the result as a run container?? -void array_run_container_union(const array_container_t *src_1, - const run_container_t *src_2, - run_container_t *dst) { - if (run_container_is_full(src_2)) { - run_container_copy(src_2, dst); - return; - } - // TODO: see whether the "2*" is spurious - run_container_grow(dst, 2 * (src_1->cardinality + src_2->n_runs), false); - int32_t rlepos = 0; - int32_t arraypos = 0; - rle16_t previousrle; - if (src_2->runs[rlepos].value <= src_1->array[arraypos]) { - previousrle = run_container_append_first(dst, src_2->runs[rlepos]); - rlepos++; - } else { - previousrle = - run_container_append_value_first(dst, src_1->array[arraypos]); - arraypos++; - } - while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) { - if (src_2->runs[rlepos].value <= src_1->array[arraypos]) { - run_container_append(dst, src_2->runs[rlepos], &previousrle); - rlepos++; - } else { - run_container_append_value(dst, src_1->array[arraypos], - &previousrle); - arraypos++; - } - } - if (arraypos < src_1->cardinality) { - while (arraypos < src_1->cardinality) { - run_container_append_value(dst, src_1->array[arraypos], - &previousrle); - arraypos++; - } - } else { - while (rlepos < src_2->n_runs) { - run_container_append(dst, src_2->runs[rlepos], &previousrle); - rlepos++; - } - } -} - -void array_run_container_inplace_union(const array_container_t *src_1, - run_container_t *src_2) { - if (run_container_is_full(src_2)) { - return; - } - const int32_t maxoutput = src_1->cardinality + src_2->n_runs; - const int32_t neededcapacity = maxoutput + src_2->n_runs; - if (src_2->capacity < neededcapacity) - run_container_grow(src_2, neededcapacity, true); - memmove(src_2->runs + maxoutput, src_2->runs, - src_2->n_runs * sizeof(rle16_t)); - rle16_t *inputsrc2 = src_2->runs + maxoutput; - int32_t rlepos = 0; - int32_t arraypos = 0; - int src2nruns = src_2->n_runs; - src_2->n_runs = 0; - - rle16_t previousrle; - - if (inputsrc2[rlepos].value <= src_1->array[arraypos]) { - previousrle = run_container_append_first(src_2, inputsrc2[rlepos]); - rlepos++; - } else { - previousrle = - run_container_append_value_first(src_2, src_1->array[arraypos]); - arraypos++; - } - - while ((rlepos < src2nruns) && (arraypos < src_1->cardinality)) { - if (inputsrc2[rlepos].value <= src_1->array[arraypos]) { - run_container_append(src_2, inputsrc2[rlepos], &previousrle); - rlepos++; - } else { - run_container_append_value(src_2, src_1->array[arraypos], - &previousrle); - arraypos++; - } - } - if (arraypos < src_1->cardinality) { - while (arraypos < src_1->cardinality) { - run_container_append_value(src_2, src_1->array[arraypos], - &previousrle); - arraypos++; - } - } else { - while (rlepos < src2nruns) { - run_container_append(src_2, inputsrc2[rlepos], &previousrle); - rlepos++; - } - } -} - -bool array_array_container_union(const array_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - int totalCardinality = src_1->cardinality + src_2->cardinality; - if (totalCardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_create_given_capacity(totalCardinality); - if (*dst != NULL) { - array_container_union(src_1, src_2, CAST_array(*dst)); - } else { - return true; // otherwise failure won't be caught - } - return false; // not a bitset - } - *dst = bitset_container_create(); - bool returnval = true; // expect a bitset - if (*dst != NULL) { - bitset_container_t *ourbitset = CAST_bitset(*dst); - bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality); - ourbitset->cardinality = (int32_t)bitset_set_list_withcard( - ourbitset->words, src_1->cardinality, src_2->array, - src_2->cardinality); - if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) { - // need to convert! - *dst = array_container_from_bitset(ourbitset); - bitset_container_free(ourbitset); - returnval = false; // not going to be a bitset - } - } - return returnval; -} - -bool array_array_container_inplace_union(array_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - int totalCardinality = src_1->cardinality + src_2->cardinality; - *dst = NULL; - if (totalCardinality <= DEFAULT_MAX_SIZE) { - if (src_1->capacity < totalCardinality) { - *dst = array_container_create_given_capacity( - 2 * totalCardinality); // be purposefully generous - if (*dst != NULL) { - array_container_union(src_1, src_2, CAST_array(*dst)); - } else { - return true; // otherwise failure won't be caught - } - return false; // not a bitset - } else { - memmove(src_1->array + src_2->cardinality, src_1->array, - src_1->cardinality * sizeof(uint16_t)); - // In theory, we could use fast_union_uint16, but it is unsafe. It - // fails with Intel compilers in particular. - // https://github.com/RoaringBitmap/CRoaring/pull/452 - // See report https://github.com/RoaringBitmap/CRoaring/issues/476 - src_1->cardinality = (int32_t)union_uint16( - src_1->array + src_2->cardinality, src_1->cardinality, - src_2->array, src_2->cardinality, src_1->array); - return false; // not a bitset - } - } - *dst = bitset_container_create(); - bool returnval = true; // expect a bitset - if (*dst != NULL) { - bitset_container_t *ourbitset = CAST_bitset(*dst); - bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality); - ourbitset->cardinality = (int32_t)bitset_set_list_withcard( - ourbitset->words, src_1->cardinality, src_2->array, - src_2->cardinality); - if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) { - // need to convert! - if (src_1->capacity < ourbitset->cardinality) { - array_container_grow(src_1, ourbitset->cardinality, false); - } - - bitset_extract_setbits_uint16(ourbitset->words, - BITSET_CONTAINER_SIZE_IN_WORDS, - src_1->array, 0); - src_1->cardinality = ourbitset->cardinality; - *dst = src_1; - bitset_container_free(ourbitset); - returnval = false; // not going to be a bitset - } - } - return returnval; -} - -bool array_array_container_lazy_union(const array_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - int totalCardinality = src_1->cardinality + src_2->cardinality; - // - // We assume that operations involving bitset containers will be faster than - // operations involving solely array containers, except maybe when array - // containers are small. Indeed, for example, it is cheap to compute the - // union between an array and a bitset container, generally more so than - // between a large array and another array. So it is advantageous to favour - // bitset containers during the computation. Of course, if we convert array - // containers eagerly to bitset containers, we may later need to revert the - // bitset containers to array containerr to satisfy the Roaring format - // requirements, but such one-time conversions at the end may not be overly - // expensive. We arrived to this design based on extensive benchmarking. - // - if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) { - *dst = array_container_create_given_capacity(totalCardinality); - if (*dst != NULL) { - array_container_union(src_1, src_2, CAST_array(*dst)); - } else { - return true; // otherwise failure won't be caught - } - return false; // not a bitset - } - *dst = bitset_container_create(); - bool returnval = true; // expect a bitset - if (*dst != NULL) { - bitset_container_t *ourbitset = CAST_bitset(*dst); - bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality); - bitset_set_list(ourbitset->words, src_2->array, src_2->cardinality); - ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY; - } - return returnval; -} - -bool array_array_container_lazy_inplace_union(array_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - int totalCardinality = src_1->cardinality + src_2->cardinality; - *dst = NULL; - // - // We assume that operations involving bitset containers will be faster than - // operations involving solely array containers, except maybe when array - // containers are small. Indeed, for example, it is cheap to compute the - // union between an array and a bitset container, generally more so than - // between a large array and another array. So it is advantageous to favour - // bitset containers during the computation. Of course, if we convert array - // containers eagerly to bitset containers, we may later need to revert the - // bitset containers to array containerr to satisfy the Roaring format - // requirements, but such one-time conversions at the end may not be overly - // expensive. We arrived to this design based on extensive benchmarking. - // - if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) { - if (src_1->capacity < totalCardinality) { - *dst = array_container_create_given_capacity( - 2 * totalCardinality); // be purposefully generous - if (*dst != NULL) { - array_container_union(src_1, src_2, CAST_array(*dst)); - } else { - return true; // otherwise failure won't be caught - } - return false; // not a bitset - } else { - memmove(src_1->array + src_2->cardinality, src_1->array, - src_1->cardinality * sizeof(uint16_t)); - /* - Next line is safe: - - We just need to focus on the reading and writing performed on - array1. In `union_vector16`, both vectorized and scalar code still - obey the basic rule: read from two inputs, do the union, and then - write the output. - - Let's say the length(cardinality) of input2 is L2: - ``` - |<- L2 ->| - array1: [output--- |input 1---|---] - array2: [input 2---] - ``` - Let's define 3 __m128i pointers, `pos1` starts from `input1`, - `pos2` starts from `input2`, these 2 point at the next byte to - read, `out` starts from `output`, pointing at the next byte to - overwrite. - ``` - array1: [output--- |input 1---|---] - ^ ^ - out pos1 - array2: [input 2---] - ^ - pos2 - ``` - The union output always contains less or equal number of elements - than all inputs added, so we have: - ``` - out <= pos1 + pos2 - ``` - therefore: - ``` - out <= pos1 + L2 - ``` - which means you will not overwrite data beyond pos1, so the data - haven't read is safe, and we don't care the data already read. - */ - src_1->cardinality = (int32_t)fast_union_uint16( - src_1->array + src_2->cardinality, src_1->cardinality, - src_2->array, src_2->cardinality, src_1->array); - return false; // not a bitset - } - } - *dst = bitset_container_create(); - bool returnval = true; // expect a bitset - if (*dst != NULL) { - bitset_container_t *ourbitset = CAST_bitset(*dst); - bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality); - bitset_set_list(ourbitset->words, src_2->array, src_2->cardinality); - ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY; - } - return returnval; -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -/* end file src/containers/mixed_union.c */ -/* begin file src/containers/mixed_xor.c */ -/* - * mixed_xor.c - */ - -#include -#include - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -/* Compute the xor of src_1 and src_2 and write the result to - * dst (which has no container initially). - * Result is true iff dst is a bitset */ -bool array_bitset_container_xor(const array_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst) { - bitset_container_t *result = bitset_container_create(); - bitset_container_copy(src_2, result); - result->cardinality = (int32_t)bitset_flip_list_withcard( - result->words, result->cardinality, src_1->array, src_1->cardinality); - - // do required type conversions. - if (result->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(result); - bitset_container_free(result); - return false; // not bitset - } - *dst = result; - return true; // bitset -} - -/* Compute the xor of src_1 and src_2 and write the result to - * dst. It is allowed for src_2 to be dst. This version does not - * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). - */ - -void array_bitset_container_lazy_xor(const array_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst) { - if (src_2 != dst) bitset_container_copy(src_2, dst); - bitset_flip_list(dst->words, src_1->array, src_1->cardinality); - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; -} - -/* Compute the xor of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_xor(const run_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst) { - bitset_container_t *result = bitset_container_create(); - - bitset_container_copy(src_2, result); - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - bitset_flip_range(result->words, rle.value, - rle.value + rle.length + UINT32_C(1)); - } - result->cardinality = bitset_container_compute_cardinality(result); - - if (result->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(result); - bitset_container_free(result); - return false; // not bitset - } - *dst = result; - return true; // bitset -} - -/* lazy xor. Dst is initialized and may be equal to src_2. - * Result is left as a bitset container, even if actual - * cardinality would dictate an array container. - */ - -void run_bitset_container_lazy_xor(const run_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst) { - if (src_2 != dst) bitset_container_copy(src_2, dst); - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - bitset_flip_range(dst->words, rle.value, - rle.value + rle.length + UINT32_C(1)); - } - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; -} - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int array_run_container_xor(const array_container_t *src_1, - const run_container_t *src_2, container_t **dst) { - // semi following Java XOR implementation as of May 2016 - // the C OR implementation works quite differently and can return a run - // container - // TODO could optimize for full run containers. - - // use of lazy following Java impl. - const int arbitrary_threshold = 32; - if (src_1->cardinality < arbitrary_threshold) { - run_container_t *ans = run_container_create(); - array_run_container_lazy_xor(src_1, src_2, ans); // keeps runs. - uint8_t typecode_after; - *dst = - convert_run_to_efficient_container_and_free(ans, &typecode_after); - return typecode_after; - } - - int card = run_container_cardinality(src_2); - if (card <= DEFAULT_MAX_SIZE) { - // Java implementation works with the array, xoring the run elements via - // iterator - array_container_t *temp = array_container_from_run(src_2); - bool ret_is_bitset = array_array_container_xor(temp, src_1, dst); - array_container_free(temp); - return ret_is_bitset ? BITSET_CONTAINER_TYPE : ARRAY_CONTAINER_TYPE; - - } else { // guess that it will end up as a bitset - bitset_container_t *result = bitset_container_from_run(src_2); - bool is_bitset = bitset_array_container_ixor(result, src_1, dst); - // any necessary type conversion has been done by the ixor - int retval = (is_bitset ? BITSET_CONTAINER_TYPE : ARRAY_CONTAINER_TYPE); - return retval; - } -} - -/* Dst is a valid run container. (Can it be src_2? Let's say not.) - * Leaves result as run container, even if other options are - * smaller. - */ - -void array_run_container_lazy_xor(const array_container_t *src_1, - const run_container_t *src_2, - run_container_t *dst) { - run_container_grow(dst, src_1->cardinality + src_2->n_runs, false); - int32_t rlepos = 0; - int32_t arraypos = 0; - dst->n_runs = 0; - - while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) { - if (src_2->runs[rlepos].value <= src_1->array[arraypos]) { - run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value, - src_2->runs[rlepos].length); - rlepos++; - } else { - run_container_smart_append_exclusive(dst, src_1->array[arraypos], - 0); - arraypos++; - } - } - while (arraypos < src_1->cardinality) { - run_container_smart_append_exclusive(dst, src_1->array[arraypos], 0); - arraypos++; - } - while (rlepos < src_2->n_runs) { - run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value, - src_2->runs[rlepos].length); - rlepos++; - } -} - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int run_run_container_xor(const run_container_t *src_1, - const run_container_t *src_2, container_t **dst) { - run_container_t *ans = run_container_create(); - run_container_xor(src_1, src_2, ans); - uint8_t typecode_after; - *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after); - return typecode_after; -} - -/* - * Java implementation (as of May 2016) for array_run, run_run - * and bitset_run don't do anything different for inplace. - * Could adopt the mixed_union.c approach instead (ie, using - * smart_append_exclusive) - * - */ - -bool array_array_container_xor(const array_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - int totalCardinality = - src_1->cardinality + src_2->cardinality; // upper bound - if (totalCardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_create_given_capacity(totalCardinality); - array_container_xor(src_1, src_2, CAST_array(*dst)); - return false; // not a bitset - } - *dst = bitset_container_from_array(src_1); - bool returnval = true; // expect a bitset - bitset_container_t *ourbitset = CAST_bitset(*dst); - ourbitset->cardinality = (uint32_t)bitset_flip_list_withcard( - ourbitset->words, src_1->cardinality, src_2->array, src_2->cardinality); - if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) { - // need to convert! - *dst = array_container_from_bitset(ourbitset); - bitset_container_free(ourbitset); - returnval = false; // not going to be a bitset - } - - return returnval; -} - -bool array_array_container_lazy_xor(const array_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - int totalCardinality = src_1->cardinality + src_2->cardinality; - // - // We assume that operations involving bitset containers will be faster than - // operations involving solely array containers, except maybe when array - // containers are small. Indeed, for example, it is cheap to compute the - // exclusive union between an array and a bitset container, generally more - // so than between a large array and another array. So it is advantageous to - // favour bitset containers during the computation. Of course, if we convert - // array containers eagerly to bitset containers, we may later need to - // revert the bitset containers to array containerr to satisfy the Roaring - // format requirements, but such one-time conversions at the end may not be - // overly expensive. We arrived to this design based on extensive - // benchmarking on unions. For XOR/exclusive union, we simply followed the - // heuristic used by the unions (see mixed_union.c). Further tuning is - // possible. - // - if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) { - *dst = array_container_create_given_capacity(totalCardinality); - if (*dst != NULL) array_container_xor(src_1, src_2, CAST_array(*dst)); - return false; // not a bitset - } - *dst = bitset_container_from_array(src_1); - bool returnval = true; // expect a bitset (maybe, for XOR??) - if (*dst != NULL) { - bitset_container_t *ourbitset = CAST_bitset(*dst); - bitset_flip_list(ourbitset->words, src_2->array, src_2->cardinality); - ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY; - } - return returnval; -} - -/* Compute the xor of src_1 and src_2 and write the result to - * dst (which has no container initially). Return value is - * "dst is a bitset" - */ - -bool bitset_bitset_container_xor(const bitset_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst) { - bitset_container_t *ans = bitset_container_create(); - int card = bitset_container_xor(src_1, src_2, ans); - if (card <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(ans); - bitset_container_free(ans); - return false; // not bitset - } else { - *dst = ans; - return true; - } -} - -/* Compute the xor of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_array_container_ixor(bitset_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - *dst = src_1; - src_1->cardinality = (uint32_t)bitset_flip_list_withcard( - src_1->words, src_1->cardinality, src_2->array, src_2->cardinality); - - if (src_1->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(src_1); - bitset_container_free(src_1); - return false; // not bitset - } else - return true; -} - -/* a bunch of in-place, some of which may not *really* be inplace. - * TODO: write actual inplace routine if efficiency warrants it - * Anything inplace with a bitset is a good candidate - */ - -bool bitset_bitset_container_ixor(bitset_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst) { - int card = bitset_container_xor(src_1, src_2, src_1); - if (card <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(src_1); - bitset_container_free(src_1); - return false; // not bitset - } else { - *dst = src_1; - return true; - } -} - -bool array_bitset_container_ixor(array_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst) { - bool ans = array_bitset_container_xor(src_1, src_2, dst); - array_container_free(src_1); - return ans; -} - -/* Compute the xor of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_ixor(run_container_t *src_1, - const bitset_container_t *src_2, - container_t **dst) { - bool ans = run_bitset_container_xor(src_1, src_2, dst); - run_container_free(src_1); - return ans; -} - -bool bitset_run_container_ixor(bitset_container_t *src_1, - const run_container_t *src_2, - container_t **dst) { - bool ans = run_bitset_container_xor(src_2, src_1, dst); - bitset_container_free(src_1); - return ans; -} - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int array_run_container_ixor(array_container_t *src_1, - const run_container_t *src_2, container_t **dst) { - int ans = array_run_container_xor(src_1, src_2, dst); - array_container_free(src_1); - return ans; -} - -int run_array_container_ixor(run_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - int ans = array_run_container_xor(src_2, src_1, dst); - run_container_free(src_1); - return ans; -} - -bool array_array_container_ixor(array_container_t *src_1, - const array_container_t *src_2, - container_t **dst) { - bool ans = array_array_container_xor(src_1, src_2, dst); - array_container_free(src_1); - return ans; -} - -int run_run_container_ixor(run_container_t *src_1, const run_container_t *src_2, - container_t **dst) { - int ans = run_run_container_xor(src_1, src_2, dst); - run_container_free(src_1); - return ans; -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -/* end file src/containers/mixed_xor.c */ -/* begin file src/containers/run.c */ -#include -#include - - -#if CROARING_IS_X64 -#ifndef CROARING_COMPILER_SUPPORTS_AVX512 -#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined." -#endif // CROARING_COMPILER_SUPPORTS_AVX512 -#endif -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wuninitialized" -#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" -#endif -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -extern inline uint16_t run_container_minimum(const run_container_t *run); -extern inline uint16_t run_container_maximum(const run_container_t *run); -extern inline int32_t interleavedBinarySearch(const rle16_t *array, - int32_t lenarray, uint16_t ikey); -extern inline bool run_container_contains(const run_container_t *run, - uint16_t pos); -extern inline int run_container_index_equalorlarger(const run_container_t *arr, - uint16_t x); -extern inline bool run_container_is_full(const run_container_t *run); -extern inline bool run_container_nonzero_cardinality(const run_container_t *rc); -extern inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs); -extern inline run_container_t *run_container_create_range(uint32_t start, - uint32_t stop); -extern inline int run_container_cardinality(const run_container_t *run); - -bool run_container_add(run_container_t *run, uint16_t pos) { - int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos); - if (index >= 0) return false; // already there - index = -index - 2; // points to preceding value, possibly -1 - if (index >= 0) { // possible match - int32_t offset = pos - run->runs[index].value; - int32_t le = run->runs[index].length; - if (offset <= le) return false; // already there - if (offset == le + 1) { - // we may need to fuse - if (index + 1 < run->n_runs) { - if (run->runs[index + 1].value == pos + 1) { - // indeed fusion is needed - run->runs[index].length = run->runs[index + 1].value + - run->runs[index + 1].length - - run->runs[index].value; - recoverRoomAtIndex(run, (uint16_t)(index + 1)); - return true; - } - } - run->runs[index].length++; - return true; - } - if (index + 1 < run->n_runs) { - // we may need to fuse - if (run->runs[index + 1].value == pos + 1) { - // indeed fusion is needed - run->runs[index + 1].value = pos; - run->runs[index + 1].length = run->runs[index + 1].length + 1; - return true; - } - } - } - if (index == -1) { - // we may need to extend the first run - if (0 < run->n_runs) { - if (run->runs[0].value == pos + 1) { - run->runs[0].length++; - run->runs[0].value--; - return true; - } - } - } - makeRoomAtIndex(run, (uint16_t)(index + 1)); - run->runs[index + 1].value = pos; - run->runs[index + 1].length = 0; - return true; -} - -/* Create a new run container. Return NULL in case of failure. */ -run_container_t *run_container_create_given_capacity(int32_t size) { - run_container_t *run; - /* Allocate the run container itself. */ - if ((run = (run_container_t *)roaring_malloc(sizeof(run_container_t))) == - NULL) { - return NULL; - } - if (size <= 0) { // we don't want to rely on malloc(0) - run->runs = NULL; - } else if ((run->runs = (rle16_t *)roaring_malloc(sizeof(rle16_t) * - size)) == NULL) { - roaring_free(run); - return NULL; - } - run->capacity = size; - run->n_runs = 0; - return run; -} - -int run_container_shrink_to_fit(run_container_t *src) { - if (src->n_runs == src->capacity) return 0; // nothing to do - int savings = src->capacity - src->n_runs; - src->capacity = src->n_runs; - rle16_t *oldruns = src->runs; - src->runs = - (rle16_t *)roaring_realloc(oldruns, src->capacity * sizeof(rle16_t)); - if (src->runs == NULL) roaring_free(oldruns); // should never happen? - return savings; -} -/* Create a new run container. Return NULL in case of failure. */ -run_container_t *run_container_create(void) { - return run_container_create_given_capacity(RUN_DEFAULT_INIT_SIZE); -} - -ALLOW_UNALIGNED -run_container_t *run_container_clone(const run_container_t *src) { - run_container_t *run = run_container_create_given_capacity(src->capacity); - if (run == NULL) return NULL; - run->capacity = src->capacity; - run->n_runs = src->n_runs; - memcpy(run->runs, src->runs, src->n_runs * sizeof(rle16_t)); - return run; -} - -void run_container_offset(const run_container_t *c, container_t **loc, - container_t **hic, uint16_t offset) { - run_container_t *lo = NULL, *hi = NULL; - - bool split; - int lo_cap, hi_cap; - int top, pivot; - - top = (1 << 16) - offset; - pivot = run_container_index_equalorlarger(c, top); - - if (pivot == -1) { - split = false; - lo_cap = c->n_runs; - hi_cap = 0; - } else { - split = c->runs[pivot].value < top; - lo_cap = pivot + (split ? 1 : 0); - hi_cap = c->n_runs - pivot; - } - - if (loc && lo_cap) { - lo = run_container_create_given_capacity(lo_cap); - memcpy(lo->runs, c->runs, lo_cap * sizeof(rle16_t)); - lo->n_runs = lo_cap; - for (int i = 0; i < lo_cap; ++i) { - lo->runs[i].value += offset; - } - *loc = (container_t *)lo; - } - - if (hic && hi_cap) { - hi = run_container_create_given_capacity(hi_cap); - memcpy(hi->runs, c->runs + pivot, hi_cap * sizeof(rle16_t)); - hi->n_runs = hi_cap; - for (int i = 0; i < hi_cap; ++i) { - hi->runs[i].value += offset; - } - *hic = (container_t *)hi; - } - - // Fix the split. - if (split) { - if (lo != NULL) { - // Add the missing run to 'lo', exhausting length. - lo->runs[lo->n_runs - 1].length = - (1 << 16) - lo->runs[lo->n_runs - 1].value - 1; - } - - if (hi != NULL) { - // Fix the first run in 'hi'. - hi->runs[0].length -= UINT16_MAX - hi->runs[0].value + 1; - hi->runs[0].value = 0; - } - } -} - -/* Free memory. */ -void run_container_free(run_container_t *run) { - if (run->runs != - NULL) { // Jon Strabala reports that some tools complain otherwise - roaring_free(run->runs); - run->runs = NULL; // pedantic - } - roaring_free(run); -} - -void run_container_grow(run_container_t *run, int32_t min, bool copy) { - int32_t newCapacity = (run->capacity == 0) ? RUN_DEFAULT_INIT_SIZE - : run->capacity < 64 ? run->capacity * 2 - : run->capacity < 1024 ? run->capacity * 3 / 2 - : run->capacity * 5 / 4; - if (newCapacity < min) newCapacity = min; - run->capacity = newCapacity; - assert(run->capacity >= min); - if (copy) { - rle16_t *oldruns = run->runs; - run->runs = (rle16_t *)roaring_realloc(oldruns, - run->capacity * sizeof(rle16_t)); - if (run->runs == NULL) roaring_free(oldruns); - } else { - // Jon Strabala reports that some tools complain otherwise - if (run->runs != NULL) { - roaring_free(run->runs); - } - run->runs = (rle16_t *)roaring_malloc(run->capacity * sizeof(rle16_t)); - } - // We may have run->runs == NULL. -} - -/* copy one container into another */ -void run_container_copy(const run_container_t *src, run_container_t *dst) { - const int32_t n_runs = src->n_runs; - if (src->n_runs > dst->capacity) { - run_container_grow(dst, n_runs, false); - } - dst->n_runs = n_runs; - memcpy(dst->runs, src->runs, sizeof(rle16_t) * n_runs); -} - -/* Compute the union of `src_1' and `src_2' and write the result to `dst' - * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ -void run_container_union(const run_container_t *src_1, - const run_container_t *src_2, run_container_t *dst) { - // TODO: this could be a lot more efficient - - // we start out with inexpensive checks - const bool if1 = run_container_is_full(src_1); - const bool if2 = run_container_is_full(src_2); - if (if1 || if2) { - if (if1) { - run_container_copy(src_1, dst); - return; - } - if (if2) { - run_container_copy(src_2, dst); - return; - } - } - const int32_t neededcapacity = src_1->n_runs + src_2->n_runs; - if (dst->capacity < neededcapacity) - run_container_grow(dst, neededcapacity, false); - dst->n_runs = 0; - int32_t rlepos = 0; - int32_t xrlepos = 0; - - rle16_t previousrle; - if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) { - previousrle = run_container_append_first(dst, src_1->runs[rlepos]); - rlepos++; - } else { - previousrle = run_container_append_first(dst, src_2->runs[xrlepos]); - xrlepos++; - } - - while ((xrlepos < src_2->n_runs) && (rlepos < src_1->n_runs)) { - rle16_t newrl; - if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) { - newrl = src_1->runs[rlepos]; - rlepos++; - } else { - newrl = src_2->runs[xrlepos]; - xrlepos++; - } - run_container_append(dst, newrl, &previousrle); - } - while (xrlepos < src_2->n_runs) { - run_container_append(dst, src_2->runs[xrlepos], &previousrle); - xrlepos++; - } - while (rlepos < src_1->n_runs) { - run_container_append(dst, src_1->runs[rlepos], &previousrle); - rlepos++; - } -} - -/* Compute the union of `src_1' and `src_2' and write the result to `src_1' - */ -void run_container_union_inplace(run_container_t *src_1, - const run_container_t *src_2) { - // TODO: this could be a lot more efficient - - // we start out with inexpensive checks - const bool if1 = run_container_is_full(src_1); - const bool if2 = run_container_is_full(src_2); - if (if1 || if2) { - if (if1) { - return; - } - if (if2) { - run_container_copy(src_2, src_1); - return; - } - } - // we move the data to the end of the current array - const int32_t maxoutput = src_1->n_runs + src_2->n_runs; - const int32_t neededcapacity = maxoutput + src_1->n_runs; - if (src_1->capacity < neededcapacity) - run_container_grow(src_1, neededcapacity, true); - memmove(src_1->runs + maxoutput, src_1->runs, - src_1->n_runs * sizeof(rle16_t)); - rle16_t *inputsrc1 = src_1->runs + maxoutput; - const int32_t input1nruns = src_1->n_runs; - src_1->n_runs = 0; - int32_t rlepos = 0; - int32_t xrlepos = 0; - - rle16_t previousrle; - if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) { - previousrle = run_container_append_first(src_1, inputsrc1[rlepos]); - rlepos++; - } else { - previousrle = run_container_append_first(src_1, src_2->runs[xrlepos]); - xrlepos++; - } - while ((xrlepos < src_2->n_runs) && (rlepos < input1nruns)) { - rle16_t newrl; - if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) { - newrl = inputsrc1[rlepos]; - rlepos++; - } else { - newrl = src_2->runs[xrlepos]; - xrlepos++; - } - run_container_append(src_1, newrl, &previousrle); - } - while (xrlepos < src_2->n_runs) { - run_container_append(src_1, src_2->runs[xrlepos], &previousrle); - xrlepos++; - } - while (rlepos < input1nruns) { - run_container_append(src_1, inputsrc1[rlepos], &previousrle); - rlepos++; - } -} - -/* Compute the symmetric difference of `src_1' and `src_2' and write the result - * to `dst' - * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ -void run_container_xor(const run_container_t *src_1, - const run_container_t *src_2, run_container_t *dst) { - // don't bother to convert xor with full range into negation - // since negation is implemented similarly - - const int32_t neededcapacity = src_1->n_runs + src_2->n_runs; - if (dst->capacity < neededcapacity) - run_container_grow(dst, neededcapacity, false); - - int32_t pos1 = 0; - int32_t pos2 = 0; - dst->n_runs = 0; - - while ((pos1 < src_1->n_runs) && (pos2 < src_2->n_runs)) { - if (src_1->runs[pos1].value <= src_2->runs[pos2].value) { - run_container_smart_append_exclusive(dst, src_1->runs[pos1].value, - src_1->runs[pos1].length); - pos1++; - } else { - run_container_smart_append_exclusive(dst, src_2->runs[pos2].value, - src_2->runs[pos2].length); - pos2++; - } - } - while (pos1 < src_1->n_runs) { - run_container_smart_append_exclusive(dst, src_1->runs[pos1].value, - src_1->runs[pos1].length); - pos1++; - } - - while (pos2 < src_2->n_runs) { - run_container_smart_append_exclusive(dst, src_2->runs[pos2].value, - src_2->runs[pos2].length); - pos2++; - } -} - -/* Compute the intersection of src_1 and src_2 and write the result to - * dst. It is assumed that dst is distinct from both src_1 and src_2. */ -void run_container_intersection(const run_container_t *src_1, - const run_container_t *src_2, - run_container_t *dst) { - const bool if1 = run_container_is_full(src_1); - const bool if2 = run_container_is_full(src_2); - if (if1 || if2) { - if (if1) { - run_container_copy(src_2, dst); - return; - } - if (if2) { - run_container_copy(src_1, dst); - return; - } - } - // TODO: this could be a lot more efficient, could use SIMD optimizations - const int32_t neededcapacity = src_1->n_runs + src_2->n_runs; - if (dst->capacity < neededcapacity) - run_container_grow(dst, neededcapacity, false); - dst->n_runs = 0; - int32_t rlepos = 0; - int32_t xrlepos = 0; - int32_t start = src_1->runs[rlepos].value; - int32_t end = start + src_1->runs[rlepos].length + 1; - int32_t xstart = src_2->runs[xrlepos].value; - int32_t xend = xstart + src_2->runs[xrlepos].length + 1; - while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) { - if (end <= xstart) { - ++rlepos; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - } else if (xend <= start) { - ++xrlepos; - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } else { // they overlap - const int32_t lateststart = start > xstart ? start : xstart; - int32_t earliestend; - if (end == xend) { // improbable - earliestend = end; - rlepos++; - xrlepos++; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } else if (end < xend) { - earliestend = end; - rlepos++; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - - } else { // end > xend - earliestend = xend; - xrlepos++; - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } - dst->runs[dst->n_runs].value = (uint16_t)lateststart; - dst->runs[dst->n_runs].length = - (uint16_t)(earliestend - lateststart - 1); - dst->n_runs++; - } - } -} - -/* Compute the size of the intersection of src_1 and src_2 . */ -int run_container_intersection_cardinality(const run_container_t *src_1, - const run_container_t *src_2) { - const bool if1 = run_container_is_full(src_1); - const bool if2 = run_container_is_full(src_2); - if (if1 || if2) { - if (if1) { - return run_container_cardinality(src_2); - } - if (if2) { - return run_container_cardinality(src_1); - } - } - int answer = 0; - int32_t rlepos = 0; - int32_t xrlepos = 0; - int32_t start = src_1->runs[rlepos].value; - int32_t end = start + src_1->runs[rlepos].length + 1; - int32_t xstart = src_2->runs[xrlepos].value; - int32_t xend = xstart + src_2->runs[xrlepos].length + 1; - while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) { - if (end <= xstart) { - ++rlepos; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - } else if (xend <= start) { - ++xrlepos; - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } else { // they overlap - const int32_t lateststart = start > xstart ? start : xstart; - int32_t earliestend; - if (end == xend) { // improbable - earliestend = end; - rlepos++; - xrlepos++; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } else if (end < xend) { - earliestend = end; - rlepos++; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - - } else { // end > xend - earliestend = xend; - xrlepos++; - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } - answer += earliestend - lateststart; - } - } - return answer; -} - -bool run_container_intersect(const run_container_t *src_1, - const run_container_t *src_2) { - const bool if1 = run_container_is_full(src_1); - const bool if2 = run_container_is_full(src_2); - if (if1 || if2) { - if (if1) { - return !run_container_empty(src_2); - } - if (if2) { - return !run_container_empty(src_1); - } - } - int32_t rlepos = 0; - int32_t xrlepos = 0; - int32_t start = src_1->runs[rlepos].value; - int32_t end = start + src_1->runs[rlepos].length + 1; - int32_t xstart = src_2->runs[xrlepos].value; - int32_t xend = xstart + src_2->runs[xrlepos].length + 1; - while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) { - if (end <= xstart) { - ++rlepos; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - } else if (xend <= start) { - ++xrlepos; - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } else { // they overlap - return true; - } - } - return false; -} - -/* Compute the difference of src_1 and src_2 and write the result to - * dst. It is assumed that dst is distinct from both src_1 and src_2. */ -void run_container_andnot(const run_container_t *src_1, - const run_container_t *src_2, run_container_t *dst) { - // following Java implementation as of June 2016 - - if (dst->capacity < src_1->n_runs + src_2->n_runs) - run_container_grow(dst, src_1->n_runs + src_2->n_runs, false); - - dst->n_runs = 0; - - int rlepos1 = 0; - int rlepos2 = 0; - int32_t start = src_1->runs[rlepos1].value; - int32_t end = start + src_1->runs[rlepos1].length + 1; - int32_t start2 = src_2->runs[rlepos2].value; - int32_t end2 = start2 + src_2->runs[rlepos2].length + 1; - - while ((rlepos1 < src_1->n_runs) && (rlepos2 < src_2->n_runs)) { - if (end <= start2) { - // output the first run - dst->runs[dst->n_runs++] = - CROARING_MAKE_RLE16(start, end - start - 1); - rlepos1++; - if (rlepos1 < src_1->n_runs) { - start = src_1->runs[rlepos1].value; - end = start + src_1->runs[rlepos1].length + 1; - } - } else if (end2 <= start) { - // exit the second run - rlepos2++; - if (rlepos2 < src_2->n_runs) { - start2 = src_2->runs[rlepos2].value; - end2 = start2 + src_2->runs[rlepos2].length + 1; - } - } else { - if (start < start2) { - dst->runs[dst->n_runs++] = - CROARING_MAKE_RLE16(start, start2 - start - 1); - } - if (end2 < end) { - start = end2; - } else { - rlepos1++; - if (rlepos1 < src_1->n_runs) { - start = src_1->runs[rlepos1].value; - end = start + src_1->runs[rlepos1].length + 1; - } - } - } - } - if (rlepos1 < src_1->n_runs) { - dst->runs[dst->n_runs++] = CROARING_MAKE_RLE16(start, end - start - 1); - rlepos1++; - if (rlepos1 < src_1->n_runs) { - memcpy(dst->runs + dst->n_runs, src_1->runs + rlepos1, - sizeof(rle16_t) * (src_1->n_runs - rlepos1)); - dst->n_runs += src_1->n_runs - rlepos1; - } - } -} - -ALLOW_UNALIGNED -int run_container_to_uint32_array(void *vout, const run_container_t *cont, - uint32_t base) { - int outpos = 0; - uint32_t *out = (uint32_t *)vout; - for (int i = 0; i < cont->n_runs; ++i) { - uint32_t run_start = base + cont->runs[i].value; - uint16_t le = cont->runs[i].length; - for (int j = 0; j <= le; ++j) { - uint32_t val = run_start + j; - memcpy(out + outpos, &val, - sizeof(uint32_t)); // should be compiled as a MOV on x64 - outpos++; - } - } - return outpos; -} - -/* - * Print this container using printf (useful for debugging). - */ -void run_container_printf(const run_container_t *cont) { - for (int i = 0; i < cont->n_runs; ++i) { - uint16_t run_start = cont->runs[i].value; - uint16_t le = cont->runs[i].length; - printf("[%d,%d]", run_start, run_start + le); - } -} - -/* - * Print this container using printf as a comma-separated list of 32-bit - * integers starting at base. - */ -void run_container_printf_as_uint32_array(const run_container_t *cont, - uint32_t base) { - if (cont->n_runs == 0) return; - { - uint32_t run_start = base + cont->runs[0].value; - uint16_t le = cont->runs[0].length; - printf("%u", run_start); - for (uint32_t j = 1; j <= le; ++j) printf(",%u", run_start + j); - } - for (int32_t i = 1; i < cont->n_runs; ++i) { - uint32_t run_start = base + cont->runs[i].value; - uint16_t le = cont->runs[i].length; - for (uint32_t j = 0; j <= le; ++j) printf(",%u", run_start + j); - } -} - -/* - * Validate the container. Returns true if valid. - */ -bool run_container_validate(const run_container_t *run, const char **reason) { - if (run->n_runs < 0) { - *reason = "negative run count"; - return false; - } - if (run->capacity < 0) { - *reason = "negative run capacity"; - return false; - } - if (run->capacity < run->n_runs) { - *reason = "capacity less than run count"; - return false; - } - - if (run->n_runs == 0) { - *reason = "zero run count"; - return false; - } - if (run->runs == NULL) { - *reason = "NULL runs"; - return false; - } - - // Use uint32_t to avoid overflow issues on ranges that contain UINT16_MAX. - uint32_t last_end = 0; - for (int i = 0; i < run->n_runs; ++i) { - uint32_t start = run->runs[i].value; - uint32_t end = start + run->runs[i].length + 1; - if (end <= start) { - *reason = "run start + length overflow"; - return false; - } - if (end > (1 << 16)) { - *reason = "run start + length too large"; - return false; - } - if (start < last_end) { - *reason = "run start less than last end"; - return false; - } - if (start == last_end && last_end != 0) { - *reason = "run start equal to last end, should have combined"; - return false; - } - last_end = end; - } - return true; -} - -int32_t run_container_write(const run_container_t *container, char *buf) { - uint16_t cast_16 = container->n_runs; - memcpy(buf, &cast_16, sizeof(uint16_t)); - memcpy(buf + sizeof(uint16_t), container->runs, - container->n_runs * sizeof(rle16_t)); - return run_container_size_in_bytes(container); -} - -int32_t run_container_read(int32_t cardinality, run_container_t *container, - const char *buf) { - (void)cardinality; - uint16_t cast_16; - memcpy(&cast_16, buf, sizeof(uint16_t)); - container->n_runs = cast_16; - if (container->n_runs > container->capacity) - run_container_grow(container, container->n_runs, false); - if (container->n_runs > 0) { - memcpy(container->runs, buf + sizeof(uint16_t), - container->n_runs * sizeof(rle16_t)); - } - return run_container_size_in_bytes(container); -} - -bool run_container_iterate(const run_container_t *cont, uint32_t base, - roaring_iterator iterator, void *ptr) { - for (int i = 0; i < cont->n_runs; ++i) { - uint32_t run_start = base + cont->runs[i].value; - uint16_t le = cont->runs[i].length; - - for (int j = 0; j <= le; ++j) - if (!iterator(run_start + j, ptr)) return false; - } - return true; -} - -bool run_container_iterate64(const run_container_t *cont, uint32_t base, - roaring_iterator64 iterator, uint64_t high_bits, - void *ptr) { - for (int i = 0; i < cont->n_runs; ++i) { - uint32_t run_start = base + cont->runs[i].value; - uint16_t le = cont->runs[i].length; - - for (int j = 0; j <= le; ++j) - if (!iterator(high_bits | (uint64_t)(run_start + j), ptr)) - return false; - } - return true; -} - -bool run_container_is_subset(const run_container_t *container1, - const run_container_t *container2) { - int i1 = 0, i2 = 0; - while (i1 < container1->n_runs && i2 < container2->n_runs) { - int start1 = container1->runs[i1].value; - int stop1 = start1 + container1->runs[i1].length; - int start2 = container2->runs[i2].value; - int stop2 = start2 + container2->runs[i2].length; - if (start1 < start2) { - return false; - } else { // start1 >= start2 - if (stop1 < stop2) { - i1++; - } else if (stop1 == stop2) { - i1++; - i2++; - } else { // stop1 > stop2 - i2++; - } - } - } - if (i1 == container1->n_runs) { - return true; - } else { - return false; - } -} - -// TODO: write smart_append_exclusive version to match the overloaded 1 param -// Java version (or is it even used?) - -// follows the Java implementation closely -// length is the rle-value. Ie, run [10,12) uses a length value 1. -void run_container_smart_append_exclusive(run_container_t *src, - const uint16_t start, - const uint16_t length) { - int old_end; - rle16_t *last_run = src->n_runs ? src->runs + (src->n_runs - 1) : NULL; - rle16_t *appended_last_run = src->runs + src->n_runs; - - if (!src->n_runs || - (start > (old_end = last_run->value + last_run->length + 1))) { - *appended_last_run = CROARING_MAKE_RLE16(start, length); - src->n_runs++; - return; - } - if (old_end == start) { - // we merge - last_run->length += (length + 1); - return; - } - int new_end = start + length + 1; - - if (start == last_run->value) { - // wipe out previous - if (new_end < old_end) { - *last_run = CROARING_MAKE_RLE16(new_end, old_end - new_end - 1); - return; - } else if (new_end > old_end) { - *last_run = CROARING_MAKE_RLE16(old_end, new_end - old_end - 1); - return; - } else { - src->n_runs--; - return; - } - } - last_run->length = start - last_run->value - 1; - if (new_end < old_end) { - *appended_last_run = - CROARING_MAKE_RLE16(new_end, old_end - new_end - 1); - src->n_runs++; - } else if (new_end > old_end) { - *appended_last_run = - CROARING_MAKE_RLE16(old_end, new_end - old_end - 1); - src->n_runs++; - } -} - -bool run_container_select(const run_container_t *container, - uint32_t *start_rank, uint32_t rank, - uint32_t *element) { - for (int i = 0; i < container->n_runs; i++) { - uint16_t length = container->runs[i].length; - if (rank <= *start_rank + length) { - uint16_t value = container->runs[i].value; - *element = value + rank - (*start_rank); - return true; - } else - *start_rank += length + 1; - } - return false; -} - -int run_container_rank(const run_container_t *container, uint16_t x) { - int sum = 0; - uint32_t x32 = x; - for (int i = 0; i < container->n_runs; i++) { - uint32_t startpoint = container->runs[i].value; - uint32_t length = container->runs[i].length; - uint32_t endpoint = length + startpoint; - if (x <= endpoint) { - if (x < startpoint) break; - return sum + (x32 - startpoint) + 1; - } else { - sum += length + 1; - } - } - return sum; -} -uint32_t run_container_rank_many(const run_container_t *container, - uint64_t start_rank, const uint32_t *begin, - const uint32_t *end, uint64_t *ans) { - const uint16_t high = (uint16_t)((*begin) >> 16); - const uint32_t *iter = begin; - int sum = 0; - int i = 0; - for (; iter != end; iter++) { - uint32_t x = *iter; - uint16_t xhigh = (uint16_t)(x >> 16); - if (xhigh != high) return iter - begin; // stop at next container - - uint32_t x32 = x & 0xFFFF; - while (i < container->n_runs) { - uint32_t startpoint = container->runs[i].value; - uint32_t length = container->runs[i].length; - uint32_t endpoint = length + startpoint; - if (x32 <= endpoint) { - if (x32 < startpoint) { - *(ans++) = start_rank + sum; - } else { - *(ans++) = start_rank + sum + (x32 - startpoint) + 1; - } - break; - } else { - sum += length + 1; - i++; - } - } - if (i >= container->n_runs) *(ans++) = start_rank + sum; - } - - return iter - begin; -} - -int run_container_get_index(const run_container_t *container, uint16_t x) { - if (run_container_contains(container, x)) { - int sum = 0; - uint32_t x32 = x; - for (int i = 0; i < container->n_runs; i++) { - uint32_t startpoint = container->runs[i].value; - uint32_t length = container->runs[i].length; - uint32_t endpoint = length + startpoint; - if (x <= endpoint) { - if (x < startpoint) break; - return sum + (x32 - startpoint); - } else { - sum += length + 1; - } - } - return sum - 1; - } else { - return -1; - } -} - -#if defined(CROARING_IS_X64) && CROARING_COMPILER_SUPPORTS_AVX512 - -CROARING_TARGET_AVX512 -ALLOW_UNALIGNED -/* Get the cardinality of `run'. Requires an actual computation. */ -static inline int _avx512_run_container_cardinality( - const run_container_t *run) { - const int32_t n_runs = run->n_runs; - const rle16_t *runs = run->runs; - - /* by initializing with n_runs, we omit counting the +1 for each pair. */ - int sum = n_runs; - int32_t k = 0; - const int32_t step = sizeof(__m512i) / sizeof(rle16_t); - if (n_runs > step) { - __m512i total = _mm512_setzero_si512(); - for (; k + step <= n_runs; k += step) { - __m512i ymm1 = _mm512_loadu_si512((const __m512i *)(runs + k)); - __m512i justlengths = _mm512_srli_epi32(ymm1, 16); - total = _mm512_add_epi32(total, justlengths); - } - - __m256i lo = _mm512_extracti32x8_epi32(total, 0); - __m256i hi = _mm512_extracti32x8_epi32(total, 1); - - // a store might be faster than extract? - uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)]; - _mm256_storeu_si256((__m256i *)buffer, lo); - sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) + - (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]); - - _mm256_storeu_si256((__m256i *)buffer, hi); - sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) + - (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]); - } - for (; k < n_runs; ++k) { - sum += runs[k].length; - } - - return sum; -} - -CROARING_UNTARGET_AVX512 - -CROARING_TARGET_AVX2 -ALLOW_UNALIGNED -/* Get the cardinality of `run'. Requires an actual computation. */ -static inline int _avx2_run_container_cardinality(const run_container_t *run) { - const int32_t n_runs = run->n_runs; - const rle16_t *runs = run->runs; - - /* by initializing with n_runs, we omit counting the +1 for each pair. */ - int sum = n_runs; - int32_t k = 0; - const int32_t step = sizeof(__m256i) / sizeof(rle16_t); - if (n_runs > step) { - __m256i total = _mm256_setzero_si256(); - for (; k + step <= n_runs; k += step) { - __m256i ymm1 = _mm256_lddqu_si256((const __m256i *)(runs + k)); - __m256i justlengths = _mm256_srli_epi32(ymm1, 16); - total = _mm256_add_epi32(total, justlengths); - } - // a store might be faster than extract? - uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)]; - _mm256_storeu_si256((__m256i *)buffer, total); - sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) + - (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]); - } - for (; k < n_runs; ++k) { - sum += runs[k].length; - } - - return sum; -} - -CROARING_UNTARGET_AVX2 - -/* Get the cardinality of `run'. Requires an actual computation. */ -static inline int _scalar_run_container_cardinality( - const run_container_t *run) { - const int32_t n_runs = run->n_runs; - const rle16_t *runs = run->runs; - - /* by initializing with n_runs, we omit counting the +1 for each pair. */ - int sum = n_runs; - for (int k = 0; k < n_runs; ++k) { - sum += runs[k].length; - } - - return sum; -} - -int run_container_cardinality(const run_container_t *run) { -#if CROARING_COMPILER_SUPPORTS_AVX512 - if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) { - return _avx512_run_container_cardinality(run); - } else -#endif - if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) { - return _avx2_run_container_cardinality(run); - } else { - return _scalar_run_container_cardinality(run); - } -} -#else - -/* Get the cardinality of `run'. Requires an actual computation. */ -ALLOW_UNALIGNED -int run_container_cardinality(const run_container_t *run) { - const int32_t n_runs = run->n_runs; - const rle16_t *runs = run->runs; - - /* by initializing with n_runs, we omit counting the +1 for each pair. */ - int sum = n_runs; - for (int k = 0; k < n_runs; ++k) { - sum += runs[k].length; - } - - return sum; -} -#endif - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -#if defined(__GNUC__) && !defined(__clang__) -#pragma GCC diagnostic pop -#endif/* end file src/containers/run.c */ -/* begin file src/isadetection.c */ - -/* From -https://github.com/endorno/pytorch/blob/master/torch/lib/TH/generic/simd/simd.h -Highly modified. - -Copyright (c) 2016- Facebook, Inc (Adam Paszke) -Copyright (c) 2014- Facebook, Inc (Soumith Chintala) -Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert) -Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu) -Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) -Copyright (c) 2011-2013 NYU (Clement Farabet) -Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, -Iain Melvin, Jason Weston) Copyright (c) 2006 Idiap Research Institute -(Samy Bengio) Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, -Samy Bengio, Johnny Mariethoz) - -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - -1. Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - -2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - -3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories -America and IDIAP Research Institute nor the names of its contributors may be - used to endorse or promote products derived from this software without - specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. -*/ - -#include -#include -#include - -// Binaries produced by Visual Studio with solely AVX2 routines -// can compile to AVX-512 thus causing crashes on non-AVX-512 systems. -// This appears to affect VS 17.8 and 17.9. We disable AVX-512 and AVX2 -// on these systems. It seems that ClangCL is not affected. -// https://github.com/RoaringBitmap/CRoaring/pull/603 -#ifndef __clang__ -#if _MSC_VER >= 1938 -#define ROARING_DISABLE_AVX 1 -#endif // _MSC_VER >= 1938 -#endif // __clang__ - -// We need portability.h to be included first, see -// https://github.com/RoaringBitmap/CRoaring/issues/394 -#if CROARING_REGULAR_VISUAL_STUDIO -#include -#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID) -#include -#endif // CROARING_REGULAR_VISUAL_STUDIO - -#if CROARING_IS_X64 -#ifndef CROARING_COMPILER_SUPPORTS_AVX512 -#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined." -#endif // CROARING_COMPILER_SUPPORTS_AVX512 -#endif - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif -enum croaring_instruction_set { - CROARING_DEFAULT = 0x0, - CROARING_NEON = 0x1, - CROARING_AVX2 = 0x4, - CROARING_SSE42 = 0x8, - CROARING_PCLMULQDQ = 0x10, - CROARING_BMI1 = 0x20, - CROARING_BMI2 = 0x40, - CROARING_ALTIVEC = 0x80, - CROARING_AVX512F = 0x100, - CROARING_AVX512DQ = 0x200, - CROARING_AVX512BW = 0x400, - CROARING_AVX512VBMI2 = 0x800, - CROARING_AVX512BITALG = 0x1000, - CROARING_AVX512VPOPCNTDQ = 0x2000, - CROARING_UNINITIALIZED = 0x8000 -}; - -#if CROARING_COMPILER_SUPPORTS_AVX512 -unsigned int CROARING_AVX512_REQUIRED = - (CROARING_AVX512F | CROARING_AVX512DQ | CROARING_AVX512BW | - CROARING_AVX512VBMI2 | CROARING_AVX512BITALG | CROARING_AVX512VPOPCNTDQ); -#endif - -#if defined(__x86_64__) || defined(_M_AMD64) // x64 - -static inline void cpuid(uint32_t *eax, uint32_t *ebx, uint32_t *ecx, - uint32_t *edx) { -#if CROARING_REGULAR_VISUAL_STUDIO - int cpu_info[4]; - __cpuidex(cpu_info, *eax, *ecx); - *eax = cpu_info[0]; - *ebx = cpu_info[1]; - *ecx = cpu_info[2]; - *edx = cpu_info[3]; -#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID) - uint32_t level = *eax; - __get_cpuid(level, eax, ebx, ecx, edx); -#else - uint32_t a = *eax, b, c = *ecx, d; - __asm__("cpuid\n\t" : "+a"(a), "=b"(b), "+c"(c), "=d"(d)); - *eax = a; - *ebx = b; - *ecx = c; - *edx = d; -#endif -} - -static inline uint64_t xgetbv(void) { -#if defined(_MSC_VER) - return _xgetbv(0); -#else - uint32_t xcr0_lo, xcr0_hi; - __asm__("xgetbv\n\t" : "=a"(xcr0_lo), "=d"(xcr0_hi) : "c"(0)); - return xcr0_lo | ((uint64_t)xcr0_hi << 32); -#endif -} - -/** - * This is a relatively expensive function but it will get called at most - * *once* per compilation units. Normally, the CRoaring library is built - * as one compilation unit. - */ -static inline uint32_t dynamic_croaring_detect_supported_architectures(void) { - uint32_t eax, ebx, ecx, edx; - uint32_t host_isa = 0x0; - // Can be found on Intel ISA Reference for CPUID - static uint32_t cpuid_avx2_bit = - 1 << 5; ///< @private Bit 5 of EBX for EAX=0x7 - static uint32_t cpuid_bmi1_bit = - 1 << 3; ///< @private bit 3 of EBX for EAX=0x7 - static uint32_t cpuid_bmi2_bit = - 1 << 8; ///< @private bit 8 of EBX for EAX=0x7 - static uint32_t cpuid_avx512f_bit = - 1 << 16; ///< @private bit 16 of EBX for EAX=0x7 - static uint32_t cpuid_avx512dq_bit = - 1 << 17; ///< @private bit 17 of EBX for EAX=0x7 - static uint32_t cpuid_avx512bw_bit = - 1 << 30; ///< @private bit 30 of EBX for EAX=0x7 - static uint32_t cpuid_avx512vbmi2_bit = - 1 << 6; ///< @private bit 6 of ECX for EAX=0x7 - static uint32_t cpuid_avx512bitalg_bit = - 1 << 12; ///< @private bit 12 of ECX for EAX=0x7 - static uint32_t cpuid_avx512vpopcntdq_bit = - 1 << 14; ///< @private bit 14 of ECX for EAX=0x7 - static uint64_t cpuid_avx256_saved = 1 << 2; ///< @private bit 2 = AVX - static uint64_t cpuid_avx512_saved = - 7 << 5; ///< @private bits 5,6,7 = opmask, ZMM_hi256, hi16_ZMM - static uint32_t cpuid_sse42_bit = - 1 << 20; ///< @private bit 20 of ECX for EAX=0x1 - static uint32_t cpuid_osxsave = - (1 << 26) | (1 << 27); ///< @private bits 26+27 of ECX for EAX=0x1 - static uint32_t cpuid_pclmulqdq_bit = - 1 << 1; ///< @private bit 1 of ECX for EAX=0x1 - - // EBX for EAX=0x1 - eax = 0x1; - ecx = 0x0; - cpuid(&eax, &ebx, &ecx, &edx); - - if (ecx & cpuid_sse42_bit) { - host_isa |= CROARING_SSE42; - } else { - return host_isa; // everything after is redundant - } - - if (ecx & cpuid_pclmulqdq_bit) { - host_isa |= CROARING_PCLMULQDQ; - } - - if ((ecx & cpuid_osxsave) != cpuid_osxsave) { - return host_isa; - } - - // xgetbv for checking if the OS saves registers - uint64_t xcr0 = xgetbv(); - - if ((xcr0 & cpuid_avx256_saved) == 0) { - return host_isa; - } - - // ECX for EAX=0x7 - eax = 0x7; - ecx = 0x0; - cpuid(&eax, &ebx, &ecx, &edx); - if (ebx & cpuid_avx2_bit) { - host_isa |= CROARING_AVX2; - } - if (ebx & cpuid_bmi1_bit) { - host_isa |= CROARING_BMI1; - } - - if (ebx & cpuid_bmi2_bit) { - host_isa |= CROARING_BMI2; - } - - if (!((xcr0 & cpuid_avx512_saved) == cpuid_avx512_saved)) { - return host_isa; - } - - if (ebx & cpuid_avx512f_bit) { - host_isa |= CROARING_AVX512F; - } - - if (ebx & cpuid_avx512bw_bit) { - host_isa |= CROARING_AVX512BW; - } - - if (ebx & cpuid_avx512dq_bit) { - host_isa |= CROARING_AVX512DQ; - } - - if (ecx & cpuid_avx512vbmi2_bit) { - host_isa |= CROARING_AVX512VBMI2; - } - - if (ecx & cpuid_avx512bitalg_bit) { - host_isa |= CROARING_AVX512BITALG; - } - - if (ecx & cpuid_avx512vpopcntdq_bit) { - host_isa |= CROARING_AVX512VPOPCNTDQ; - } - - return host_isa; -} - -#endif // end SIMD extension detection code - -#if defined(__x86_64__) || defined(_M_AMD64) // x64 - -#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_CPP -static inline uint32_t croaring_detect_supported_architectures(void) { - // thread-safe as per the C++11 standard. - static uint32_t buffer = dynamic_croaring_detect_supported_architectures(); - return buffer; -} -#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C -static uint32_t croaring_detect_supported_architectures(void) { - // we use an atomic for thread safety - static _Atomic uint32_t buffer = CROARING_UNINITIALIZED; - if (buffer == CROARING_UNINITIALIZED) { - // atomicity is sufficient - buffer = dynamic_croaring_detect_supported_architectures(); - } - return buffer; -} -#else -// If we do not have atomics, we do the best we can. -static inline uint32_t croaring_detect_supported_architectures(void) { - static uint32_t buffer = CROARING_UNINITIALIZED; - if (buffer == CROARING_UNINITIALIZED) { - buffer = dynamic_croaring_detect_supported_architectures(); - } - return buffer; -} -#endif // CROARING_C_ATOMIC - -#ifdef ROARING_DISABLE_AVX - -int croaring_hardware_support(void) { return 0; } - -#elif defined(__AVX512F__) && defined(__AVX512DQ__) && \ - defined(__AVX512BW__) && defined(__AVX512VBMI2__) && \ - defined(__AVX512BITALG__) && defined(__AVX512VPOPCNTDQ__) -int croaring_hardware_support(void) { - return ROARING_SUPPORTS_AVX2 | ROARING_SUPPORTS_AVX512; -} -#elif defined(__AVX2__) - -int croaring_hardware_support(void) { - static -#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C - _Atomic -#endif - int support = 0xFFFFFFF; - if (support == 0xFFFFFFF) { - bool avx512_support = false; -#if CROARING_COMPILER_SUPPORTS_AVX512 - avx512_support = - ((croaring_detect_supported_architectures() & - CROARING_AVX512_REQUIRED) == CROARING_AVX512_REQUIRED); -#endif - support = ROARING_SUPPORTS_AVX2 | - (avx512_support ? ROARING_SUPPORTS_AVX512 : 0); - } - return support; -} -#else - -int croaring_hardware_support(void) { - static -#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C - _Atomic -#endif - int support = 0xFFFFFFF; - if (support == 0xFFFFFFF) { - bool has_avx2 = (croaring_detect_supported_architectures() & - CROARING_AVX2) == CROARING_AVX2; - bool has_avx512 = false; -#if CROARING_COMPILER_SUPPORTS_AVX512 - has_avx512 = (croaring_detect_supported_architectures() & - CROARING_AVX512_REQUIRED) == CROARING_AVX512_REQUIRED; -#endif // CROARING_COMPILER_SUPPORTS_AVX512 - support = (has_avx2 ? ROARING_SUPPORTS_AVX2 : 0) | - (has_avx512 ? ROARING_SUPPORTS_AVX512 : 0); - } - return support; -} -#endif - -#endif // defined(__x86_64__) || defined(_M_AMD64) // x64 -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -/* end file src/isadetection.c */ -/* begin file src/memory.c */ -#include - - -// without the following, we get lots of warnings about posix_memalign -#ifndef __cplusplus -extern int posix_memalign(void** __memptr, size_t __alignment, size_t __size); -#endif //__cplusplus // C++ does not have a well defined signature - -// portable version of posix_memalign -static void* roaring_bitmap_aligned_malloc(size_t alignment, size_t size) { - void* p; -#ifdef _MSC_VER - p = _aligned_malloc(size, alignment); -#elif defined(__MINGW32__) || defined(__MINGW64__) - p = __mingw_aligned_malloc(size, alignment); -#else - // somehow, if this is used before including "x86intrin.h", it creates an - // implicit defined warning. - if (posix_memalign(&p, alignment, size) != 0) return NULL; -#endif - return p; -} - -static void roaring_bitmap_aligned_free(void* memblock) { -#ifdef _MSC_VER - _aligned_free(memblock); -#elif defined(__MINGW32__) || defined(__MINGW64__) - __mingw_aligned_free(memblock); -#else - free(memblock); -#endif -} - -static roaring_memory_t global_memory_hook = { - .malloc = malloc, - .realloc = realloc, - .calloc = calloc, - .free = free, - .aligned_malloc = roaring_bitmap_aligned_malloc, - .aligned_free = roaring_bitmap_aligned_free, -}; - -void roaring_init_memory_hook(roaring_memory_t memory_hook) { - global_memory_hook = memory_hook; -} - -void* roaring_malloc(size_t n) { return global_memory_hook.malloc(n); } - -void* roaring_realloc(void* p, size_t new_sz) { - return global_memory_hook.realloc(p, new_sz); -} - -void* roaring_calloc(size_t n_elements, size_t element_size) { - return global_memory_hook.calloc(n_elements, element_size); -} - -void roaring_free(void* p) { global_memory_hook.free(p); } - -void* roaring_aligned_malloc(size_t alignment, size_t size) { - return global_memory_hook.aligned_malloc(alignment, size); -} - -void roaring_aligned_free(void* p) { global_memory_hook.aligned_free(p); } -/* end file src/memory.c */ -/* begin file src/roaring.c */ -#include -#include -#include -#include -#include -#include - - -// Include after roaring.h - -#ifdef __cplusplus -using namespace ::roaring::internal; - -extern "C" { -namespace roaring { -namespace api { -#endif - -#define CROARING_SERIALIZATION_ARRAY_UINT32 1 -#define CROARING_SERIALIZATION_CONTAINER 2 -extern inline int roaring_trailing_zeroes(unsigned long long input_num); -extern inline int roaring_leading_zeroes(unsigned long long input_num); -extern inline void roaring_bitmap_init_cleared(roaring_bitmap_t *r); -extern inline bool roaring_bitmap_get_copy_on_write(const roaring_bitmap_t *r); -extern inline void roaring_bitmap_set_copy_on_write(roaring_bitmap_t *r, - bool cow); -extern inline roaring_bitmap_t *roaring_bitmap_create(void); -extern inline void roaring_bitmap_add_range(roaring_bitmap_t *r, uint64_t min, - uint64_t max); -extern inline void roaring_bitmap_remove_range(roaring_bitmap_t *r, - uint64_t min, uint64_t max); - -static inline bool is_cow(const roaring_bitmap_t *r) { - return r->high_low_container.flags & ROARING_FLAG_COW; -} -static inline bool is_frozen(const roaring_bitmap_t *r) { - return r->high_low_container.flags & ROARING_FLAG_FROZEN; -} - -// this is like roaring_bitmap_add, but it populates pointer arguments in such a -// way -// that we can recover the container touched, which, in turn can be used to -// accelerate some functions (when you repeatedly need to add to the same -// container) -static inline container_t *containerptr_roaring_bitmap_add(roaring_bitmap_t *r, - uint32_t val, - uint8_t *type, - int *index) { - roaring_array_t *ra = &r->high_low_container; - - uint16_t hb = val >> 16; - const int i = ra_get_index(ra, hb); - if (i >= 0) { - ra_unshare_container_at_index(ra, (uint16_t)i); - container_t *c = ra_get_container_at_index(ra, (uint16_t)i, type); - uint8_t new_type = *type; - container_t *c2 = container_add(c, val & 0xFFFF, *type, &new_type); - *index = i; - if (c2 != c) { - container_free(c, *type); - ra_set_container_at_index(ra, i, c2, new_type); - *type = new_type; - return c2; - } else { - return c; - } - } else { - array_container_t *new_ac = array_container_create(); - container_t *c = - container_add(new_ac, val & 0xFFFF, ARRAY_CONTAINER_TYPE, type); - // we could just assume that it stays an array container - ra_insert_new_key_value_at(ra, -i - 1, hb, c, *type); - *index = -i - 1; - return c; - } -} - -roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap) { - roaring_bitmap_t *ans = - (roaring_bitmap_t *)roaring_malloc(sizeof(roaring_bitmap_t)); - if (!ans) { - return NULL; - } - bool is_ok = ra_init_with_capacity(&ans->high_low_container, cap); - if (!is_ok) { - roaring_free(ans); - return NULL; - } - return ans; -} - -bool roaring_bitmap_init_with_capacity(roaring_bitmap_t *r, uint32_t cap) { - return ra_init_with_capacity(&r->high_low_container, cap); -} - -static inline void add_bulk_impl(roaring_bitmap_t *r, - roaring_bulk_context_t *context, - uint32_t val) { - uint16_t key = val >> 16; - if (context->container == NULL || context->key != key) { - uint8_t typecode; - int idx; - context->container = - containerptr_roaring_bitmap_add(r, val, &typecode, &idx); - context->typecode = typecode; - context->idx = idx; - context->key = key; - } else { - // no need to seek the container, it is at hand - // because we already have the container at hand, we can do the - // insertion directly, bypassing the roaring_bitmap_add call - uint8_t new_typecode; - container_t *container2 = container_add( - context->container, val & 0xFFFF, context->typecode, &new_typecode); - if (container2 != context->container) { - // rare instance when we need to change the container type - container_free(context->container, context->typecode); - ra_set_container_at_index(&r->high_low_container, context->idx, - container2, new_typecode); - context->typecode = new_typecode; - context->container = container2; - } - } -} - -void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args, - const uint32_t *vals) { - uint32_t val; - const uint32_t *start = vals; - const uint32_t *end = vals + n_args; - const uint32_t *current_val = start; - - if (n_args == 0) { - return; - } - - uint8_t typecode; - int idx; - container_t *container; - val = *current_val; - container = containerptr_roaring_bitmap_add(r, val, &typecode, &idx); - roaring_bulk_context_t context = {container, idx, (uint16_t)(val >> 16), - typecode}; - - for (; current_val != end; current_val++) { - memcpy(&val, current_val, sizeof(val)); - add_bulk_impl(r, &context, val); - } -} - -void roaring_bitmap_add_bulk(roaring_bitmap_t *r, - roaring_bulk_context_t *context, uint32_t val) { - add_bulk_impl(r, context, val); -} - -bool roaring_bitmap_contains_bulk(const roaring_bitmap_t *r, - roaring_bulk_context_t *context, - uint32_t val) { - uint16_t key = val >> 16; - if (context->container == NULL || context->key != key) { - int32_t start_idx = -1; - if (context->container != NULL && context->key < key) { - start_idx = context->idx; - } - int idx = ra_advance_until(&r->high_low_container, key, start_idx); - if (idx == ra_get_size(&r->high_low_container)) { - return false; - } - uint8_t typecode; - context->container = ra_get_container_at_index( - &r->high_low_container, (uint16_t)idx, &typecode); - context->typecode = typecode; - context->idx = idx; - context->key = - ra_get_key_at_index(&r->high_low_container, (uint16_t)idx); - // ra_advance_until finds the next key >= the target, we found a later - // container. - if (context->key != key) { - return false; - } - } - // context is now set up - return container_contains(context->container, val & 0xFFFF, - context->typecode); -} - -roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals) { - roaring_bitmap_t *answer = roaring_bitmap_create(); - roaring_bitmap_add_many(answer, n_args, vals); - return answer; -} - -roaring_bitmap_t *roaring_bitmap_of(size_t n_args, ...) { - // todo: could be greatly optimized but we do not expect this call to ever - // include long lists - roaring_bitmap_t *answer = roaring_bitmap_create(); - roaring_bulk_context_t context = {0}; - va_list ap; - va_start(ap, n_args); - for (size_t i = 0; i < n_args; i++) { - uint32_t val = va_arg(ap, uint32_t); - roaring_bitmap_add_bulk(answer, &context, val); - } - va_end(ap); - return answer; -} - -static inline uint64_t minimum_uint64(uint64_t a, uint64_t b) { - return (a < b) ? a : b; -} - -roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max, - uint32_t step) { - if (max >= UINT64_C(0x100000000)) { - max = UINT64_C(0x100000000); - } - if (step == 0) return NULL; - if (max <= min) return NULL; - roaring_bitmap_t *answer = roaring_bitmap_create(); - if (step >= (1 << 16)) { - for (uint32_t value = (uint32_t)min; value < max; value += step) { - roaring_bitmap_add(answer, value); - } - return answer; - } - uint64_t min_tmp = min; - do { - uint32_t key = (uint32_t)min_tmp >> 16; - uint32_t container_min = min_tmp & 0xFFFF; - uint32_t container_max = - (uint32_t)minimum_uint64(max - (key << 16), 1 << 16); - uint8_t type; - container_t *container = container_from_range( - &type, container_min, container_max, (uint16_t)step); - ra_append(&answer->high_low_container, (uint16_t)key, container, type); - uint32_t gap = container_max - container_min + step - 1; - min_tmp += gap - (gap % step); - } while (min_tmp < max); - // cardinality of bitmap will be ((uint64_t) max - min + step - 1 ) / step - return answer; -} - -void roaring_bitmap_add_range_closed(roaring_bitmap_t *r, uint32_t min, - uint32_t max) { - if (min > max) { - return; - } - - roaring_array_t *ra = &r->high_low_container; - - uint32_t min_key = min >> 16; - uint32_t max_key = max >> 16; - - int32_t num_required_containers = max_key - min_key + 1; - int32_t suffix_length = - count_greater(ra->keys, ra->size, (uint16_t)max_key); - int32_t prefix_length = - count_less(ra->keys, ra->size - suffix_length, (uint16_t)min_key); - int32_t common_length = ra->size - prefix_length - suffix_length; - - if (num_required_containers > common_length) { - ra_shift_tail(ra, suffix_length, - num_required_containers - common_length); - } - - int32_t src = prefix_length + common_length - 1; - int32_t dst = ra->size - suffix_length - 1; - for (uint32_t key = max_key; key != min_key - 1; - key--) { // beware of min_key==0 - uint32_t container_min = (min_key == key) ? (min & 0xffff) : 0; - uint32_t container_max = (max_key == key) ? (max & 0xffff) : 0xffff; - container_t *new_container; - uint8_t new_type; - - if (src >= 0 && ra->keys[src] == key) { - ra_unshare_container_at_index(ra, (uint16_t)src); - new_container = - container_add_range(ra->containers[src], ra->typecodes[src], - container_min, container_max, &new_type); - if (new_container != ra->containers[src]) { - container_free(ra->containers[src], ra->typecodes[src]); - } - src--; - } else { - new_container = container_from_range(&new_type, container_min, - container_max + 1, 1); - } - ra_replace_key_and_container_at_index(ra, dst, (uint16_t)key, - new_container, new_type); - dst--; - } -} - -void roaring_bitmap_remove_range_closed(roaring_bitmap_t *r, uint32_t min, - uint32_t max) { - if (min > max) { - return; - } - - roaring_array_t *ra = &r->high_low_container; - - uint32_t min_key = min >> 16; - uint32_t max_key = max >> 16; - - int32_t src = count_less(ra->keys, ra->size, (uint16_t)min_key); - int32_t dst = src; - while (src < ra->size && ra->keys[src] <= max_key) { - uint32_t container_min = - (min_key == ra->keys[src]) ? (min & 0xffff) : 0; - uint32_t container_max = - (max_key == ra->keys[src]) ? (max & 0xffff) : 0xffff; - ra_unshare_container_at_index(ra, (uint16_t)src); - container_t *new_container; - uint8_t new_type; - new_container = - container_remove_range(ra->containers[src], ra->typecodes[src], - container_min, container_max, &new_type); - if (new_container != ra->containers[src]) { - container_free(ra->containers[src], ra->typecodes[src]); - } - if (new_container) { - ra_replace_key_and_container_at_index(ra, dst, ra->keys[src], - new_container, new_type); - dst++; - } - src++; - } - if (src > dst) { - ra_shift_tail(ra, ra->size - src, dst - src); - } -} - -void roaring_bitmap_printf(const roaring_bitmap_t *r) { - const roaring_array_t *ra = &r->high_low_container; - - printf("{"); - for (int i = 0; i < ra->size; ++i) { - container_printf_as_uint32_array(ra->containers[i], ra->typecodes[i], - ((uint32_t)ra->keys[i]) << 16); - - if (i + 1 < ra->size) { - printf(","); - } - } - printf("}"); -} - -void roaring_bitmap_printf_describe(const roaring_bitmap_t *r) { - const roaring_array_t *ra = &r->high_low_container; - - printf("{"); - for (int i = 0; i < ra->size; ++i) { - printf("%d: %s (%d)", ra->keys[i], - get_full_container_name(ra->containers[i], ra->typecodes[i]), - container_get_cardinality(ra->containers[i], ra->typecodes[i])); - if (ra->typecodes[i] == SHARED_CONTAINER_TYPE) { - printf("(shared count = %" PRIu32 " )", - croaring_refcount_get( - &(CAST_shared(ra->containers[i])->counter))); - } - - if (i + 1 < ra->size) { - printf(", "); - } - } - printf("}"); -} - -typedef struct min_max_sum_s { - uint32_t min; - uint32_t max; - uint64_t sum; -} min_max_sum_t; - -static bool min_max_sum_fnc(uint32_t value, void *param) { - min_max_sum_t *mms = (min_max_sum_t *)param; - if (value > mms->max) mms->max = value; - if (value < mms->min) mms->min = value; - mms->sum += value; - return true; // we always process all data points -} - -/** - * (For advanced users.) - * Collect statistics about the bitmap - */ -void roaring_bitmap_statistics(const roaring_bitmap_t *r, - roaring_statistics_t *stat) { - const roaring_array_t *ra = &r->high_low_container; - - memset(stat, 0, sizeof(*stat)); - stat->n_containers = ra->size; - stat->cardinality = roaring_bitmap_get_cardinality(r); - min_max_sum_t mms; - mms.min = UINT32_C(0xFFFFFFFF); - mms.max = UINT32_C(0); - mms.sum = 0; - roaring_iterate(r, &min_max_sum_fnc, &mms); - stat->min_value = mms.min; - stat->max_value = mms.max; - stat->sum_value = mms.sum; - - for (int i = 0; i < ra->size; ++i) { - uint8_t truetype = - get_container_type(ra->containers[i], ra->typecodes[i]); - uint32_t card = - container_get_cardinality(ra->containers[i], ra->typecodes[i]); - uint32_t sbytes = - container_size_in_bytes(ra->containers[i], ra->typecodes[i]); - switch (truetype) { - case BITSET_CONTAINER_TYPE: - stat->n_bitset_containers++; - stat->n_values_bitset_containers += card; - stat->n_bytes_bitset_containers += sbytes; - break; - case ARRAY_CONTAINER_TYPE: - stat->n_array_containers++; - stat->n_values_array_containers += card; - stat->n_bytes_array_containers += sbytes; - break; - case RUN_CONTAINER_TYPE: - stat->n_run_containers++; - stat->n_values_run_containers += card; - stat->n_bytes_run_containers += sbytes; - break; - default: - assert(false); - roaring_unreachable; - } - } -} - -/* - * Checks that: - * - Array containers are sorted and contain no duplicates - * - Range containers are sorted and contain no overlapping ranges - * - Roaring containers are sorted by key and there are no duplicate keys - * - The correct container type is use for each container (e.g. bitmaps aren't - * used for small containers) - */ -bool roaring_bitmap_internal_validate(const roaring_bitmap_t *r, - const char **reason) { - const char *reason_local; - if (reason == NULL) { - // Always allow assigning through *reason - reason = &reason_local; - } - *reason = NULL; - const roaring_array_t *ra = &r->high_low_container; - if (ra->size < 0) { - *reason = "negative size"; - return false; - } - if (ra->allocation_size < 0) { - *reason = "negative allocation size"; - return false; - } - if (ra->size > ra->allocation_size) { - *reason = "more containers than allocated space"; - return false; - } - if (ra->flags & ~(ROARING_FLAG_COW | ROARING_FLAG_FROZEN)) { - *reason = "invalid flags"; - return false; - } - if (ra->size == 0) { - return true; - } - - if (ra->keys == NULL) { - *reason = "keys is NULL"; - return false; - } - if (ra->typecodes == NULL) { - *reason = "typecodes is NULL"; - return false; - } - if (ra->containers == NULL) { - *reason = "containers is NULL"; - return false; - } - - uint32_t prev_key = ra->keys[0]; - for (int32_t i = 1; i < ra->size; ++i) { - if (ra->keys[i] <= prev_key) { - *reason = "keys not strictly increasing"; - return false; - } - prev_key = ra->keys[i]; - } - - for (int32_t i = 0; i < ra->size; ++i) { - if (!container_internal_validate(ra->containers[i], ra->typecodes[i], - reason)) { - // reason should already be set - if (*reason == NULL) { - *reason = "container failed to validate but no reason given"; - } - return false; - } - } - - return true; -} - -roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r) { - roaring_bitmap_t *ans = - (roaring_bitmap_t *)roaring_malloc(sizeof(roaring_bitmap_t)); - if (!ans) { - return NULL; - } - if (!ra_init_with_capacity( // allocation of list of containers can fail - &ans->high_low_container, r->high_low_container.size)) { - roaring_free(ans); - return NULL; - } - if (!ra_overwrite( // memory allocation of individual containers may fail - &r->high_low_container, &ans->high_low_container, is_cow(r))) { - roaring_bitmap_free(ans); // overwrite should leave in freeable state - return NULL; - } - roaring_bitmap_set_copy_on_write(ans, is_cow(r)); - return ans; -} - -bool roaring_bitmap_overwrite(roaring_bitmap_t *dest, - const roaring_bitmap_t *src) { - roaring_bitmap_set_copy_on_write(dest, is_cow(src)); - return ra_overwrite(&src->high_low_container, &dest->high_low_container, - is_cow(src)); -} - -void roaring_bitmap_free(const roaring_bitmap_t *r) { - if (r == NULL) { - return; - } - if (!is_frozen(r)) { - ra_clear((roaring_array_t *)&r->high_low_container); - } - roaring_free((roaring_bitmap_t *)r); -} - -void roaring_bitmap_clear(roaring_bitmap_t *r) { - ra_reset(&r->high_low_container); -} - -void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t val) { - roaring_array_t *ra = &r->high_low_container; - - const uint16_t hb = val >> 16; - const int i = ra_get_index(ra, hb); - uint8_t typecode; - if (i >= 0) { - ra_unshare_container_at_index(ra, (uint16_t)i); - container_t *container = - ra_get_container_at_index(ra, (uint16_t)i, &typecode); - uint8_t newtypecode = typecode; - container_t *container2 = - container_add(container, val & 0xFFFF, typecode, &newtypecode); - if (container2 != container) { - container_free(container, typecode); - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - } - } else { - array_container_t *newac = array_container_create(); - container_t *container = - container_add(newac, val & 0xFFFF, ARRAY_CONTAINER_TYPE, &typecode); - // we could just assume that it stays an array container - ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb, - container, typecode); - } -} - -bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t val) { - const uint16_t hb = val >> 16; - const int i = ra_get_index(&r->high_low_container, hb); - uint8_t typecode; - bool result = false; - if (i >= 0) { - ra_unshare_container_at_index(&r->high_low_container, (uint16_t)i); - container_t *container = ra_get_container_at_index( - &r->high_low_container, (uint16_t)i, &typecode); - - const int oldCardinality = - container_get_cardinality(container, typecode); - - uint8_t newtypecode = typecode; - container_t *container2 = - container_add(container, val & 0xFFFF, typecode, &newtypecode); - if (container2 != container) { - container_free(container, typecode); - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - result = true; - } else { - const int newCardinality = - container_get_cardinality(container, newtypecode); - - result = oldCardinality != newCardinality; - } - } else { - array_container_t *newac = array_container_create(); - container_t *container = - container_add(newac, val & 0xFFFF, ARRAY_CONTAINER_TYPE, &typecode); - // we could just assume that it stays an array container - ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb, - container, typecode); - result = true; - } - - return result; -} - -void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t val) { - const uint16_t hb = val >> 16; - const int i = ra_get_index(&r->high_low_container, hb); - uint8_t typecode; - if (i >= 0) { - ra_unshare_container_at_index(&r->high_low_container, (uint16_t)i); - container_t *container = ra_get_container_at_index( - &r->high_low_container, (uint16_t)i, &typecode); - uint8_t newtypecode = typecode; - container_t *container2 = - container_remove(container, val & 0xFFFF, typecode, &newtypecode); - if (container2 != container) { - container_free(container, typecode); - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - } - if (container_get_cardinality(container2, newtypecode) != 0) { - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - } else { - ra_remove_at_index_and_free(&r->high_low_container, i); - } - } -} - -bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t val) { - const uint16_t hb = val >> 16; - const int i = ra_get_index(&r->high_low_container, hb); - uint8_t typecode; - bool result = false; - if (i >= 0) { - ra_unshare_container_at_index(&r->high_low_container, (uint16_t)i); - container_t *container = ra_get_container_at_index( - &r->high_low_container, (uint16_t)i, &typecode); - - const int oldCardinality = - container_get_cardinality(container, typecode); - - uint8_t newtypecode = typecode; - container_t *container2 = - container_remove(container, val & 0xFFFF, typecode, &newtypecode); - if (container2 != container) { - container_free(container, typecode); - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - } - - const int newCardinality = - container_get_cardinality(container2, newtypecode); - - if (newCardinality != 0) { - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - } else { - ra_remove_at_index_and_free(&r->high_low_container, i); - } - - result = oldCardinality != newCardinality; - } - return result; -} - -void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args, - const uint32_t *vals) { - if (n_args == 0 || r->high_low_container.size == 0) { - return; - } - int32_t pos = - -1; // position of the container used in the previous iteration - for (size_t i = 0; i < n_args; i++) { - uint16_t key = (uint16_t)(vals[i] >> 16); - if (pos < 0 || key != r->high_low_container.keys[pos]) { - pos = ra_get_index(&r->high_low_container, key); - } - if (pos >= 0) { - uint8_t new_typecode; - container_t *new_container; - new_container = container_remove( - r->high_low_container.containers[pos], vals[i] & 0xffff, - r->high_low_container.typecodes[pos], &new_typecode); - if (new_container != r->high_low_container.containers[pos]) { - container_free(r->high_low_container.containers[pos], - r->high_low_container.typecodes[pos]); - ra_replace_key_and_container_at_index(&r->high_low_container, - pos, key, new_container, - new_typecode); - } - if (!container_nonzero_cardinality(new_container, new_typecode)) { - container_free(new_container, new_typecode); - ra_remove_at_index(&r->high_low_container, pos); - pos = -1; - } - } - } -} - -// there should be some SIMD optimizations possible here -roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - uint8_t result_type = 0; - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - uint32_t neededcap = length1 > length2 ? length2 : length1; - roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap); - roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2)); - - int pos1 = 0, pos2 = 0; - - while (pos1 < length1 && pos2 < length2) { - const uint16_t s1 = - ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - const uint16_t s2 = - ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - if (s1 == s2) { - uint8_t type1, type2; - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - container_t *c = container_and(c1, type1, c2, type2, &result_type); - - if (container_nonzero_cardinality(c, result_type)) { - ra_append(&answer->high_low_container, s1, c, result_type); - } else { - container_free(c, result_type); // otherwise: memory leak! - } - ++pos1; - ++pos2; - } else if (s1 < s2) { // s1 < s2 - pos1 = ra_advance_until(&x1->high_low_container, s2, pos1); - } else { // s1 > s2 - pos2 = ra_advance_until(&x2->high_low_container, s1, pos2); - } - } - return answer; -} - -/** - * Compute the union of 'number' bitmaps. - */ -roaring_bitmap_t *roaring_bitmap_or_many(size_t number, - const roaring_bitmap_t **x) { - if (number == 0) { - return roaring_bitmap_create(); - } - if (number == 1) { - return roaring_bitmap_copy(x[0]); - } - roaring_bitmap_t *answer = - roaring_bitmap_lazy_or(x[0], x[1], LAZY_OR_BITSET_CONVERSION); - for (size_t i = 2; i < number; i++) { - roaring_bitmap_lazy_or_inplace(answer, x[i], LAZY_OR_BITSET_CONVERSION); - } - roaring_bitmap_repair_after_lazy(answer); - return answer; -} - -/** - * Compute the xor of 'number' bitmaps. - */ -roaring_bitmap_t *roaring_bitmap_xor_many(size_t number, - const roaring_bitmap_t **x) { - if (number == 0) { - return roaring_bitmap_create(); - } - if (number == 1) { - return roaring_bitmap_copy(x[0]); - } - roaring_bitmap_t *answer = roaring_bitmap_lazy_xor(x[0], x[1]); - for (size_t i = 2; i < number; i++) { - roaring_bitmap_lazy_xor_inplace(answer, x[i]); - } - roaring_bitmap_repair_after_lazy(answer); - return answer; -} - -// inplace and (modifies its first argument). -void roaring_bitmap_and_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - if (x1 == x2) return; - int pos1 = 0, pos2 = 0, intersection_size = 0; - const int length1 = ra_get_size(&x1->high_low_container); - const int length2 = ra_get_size(&x2->high_low_container); - - // any skipped-over or newly emptied containers in x1 - // have to be freed. - while (pos1 < length1 && pos2 < length2) { - const uint16_t s1 = - ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - const uint16_t s2 = - ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - if (s1 == s2) { - uint8_t type1, type2, result_type; - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - - // We do the computation "in place" only when c1 is not a shared - // container. Rationale: using a shared container safely with in - // place computation would require making a copy and then doing the - // computation in place which is likely less efficient than avoiding - // in place entirely and always generating a new container. - container_t *c = - (type1 == SHARED_CONTAINER_TYPE) - ? container_and(c1, type1, c2, type2, &result_type) - : container_iand(c1, type1, c2, type2, &result_type); - - if (c != c1) { // in this instance a new container was created, and - // we need to free the old one - container_free(c1, type1); - } - if (container_nonzero_cardinality(c, result_type)) { - ra_replace_key_and_container_at_index(&x1->high_low_container, - intersection_size, s1, c, - result_type); - intersection_size++; - } else { - container_free(c, result_type); - } - ++pos1; - ++pos2; - } else if (s1 < s2) { - pos1 = ra_advance_until_freeing(&x1->high_low_container, s2, pos1); - } else { // s1 > s2 - pos2 = ra_advance_until(&x2->high_low_container, s1, pos2); - } - } - - // if we ended early because x2 ran out, then all remaining in x1 should be - // freed - while (pos1 < length1) { - container_free(x1->high_low_container.containers[pos1], - x1->high_low_container.typecodes[pos1]); - ++pos1; - } - - // all containers after this have either been copied or freed - ra_downsize(&x1->high_low_container, intersection_size); -} - -roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - uint8_t result_type = 0; - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - if (0 == length1) { - return roaring_bitmap_copy(x2); - } - if (0 == length2) { - return roaring_bitmap_copy(x1); - } - roaring_bitmap_t *answer = - roaring_bitmap_create_with_capacity(length1 + length2); - roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2)); - int pos1 = 0, pos2 = 0; - uint8_t type1, type2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - while (true) { - if (s1 == s2) { - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - container_t *c = container_or(c1, type1, c2, type2, &result_type); - - // since we assume that the initial containers are non-empty, the - // result here - // can only be non-empty - ra_append(&answer->high_low_container, s1, c, result_type); - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - } else if (s1 < s2) { // s1 < s2 - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - // c1 = container_clone(c1, type1); - c1 = get_copy_of_container(c1, &type1, is_cow(x1)); - if (is_cow(x1)) { - ra_set_container_at_index(&x1->high_low_container, pos1, c1, - type1); - } - ra_append(&answer->high_low_container, s1, c1, type1); - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - - } else { // s1 > s2 - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - // c2 = container_clone(c2, type2); - c2 = get_copy_of_container(c2, &type2, is_cow(x2)); - if (is_cow(x2)) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - type2); - } - ra_append(&answer->high_low_container, s2, c2, type2); - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&answer->high_low_container, - &x2->high_low_container, pos2, length2, - is_cow(x2)); - } else if (pos2 == length2) { - ra_append_copy_range(&answer->high_low_container, - &x1->high_low_container, pos1, length1, - is_cow(x1)); - } - return answer; -} - -// inplace or (modifies its first argument). -void roaring_bitmap_or_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - uint8_t result_type = 0; - int length1 = x1->high_low_container.size; - const int length2 = x2->high_low_container.size; - - if (0 == length2) return; - - if (0 == length1) { - roaring_bitmap_overwrite(x1, x2); - return; - } - int pos1 = 0, pos2 = 0; - uint8_t type1, type2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - while (true) { - if (s1 == s2) { - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - if (!container_is_full(c1, type1)) { - container_t *c2 = ra_get_container_at_index( - &x2->high_low_container, (uint16_t)pos2, &type2); - container_t *c = - (type1 == SHARED_CONTAINER_TYPE) - ? container_or(c1, type1, c2, type2, &result_type) - : container_ior(c1, type1, c2, type2, &result_type); - - if (c != c1) { // in this instance a new container was created, - // and we need to free the old one - container_free(c1, type1); - } - ra_set_container_at_index(&x1->high_low_container, pos1, c, - result_type); - } - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - } else if (s1 < s2) { // s1 < s2 - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - - } else { // s1 > s2 - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - c2 = get_copy_of_container(c2, &type2, is_cow(x2)); - if (is_cow(x2)) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - type2); - } - - // container_t *c2_clone = container_clone(c2, type2); - ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2, - type2); - pos1++; - length1++; - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&x1->high_low_container, &x2->high_low_container, - pos2, length2, is_cow(x2)); - } -} - -roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - uint8_t result_type = 0; - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - if (0 == length1) { - return roaring_bitmap_copy(x2); - } - if (0 == length2) { - return roaring_bitmap_copy(x1); - } - roaring_bitmap_t *answer = - roaring_bitmap_create_with_capacity(length1 + length2); - roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2)); - int pos1 = 0, pos2 = 0; - uint8_t type1, type2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - while (true) { - if (s1 == s2) { - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - container_t *c = container_xor(c1, type1, c2, type2, &result_type); - - if (container_nonzero_cardinality(c, result_type)) { - ra_append(&answer->high_low_container, s1, c, result_type); - } else { - container_free(c, result_type); - } - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - } else if (s1 < s2) { // s1 < s2 - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - c1 = get_copy_of_container(c1, &type1, is_cow(x1)); - if (is_cow(x1)) { - ra_set_container_at_index(&x1->high_low_container, pos1, c1, - type1); - } - ra_append(&answer->high_low_container, s1, c1, type1); - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - - } else { // s1 > s2 - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - c2 = get_copy_of_container(c2, &type2, is_cow(x2)); - if (is_cow(x2)) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - type2); - } - ra_append(&answer->high_low_container, s2, c2, type2); - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&answer->high_low_container, - &x2->high_low_container, pos2, length2, - is_cow(x2)); - } else if (pos2 == length2) { - ra_append_copy_range(&answer->high_low_container, - &x1->high_low_container, pos1, length1, - is_cow(x1)); - } - return answer; -} - -// inplace xor (modifies its first argument). - -void roaring_bitmap_xor_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - assert(x1 != x2); - uint8_t result_type = 0; - int length1 = x1->high_low_container.size; - const int length2 = x2->high_low_container.size; - - if (0 == length2) return; - - if (0 == length1) { - roaring_bitmap_overwrite(x1, x2); - return; - } - - // XOR can have new containers inserted from x2, but can also - // lose containers when x1 and x2 are nonempty and identical. - - int pos1 = 0, pos2 = 0; - uint8_t type1, type2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - while (true) { - if (s1 == s2) { - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - - // We do the computation "in place" only when c1 is not a shared - // container. Rationale: using a shared container safely with in - // place computation would require making a copy and then doing the - // computation in place which is likely less efficient than avoiding - // in place entirely and always generating a new container. - - container_t *c; - if (type1 == SHARED_CONTAINER_TYPE) { - c = container_xor(c1, type1, c2, type2, &result_type); - shared_container_free(CAST_shared(c1)); // so release - } else { - c = container_ixor(c1, type1, c2, type2, &result_type); - } - - if (container_nonzero_cardinality(c, result_type)) { - ra_set_container_at_index(&x1->high_low_container, pos1, c, - result_type); - ++pos1; - } else { - container_free(c, result_type); - ra_remove_at_index(&x1->high_low_container, pos1); - --length1; - } - - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - } else if (s1 < s2) { // s1 < s2 - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - - } else { // s1 > s2 - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - c2 = get_copy_of_container(c2, &type2, is_cow(x2)); - if (is_cow(x2)) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - type2); - } - - ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2, - type2); - pos1++; - length1++; - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&x1->high_low_container, &x2->high_low_container, - pos2, length2, is_cow(x2)); - } -} - -roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - uint8_t result_type = 0; - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - if (0 == length1) { - roaring_bitmap_t *empty_bitmap = roaring_bitmap_create(); - roaring_bitmap_set_copy_on_write(empty_bitmap, - is_cow(x1) || is_cow(x2)); - return empty_bitmap; - } - if (0 == length2) { - return roaring_bitmap_copy(x1); - } - roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(length1); - roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2)); - - int pos1 = 0, pos2 = 0; - uint8_t type1, type2; - uint16_t s1 = 0; - uint16_t s2 = 0; - while (true) { - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - if (s1 == s2) { - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - container_t *c = - container_andnot(c1, type1, c2, type2, &result_type); - - if (container_nonzero_cardinality(c, result_type)) { - ra_append(&answer->high_low_container, s1, c, result_type); - } else { - container_free(c, result_type); - } - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - } else if (s1 < s2) { // s1 < s2 - const int next_pos1 = - ra_advance_until(&x1->high_low_container, s2, pos1); - ra_append_copy_range(&answer->high_low_container, - &x1->high_low_container, pos1, next_pos1, - is_cow(x1)); - // TODO : perhaps some of the copy_on_write should be based on - // answer rather than x1 (more stringent?). Many similar cases - pos1 = next_pos1; - if (pos1 == length1) break; - } else { // s1 > s2 - pos2 = ra_advance_until(&x2->high_low_container, s1, pos2); - if (pos2 == length2) break; - } - } - if (pos2 == length2) { - ra_append_copy_range(&answer->high_low_container, - &x1->high_low_container, pos1, length1, - is_cow(x1)); - } - return answer; -} - -// inplace andnot (modifies its first argument). - -void roaring_bitmap_andnot_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - assert(x1 != x2); - - uint8_t result_type = 0; - int length1 = x1->high_low_container.size; - const int length2 = x2->high_low_container.size; - int intersection_size = 0; - - if (0 == length2) return; - - if (0 == length1) { - roaring_bitmap_clear(x1); - return; - } - - int pos1 = 0, pos2 = 0; - uint8_t type1, type2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - while (true) { - if (s1 == s2) { - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - - // We do the computation "in place" only when c1 is not a shared - // container. Rationale: using a shared container safely with in - // place computation would require making a copy and then doing the - // computation in place which is likely less efficient than avoiding - // in place entirely and always generating a new container. - - container_t *c; - if (type1 == SHARED_CONTAINER_TYPE) { - c = container_andnot(c1, type1, c2, type2, &result_type); - shared_container_free(CAST_shared(c1)); // release - } else { - c = container_iandnot(c1, type1, c2, type2, &result_type); - } - - if (container_nonzero_cardinality(c, result_type)) { - ra_replace_key_and_container_at_index(&x1->high_low_container, - intersection_size++, s1, - c, result_type); - } else { - container_free(c, result_type); - } - - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - } else if (s1 < s2) { // s1 < s2 - if (pos1 != intersection_size) { - container_t *c1 = ra_get_container_at_index( - &x1->high_low_container, (uint16_t)pos1, &type1); - - ra_replace_key_and_container_at_index( - &x1->high_low_container, intersection_size, s1, c1, type1); - } - intersection_size++; - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - - } else { // s1 > s2 - pos2 = ra_advance_until(&x2->high_low_container, s1, pos2); - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - } - } - - if (pos1 < length1) { - // all containers between intersection_size and - // pos1 are junk. However, they have either been moved - // (thus still referenced) or involved in an iandnot - // that will clean up all containers that could not be reused. - // Thus we should not free the junk containers between - // intersection_size and pos1. - if (pos1 > intersection_size) { - // left slide of remaining items - ra_copy_range(&x1->high_low_container, pos1, length1, - intersection_size); - } - // else current placement is fine - intersection_size += (length1 - pos1); - } - ra_downsize(&x1->high_low_container, intersection_size); -} - -uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *r) { - const roaring_array_t *ra = &r->high_low_container; - - uint64_t card = 0; - for (int i = 0; i < ra->size; ++i) - card += container_get_cardinality(ra->containers[i], ra->typecodes[i]); - return card; -} - -uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *r, - uint64_t range_start, - uint64_t range_end) { - const roaring_array_t *ra = &r->high_low_container; - - if (range_end > UINT32_MAX) { - range_end = UINT32_MAX + UINT64_C(1); - } - if (range_start >= range_end) { - return 0; - } - range_end--; // make range_end inclusive - // now we have: 0 <= range_start <= range_end <= UINT32_MAX - - uint16_t minhb = (uint16_t)(range_start >> 16); - uint16_t maxhb = (uint16_t)(range_end >> 16); - - uint64_t card = 0; - - int i = ra_get_index(ra, minhb); - if (i >= 0) { - if (minhb == maxhb) { - card += container_rank(ra->containers[i], ra->typecodes[i], - range_end & 0xffff); - } else { - card += - container_get_cardinality(ra->containers[i], ra->typecodes[i]); - } - if ((range_start & 0xffff) != 0) { - card -= container_rank(ra->containers[i], ra->typecodes[i], - (range_start & 0xffff) - 1); - } - i++; - } else { - i = -i - 1; - } - - for (; i < ra->size; i++) { - uint16_t key = ra->keys[i]; - if (key < maxhb) { - card += - container_get_cardinality(ra->containers[i], ra->typecodes[i]); - } else if (key == maxhb) { - card += container_rank(ra->containers[i], ra->typecodes[i], - range_end & 0xffff); - break; - } else { - break; - } - } - - return card; -} - -bool roaring_bitmap_is_empty(const roaring_bitmap_t *r) { - return r->high_low_container.size == 0; -} - -void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *r, uint32_t *ans) { - ra_to_uint32_array(&r->high_low_container, ans); -} - -bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *r, size_t offset, - size_t limit, uint32_t *ans) { - return ra_range_uint32_array(&r->high_low_container, offset, limit, ans); -} - -/** convert array and bitmap containers to run containers when it is more - * efficient; - * also convert from run containers when more space efficient. Returns - * true if the result has at least one run container. - */ -bool roaring_bitmap_run_optimize(roaring_bitmap_t *r) { - bool answer = false; - for (int i = 0; i < r->high_low_container.size; i++) { - uint8_t type_original, type_after; - ra_unshare_container_at_index( - &r->high_low_container, - (uint16_t)i); // TODO: this introduces extra cloning! - container_t *c = ra_get_container_at_index(&r->high_low_container, - (uint16_t)i, &type_original); - container_t *c1 = convert_run_optimize(c, type_original, &type_after); - if (type_after == RUN_CONTAINER_TYPE) { - answer = true; - } - ra_set_container_at_index(&r->high_low_container, i, c1, type_after); - } - return answer; -} - -size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r) { - size_t answer = 0; - for (int i = 0; i < r->high_low_container.size; i++) { - uint8_t type_original; - container_t *c = ra_get_container_at_index(&r->high_low_container, - (uint16_t)i, &type_original); - answer += container_shrink_to_fit(c, type_original); - } - answer += ra_shrink_to_fit(&r->high_low_container); - return answer; -} - -/** - * Remove run-length encoding even when it is more space efficient - * return whether a change was applied - */ -bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r) { - bool answer = false; - for (int i = 0; i < r->high_low_container.size; i++) { - uint8_t type_original, type_after; - container_t *c = ra_get_container_at_index(&r->high_low_container, - (uint16_t)i, &type_original); - if (get_container_type(c, type_original) == RUN_CONTAINER_TYPE) { - answer = true; - if (type_original == SHARED_CONTAINER_TYPE) { - run_container_t *truec = CAST_run(CAST_shared(c)->container); - int32_t card = run_container_cardinality(truec); - container_t *c1 = convert_to_bitset_or_array_container( - truec, card, &type_after); - shared_container_free(CAST_shared(c)); // frees run as needed - ra_set_container_at_index(&r->high_low_container, i, c1, - type_after); - - } else { - int32_t card = run_container_cardinality(CAST_run(c)); - container_t *c1 = convert_to_bitset_or_array_container( - CAST_run(c), card, &type_after); - run_container_free(CAST_run(c)); - ra_set_container_at_index(&r->high_low_container, i, c1, - type_after); - } - } - } - return answer; -} - -size_t roaring_bitmap_serialize(const roaring_bitmap_t *r, char *buf) { - size_t portablesize = roaring_bitmap_portable_size_in_bytes(r); - uint64_t cardinality = roaring_bitmap_get_cardinality(r); - uint64_t sizeasarray = cardinality * sizeof(uint32_t) + sizeof(uint32_t); - if (portablesize < sizeasarray) { - buf[0] = CROARING_SERIALIZATION_CONTAINER; - return roaring_bitmap_portable_serialize(r, buf + 1) + 1; - } else { - buf[0] = CROARING_SERIALIZATION_ARRAY_UINT32; - memcpy(buf + 1, &cardinality, sizeof(uint32_t)); - roaring_bitmap_to_uint32_array( - r, (uint32_t *)(buf + 1 + sizeof(uint32_t))); - return 1 + (size_t)sizeasarray; - } -} - -size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *r) { - size_t portablesize = roaring_bitmap_portable_size_in_bytes(r); - uint64_t sizeasarray = - roaring_bitmap_get_cardinality(r) * sizeof(uint32_t) + sizeof(uint32_t); - return portablesize < sizeasarray ? portablesize + 1 - : (size_t)sizeasarray + 1; -} - -size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *r) { - return ra_portable_size_in_bytes(&r->high_low_container); -} - -roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf, - size_t maxbytes) { - roaring_bitmap_t *ans = - (roaring_bitmap_t *)roaring_malloc(sizeof(roaring_bitmap_t)); - if (ans == NULL) { - return NULL; - } - size_t bytesread; - bool is_ok = ra_portable_deserialize(&ans->high_low_container, buf, - maxbytes, &bytesread); - if (!is_ok) { - roaring_free(ans); - return NULL; - } - roaring_bitmap_set_copy_on_write(ans, false); - if (!is_ok) { - roaring_free(ans); - return NULL; - } - return ans; -} - -roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf) { - return roaring_bitmap_portable_deserialize_safe(buf, SIZE_MAX); -} - -size_t roaring_bitmap_portable_deserialize_size(const char *buf, - size_t maxbytes) { - return ra_portable_deserialize_size(buf, maxbytes); -} - -size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *r, char *buf) { - return ra_portable_serialize(&r->high_low_container, buf); -} - -roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf) { - const char *bufaschar = (const char *)buf; - if (bufaschar[0] == CROARING_SERIALIZATION_ARRAY_UINT32) { - /* This looks like a compressed set of uint32_t elements */ - uint32_t card; - - memcpy(&card, bufaschar + 1, sizeof(uint32_t)); - - const uint32_t *elems = - (const uint32_t *)(bufaschar + 1 + sizeof(uint32_t)); - - roaring_bitmap_t *bitmap = roaring_bitmap_create(); - if (bitmap == NULL) { - return NULL; - } - roaring_bulk_context_t context = {0}; - for (uint32_t i = 0; i < card; i++) { - // elems may not be aligned, read with memcpy - uint32_t elem; - memcpy(&elem, elems + i, sizeof(elem)); - roaring_bitmap_add_bulk(bitmap, &context, elem); - } - return bitmap; - - } else if (bufaschar[0] == CROARING_SERIALIZATION_CONTAINER) { - return roaring_bitmap_portable_deserialize(bufaschar + 1); - } else - return (NULL); -} - -roaring_bitmap_t *roaring_bitmap_deserialize_safe(const void *buf, - size_t maxbytes) { - if (maxbytes < 1) { - return NULL; - } - - const char *bufaschar = (const char *)buf; - if (bufaschar[0] == CROARING_SERIALIZATION_ARRAY_UINT32) { - if (maxbytes < 1 + sizeof(uint32_t)) { - return NULL; - } - - /* This looks like a compressed set of uint32_t elements */ - uint32_t card; - memcpy(&card, bufaschar + 1, sizeof(uint32_t)); - - // Check the buffer is big enough to contain card uint32_t elements - if (maxbytes < 1 + sizeof(uint32_t) + card * sizeof(uint32_t)) { - return NULL; - } - - const uint32_t *elems = - (const uint32_t *)(bufaschar + 1 + sizeof(uint32_t)); - - roaring_bitmap_t *bitmap = roaring_bitmap_create(); - if (bitmap == NULL) { - return NULL; - } - roaring_bulk_context_t context = {0}; - for (uint32_t i = 0; i < card; i++) { - // elems may not be aligned, read with memcpy - uint32_t elem; - memcpy(&elem, elems + i, sizeof(elem)); - roaring_bitmap_add_bulk(bitmap, &context, elem); - } - return bitmap; - - } else if (bufaschar[0] == CROARING_SERIALIZATION_CONTAINER) { - return roaring_bitmap_portable_deserialize_safe(bufaschar + 1, - maxbytes - 1); - } else - return (NULL); -} - -bool roaring_iterate(const roaring_bitmap_t *r, roaring_iterator iterator, - void *ptr) { - const roaring_array_t *ra = &r->high_low_container; - - for (int i = 0; i < ra->size; ++i) - if (!container_iterate(ra->containers[i], ra->typecodes[i], - ((uint32_t)ra->keys[i]) << 16, iterator, ptr)) { - return false; - } - return true; -} - -bool roaring_iterate64(const roaring_bitmap_t *r, roaring_iterator64 iterator, - uint64_t high_bits, void *ptr) { - const roaring_array_t *ra = &r->high_low_container; - - for (int i = 0; i < ra->size; ++i) - if (!container_iterate64(ra->containers[i], ra->typecodes[i], - ((uint32_t)ra->keys[i]) << 16, iterator, - high_bits, ptr)) { - return false; - } - return true; -} - -/**** - * begin roaring_uint32_iterator_t - *****/ - -/** - * Partially initializes the iterator. Leaves it in either state: - * 1. Invalid due to `has_value = false`, or - * 2. At a container, with the high bits set, `has_value = true`. - */ -CROARING_WARN_UNUSED static bool iter_new_container_partial_init( - roaring_uint32_iterator_t *newit) { - newit->current_value = 0; - if (newit->container_index >= newit->parent->high_low_container.size || - newit->container_index < 0) { - newit->current_value = UINT32_MAX; - return (newit->has_value = false); - } - newit->has_value = true; - // we precompute container, typecode and highbits so that successive - // iterators do not have to grab them from odd memory locations - // and have to worry about the (easily predicted) container_unwrap_shared - // call. - newit->container = - newit->parent->high_low_container.containers[newit->container_index]; - newit->typecode = - newit->parent->high_low_container.typecodes[newit->container_index]; - newit->highbits = - ((uint32_t) - newit->parent->high_low_container.keys[newit->container_index]) - << 16; - newit->container = - container_unwrap_shared(newit->container, &(newit->typecode)); - return true; -} - -/** - * Positions the iterator at the first value of the current container that the - * iterator points at, if available. - */ -CROARING_WARN_UNUSED static bool loadfirstvalue( - roaring_uint32_iterator_t *newit) { - if (iter_new_container_partial_init(newit)) { - uint16_t value = 0; - newit->container_it = - container_init_iterator(newit->container, newit->typecode, &value); - newit->current_value = newit->highbits | value; - } - return newit->has_value; -} - -/** - * Positions the iterator at the last value of the current container that the - * iterator points at, if available. - */ -CROARING_WARN_UNUSED static bool loadlastvalue( - roaring_uint32_iterator_t *newit) { - if (iter_new_container_partial_init(newit)) { - uint16_t value = 0; - newit->container_it = container_init_iterator_last( - newit->container, newit->typecode, &value); - newit->current_value = newit->highbits | value; - } - return newit->has_value; -} - -/** - * Positions the iterator at the smallest value that is larger than or equal to - * `val` within the current container that the iterator points at. Assumes such - * a value exists within the current container. - */ -CROARING_WARN_UNUSED static bool loadfirstvalue_largeorequal( - roaring_uint32_iterator_t *newit, uint32_t val) { - bool partial_init = iter_new_container_partial_init(newit); - assert(partial_init); - if (!partial_init) { - return false; - } - uint16_t value = 0; - newit->container_it = - container_init_iterator(newit->container, newit->typecode, &value); - bool found = container_iterator_lower_bound( - newit->container, newit->typecode, &newit->container_it, &value, - val & 0xFFFF); - assert(found); - if (!found) { - return false; - } - newit->current_value = newit->highbits | value; - return true; -} - -void roaring_iterator_init(const roaring_bitmap_t *r, - roaring_uint32_iterator_t *newit) { - newit->parent = r; - newit->container_index = 0; - newit->has_value = loadfirstvalue(newit); -} - -void roaring_iterator_init_last(const roaring_bitmap_t *r, - roaring_uint32_iterator_t *newit) { - newit->parent = r; - newit->container_index = newit->parent->high_low_container.size - 1; - newit->has_value = loadlastvalue(newit); -} - -roaring_uint32_iterator_t *roaring_iterator_create(const roaring_bitmap_t *r) { - roaring_uint32_iterator_t *newit = - (roaring_uint32_iterator_t *)roaring_malloc( - sizeof(roaring_uint32_iterator_t)); - if (newit == NULL) return NULL; - roaring_iterator_init(r, newit); - return newit; -} - -roaring_uint32_iterator_t *roaring_uint32_iterator_copy( - const roaring_uint32_iterator_t *it) { - roaring_uint32_iterator_t *newit = - (roaring_uint32_iterator_t *)roaring_malloc( - sizeof(roaring_uint32_iterator_t)); - memcpy(newit, it, sizeof(roaring_uint32_iterator_t)); - return newit; -} - -bool roaring_uint32_iterator_move_equalorlarger(roaring_uint32_iterator_t *it, - uint32_t val) { - uint16_t hb = val >> 16; - const int i = ra_get_index(&it->parent->high_low_container, hb); - if (i >= 0) { - uint32_t lowvalue = - container_maximum(it->parent->high_low_container.containers[i], - it->parent->high_low_container.typecodes[i]); - uint16_t lb = val & 0xFFFF; - if (lowvalue < lb) { - // will have to load first value of next container - it->container_index = i + 1; - } else { - // the value is necessarily within the range of the container - it->container_index = i; - it->has_value = loadfirstvalue_largeorequal(it, val); - return it->has_value; - } - } else { - // there is no matching, so we are going for the next container - it->container_index = -i - 1; - } - it->has_value = loadfirstvalue(it); - return it->has_value; -} - -bool roaring_uint32_iterator_advance(roaring_uint32_iterator_t *it) { - if (it->container_index >= it->parent->high_low_container.size) { - return (it->has_value = false); - } - if (it->container_index < 0) { - it->container_index = 0; - return (it->has_value = loadfirstvalue(it)); - } - uint16_t low16 = (uint16_t)it->current_value; - if (container_iterator_next(it->container, it->typecode, &it->container_it, - &low16)) { - it->current_value = it->highbits | low16; - return (it->has_value = true); - } - it->container_index++; - return (it->has_value = loadfirstvalue(it)); -} - -bool roaring_uint32_iterator_previous(roaring_uint32_iterator_t *it) { - if (it->container_index < 0) { - return (it->has_value = false); - } - if (it->container_index >= it->parent->high_low_container.size) { - it->container_index = it->parent->high_low_container.size - 1; - return (it->has_value = loadlastvalue(it)); - } - uint16_t low16 = (uint16_t)it->current_value; - if (container_iterator_prev(it->container, it->typecode, &it->container_it, - &low16)) { - it->current_value = it->highbits | low16; - return (it->has_value = true); - } - it->container_index--; - return (it->has_value = loadlastvalue(it)); -} - -uint32_t roaring_uint32_iterator_read(roaring_uint32_iterator_t *it, - uint32_t *buf, uint32_t count) { - uint32_t ret = 0; - while (it->has_value && ret < count) { - uint32_t consumed; - uint16_t low16 = (uint16_t)it->current_value; - bool has_value = container_iterator_read_into_uint32( - it->container, it->typecode, &it->container_it, it->highbits, buf, - count - ret, &consumed, &low16); - ret += consumed; - buf += consumed; - if (has_value) { - it->has_value = true; - it->current_value = it->highbits | low16; - assert(ret == count); - return ret; - } - it->container_index++; - it->has_value = loadfirstvalue(it); - } - return ret; -} - -void roaring_uint32_iterator_free(roaring_uint32_iterator_t *it) { - roaring_free(it); -} - -/**** - * end of roaring_uint32_iterator_t - *****/ - -bool roaring_bitmap_equals(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2) { - const roaring_array_t *ra1 = &r1->high_low_container; - const roaring_array_t *ra2 = &r2->high_low_container; - - if (ra1->size != ra2->size) { - return false; - } - for (int i = 0; i < ra1->size; ++i) { - if (ra1->keys[i] != ra2->keys[i]) { - return false; - } - } - for (int i = 0; i < ra1->size; ++i) { - bool areequal = container_equals(ra1->containers[i], ra1->typecodes[i], - ra2->containers[i], ra2->typecodes[i]); - if (!areequal) { - return false; - } - } - return true; -} - -bool roaring_bitmap_is_subset(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2) { - const roaring_array_t *ra1 = &r1->high_low_container; - const roaring_array_t *ra2 = &r2->high_low_container; - - const int length1 = ra1->size, length2 = ra2->size; - - int pos1 = 0, pos2 = 0; - - while (pos1 < length1 && pos2 < length2) { - const uint16_t s1 = ra_get_key_at_index(ra1, (uint16_t)pos1); - const uint16_t s2 = ra_get_key_at_index(ra2, (uint16_t)pos2); - - if (s1 == s2) { - uint8_t type1, type2; - container_t *c1 = - ra_get_container_at_index(ra1, (uint16_t)pos1, &type1); - container_t *c2 = - ra_get_container_at_index(ra2, (uint16_t)pos2, &type2); - if (!container_is_subset(c1, type1, c2, type2)) return false; - ++pos1; - ++pos2; - } else if (s1 < s2) { // s1 < s2 - return false; - } else { // s1 > s2 - pos2 = ra_advance_until(ra2, s1, pos2); - } - } - if (pos1 == length1) - return true; - else - return false; -} - -static void insert_flipped_container(roaring_array_t *ans_arr, - const roaring_array_t *x1_arr, uint16_t hb, - uint16_t lb_start, uint16_t lb_end) { - const int i = ra_get_index(x1_arr, hb); - const int j = ra_get_index(ans_arr, hb); - uint8_t ctype_in, ctype_out; - container_t *flipped_container = NULL; - if (i >= 0) { - container_t *container_to_flip = - ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in); - flipped_container = - container_not_range(container_to_flip, ctype_in, (uint32_t)lb_start, - (uint32_t)(lb_end + 1), &ctype_out); - - if (container_get_cardinality(flipped_container, ctype_out)) - ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container, - ctype_out); - else { - container_free(flipped_container, ctype_out); - } - } else { - flipped_container = container_range_of_ones( - (uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out); - ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container, - ctype_out); - } -} - -static void inplace_flip_container(roaring_array_t *x1_arr, uint16_t hb, - uint16_t lb_start, uint16_t lb_end) { - const int i = ra_get_index(x1_arr, hb); - uint8_t ctype_in, ctype_out; - container_t *flipped_container = NULL; - if (i >= 0) { - container_t *container_to_flip = - ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in); - flipped_container = container_inot_range( - container_to_flip, ctype_in, (uint32_t)lb_start, - (uint32_t)(lb_end + 1), &ctype_out); - // if a new container was created, the old one was already freed - if (container_get_cardinality(flipped_container, ctype_out)) { - ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out); - } else { - container_free(flipped_container, ctype_out); - ra_remove_at_index(x1_arr, i); - } - - } else { - flipped_container = container_range_of_ones( - (uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out); - ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container, - ctype_out); - } -} - -static void insert_fully_flipped_container(roaring_array_t *ans_arr, - const roaring_array_t *x1_arr, - uint16_t hb) { - const int i = ra_get_index(x1_arr, hb); - const int j = ra_get_index(ans_arr, hb); - uint8_t ctype_in, ctype_out; - container_t *flipped_container = NULL; - if (i >= 0) { - container_t *container_to_flip = - ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in); - flipped_container = - container_not(container_to_flip, ctype_in, &ctype_out); - if (container_get_cardinality(flipped_container, ctype_out)) - ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container, - ctype_out); - else { - container_free(flipped_container, ctype_out); - } - } else { - flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out); - ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container, - ctype_out); - } -} - -static void inplace_fully_flip_container(roaring_array_t *x1_arr, uint16_t hb) { - const int i = ra_get_index(x1_arr, hb); - uint8_t ctype_in, ctype_out; - container_t *flipped_container = NULL; - if (i >= 0) { - container_t *container_to_flip = - ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in); - flipped_container = - container_inot(container_to_flip, ctype_in, &ctype_out); - - if (container_get_cardinality(flipped_container, ctype_out)) { - ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out); - } else { - container_free(flipped_container, ctype_out); - ra_remove_at_index(x1_arr, i); - } - - } else { - flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out); - ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container, - ctype_out); - } -} - -roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *x1, - uint64_t range_start, - uint64_t range_end) { - if (range_start >= range_end) { - return roaring_bitmap_copy(x1); - } - if (range_end >= UINT64_C(0x100000000)) { - range_end = UINT64_C(0x100000000); - } - - roaring_bitmap_t *ans = roaring_bitmap_create(); - roaring_bitmap_set_copy_on_write(ans, is_cow(x1)); - - uint16_t hb_start = (uint16_t)(range_start >> 16); - const uint16_t lb_start = (uint16_t)range_start; // & 0xFFFF; - uint16_t hb_end = (uint16_t)((range_end - 1) >> 16); - const uint16_t lb_end = (uint16_t)(range_end - 1); // & 0xFFFF; - - ra_append_copies_until(&ans->high_low_container, &x1->high_low_container, - hb_start, is_cow(x1)); - if (hb_start == hb_end) { - insert_flipped_container(&ans->high_low_container, - &x1->high_low_container, hb_start, lb_start, - lb_end); - } else { - // start and end containers are distinct - if (lb_start > 0) { - // handle first (partial) container - insert_flipped_container(&ans->high_low_container, - &x1->high_low_container, hb_start, - lb_start, 0xFFFF); - ++hb_start; // for the full containers. Can't wrap. - } - - if (lb_end != 0xFFFF) --hb_end; // later we'll handle the partial block - - for (uint32_t hb = hb_start; hb <= hb_end; ++hb) { - insert_fully_flipped_container(&ans->high_low_container, - &x1->high_low_container, - (uint16_t)hb); - } - - // handle a partial final container - if (lb_end != 0xFFFF) { - insert_flipped_container(&ans->high_low_container, - &x1->high_low_container, hb_end + 1, 0, - lb_end); - ++hb_end; - } - } - ra_append_copies_after(&ans->high_low_container, &x1->high_low_container, - hb_end, is_cow(x1)); - return ans; -} - -void roaring_bitmap_flip_inplace(roaring_bitmap_t *x1, uint64_t range_start, - uint64_t range_end) { - if (range_start >= range_end) { - return; // empty range - } - if (range_end >= UINT64_C(0x100000000)) { - range_end = UINT64_C(0x100000000); - } - - uint16_t hb_start = (uint16_t)(range_start >> 16); - const uint16_t lb_start = (uint16_t)range_start; - uint16_t hb_end = (uint16_t)((range_end - 1) >> 16); - const uint16_t lb_end = (uint16_t)(range_end - 1); - - if (hb_start == hb_end) { - inplace_flip_container(&x1->high_low_container, hb_start, lb_start, - lb_end); - } else { - // start and end containers are distinct - if (lb_start > 0) { - // handle first (partial) container - inplace_flip_container(&x1->high_low_container, hb_start, lb_start, - 0xFFFF); - ++hb_start; // for the full containers. Can't wrap. - } - - if (lb_end != 0xFFFF) --hb_end; - - for (uint32_t hb = hb_start; hb <= hb_end; ++hb) { - inplace_fully_flip_container(&x1->high_low_container, (uint16_t)hb); - } - // handle a partial final container - if (lb_end != 0xFFFF) { - inplace_flip_container(&x1->high_low_container, hb_end + 1, 0, - lb_end); - ++hb_end; - } - } -} - -static void offset_append_with_merge(roaring_array_t *ra, int k, container_t *c, - uint8_t t) { - int size = ra_get_size(ra); - if (size == 0 || ra_get_key_at_index(ra, (uint16_t)(size - 1)) != k) { - // No merge. - ra_append(ra, (uint16_t)k, c, t); - return; - } - - uint8_t last_t, new_t; - container_t *last_c, *new_c; - - // NOTE: we don't need to unwrap here, since we added last_c ourselves - // we have the certainty it's not a shared container. - // The same applies to c, as it's the result of calling container_offset. - last_c = ra_get_container_at_index(ra, (uint16_t)(size - 1), &last_t); - new_c = container_ior(last_c, last_t, c, t, &new_t); - - ra_set_container_at_index(ra, size - 1, new_c, new_t); - - // Comparison of pointers of different origin is UB (or so claim some - // compiler makers), so we compare their bit representation only. - if ((uintptr_t)last_c != (uintptr_t)new_c) { - container_free(last_c, last_t); - } - container_free(c, t); -} - -// roaring_bitmap_add_offset adds the value 'offset' to each and every value in -// a bitmap, generating a new bitmap in the process. If offset + element is -// outside of the range [0,2^32), that the element will be dropped. -// We need "offset" to be 64 bits because we want to support values -// between -0xFFFFFFFF up to +0xFFFFFFFF. -roaring_bitmap_t *roaring_bitmap_add_offset(const roaring_bitmap_t *bm, - int64_t offset) { - roaring_bitmap_t *answer; - roaring_array_t *ans_ra; - int64_t container_offset; - uint16_t in_offset; - - const roaring_array_t *bm_ra = &bm->high_low_container; - int length = bm_ra->size; - - if (offset == 0) { - return roaring_bitmap_copy(bm); - } - - container_offset = offset >> 16; - in_offset = (uint16_t)(offset - container_offset * (1 << 16)); - - answer = roaring_bitmap_create(); - bool cow = is_cow(bm); - roaring_bitmap_set_copy_on_write(answer, cow); - - ans_ra = &answer->high_low_container; - - if (in_offset == 0) { - ans_ra = &answer->high_low_container; - - for (int i = 0, j = 0; i < length; ++i) { - int64_t key = ra_get_key_at_index(bm_ra, (uint16_t)i); - key += container_offset; - - if (key < 0 || key >= (1 << 16)) { - continue; - } - ra_append_copy(ans_ra, bm_ra, (uint16_t)i, cow); - ans_ra->keys[j++] = (uint16_t)key; - } - return answer; - } - - uint8_t t; - const container_t *c; - container_t *lo, *hi, **lo_ptr, **hi_ptr; - int64_t k; - - for (int i = 0; i < length; ++i) { - lo = hi = NULL; - lo_ptr = hi_ptr = NULL; - - k = ra_get_key_at_index(bm_ra, (uint16_t)i) + container_offset; - if (k >= 0 && k < (1 << 16)) { - lo_ptr = &lo; - } - if (k + 1 >= 0 && k + 1 < (1 << 16)) { - hi_ptr = &hi; - } - if (lo_ptr == NULL && hi_ptr == NULL) { - continue; - } - c = ra_get_container_at_index(bm_ra, (uint16_t)i, &t); - c = container_unwrap_shared(c, &t); - - container_add_offset(c, t, lo_ptr, hi_ptr, in_offset); - if (lo != NULL) { - offset_append_with_merge(ans_ra, (int)k, lo, t); - } - if (hi != NULL) { - ra_append(ans_ra, (uint16_t)(k + 1), hi, t); - } - // the `lo` and `hi` container type always keep same as container `c`. - // in the case of `container_add_offset` on bitset container, `lo` and - // `hi` may has small cardinality, they must be repaired to array - // container. - } - - roaring_bitmap_repair_after_lazy(answer); // do required type conversions. - return answer; -} - -roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2, - const bool bitsetconversion) { - uint8_t result_type = 0; - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - if (0 == length1) { - return roaring_bitmap_copy(x2); - } - if (0 == length2) { - return roaring_bitmap_copy(x1); - } - roaring_bitmap_t *answer = - roaring_bitmap_create_with_capacity(length1 + length2); - roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2)); - int pos1 = 0, pos2 = 0; - uint8_t type1, type2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - while (true) { - if (s1 == s2) { - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - container_t *c; - if (bitsetconversion && - (get_container_type(c1, type1) != BITSET_CONTAINER_TYPE) && - (get_container_type(c2, type2) != BITSET_CONTAINER_TYPE)) { - container_t *newc1 = - container_mutable_unwrap_shared(c1, &type1); - newc1 = container_to_bitset(newc1, type1); - type1 = BITSET_CONTAINER_TYPE; - c = container_lazy_ior(newc1, type1, c2, type2, &result_type); - if (c != newc1) { // should not happen - container_free(newc1, type1); - } - } else { - c = container_lazy_or(c1, type1, c2, type2, &result_type); - } - // since we assume that the initial containers are non-empty, - // the - // result here - // can only be non-empty - ra_append(&answer->high_low_container, s1, c, result_type); - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - } else if (s1 < s2) { // s1 < s2 - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - c1 = get_copy_of_container(c1, &type1, is_cow(x1)); - if (is_cow(x1)) { - ra_set_container_at_index(&x1->high_low_container, pos1, c1, - type1); - } - ra_append(&answer->high_low_container, s1, c1, type1); - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - - } else { // s1 > s2 - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - c2 = get_copy_of_container(c2, &type2, is_cow(x2)); - if (is_cow(x2)) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - type2); - } - ra_append(&answer->high_low_container, s2, c2, type2); - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&answer->high_low_container, - &x2->high_low_container, pos2, length2, - is_cow(x2)); - } else if (pos2 == length2) { - ra_append_copy_range(&answer->high_low_container, - &x1->high_low_container, pos1, length1, - is_cow(x1)); - } - return answer; -} - -void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2, - const bool bitsetconversion) { - uint8_t result_type = 0; - int length1 = x1->high_low_container.size; - const int length2 = x2->high_low_container.size; - - if (0 == length2) return; - - if (0 == length1) { - roaring_bitmap_overwrite(x1, x2); - return; - } - int pos1 = 0, pos2 = 0; - uint8_t type1, type2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - while (true) { - if (s1 == s2) { - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - if (!container_is_full(c1, type1)) { - if ((bitsetconversion == false) || - (get_container_type(c1, type1) == BITSET_CONTAINER_TYPE)) { - c1 = get_writable_copy_if_shared(c1, &type1); - } else { - // convert to bitset - container_t *old_c1 = c1; - uint8_t old_type1 = type1; - c1 = container_mutable_unwrap_shared(c1, &type1); - c1 = container_to_bitset(c1, type1); - container_free(old_c1, old_type1); - type1 = BITSET_CONTAINER_TYPE; - } - - container_t *c2 = ra_get_container_at_index( - &x2->high_low_container, (uint16_t)pos2, &type2); - container_t *c = - container_lazy_ior(c1, type1, c2, type2, &result_type); - - if (c != c1) { // in this instance a new container was created, - // and we need to free the old one - container_free(c1, type1); - } - - ra_set_container_at_index(&x1->high_low_container, pos1, c, - result_type); - } - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - } else if (s1 < s2) { // s1 < s2 - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - - } else { // s1 > s2 - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - // container_t *c2_clone = container_clone(c2, type2); - c2 = get_copy_of_container(c2, &type2, is_cow(x2)); - if (is_cow(x2)) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - type2); - } - ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2, - type2); - pos1++; - length1++; - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&x1->high_low_container, &x2->high_low_container, - pos2, length2, is_cow(x2)); - } -} - -roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - uint8_t result_type = 0; - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - if (0 == length1) { - return roaring_bitmap_copy(x2); - } - if (0 == length2) { - return roaring_bitmap_copy(x1); - } - roaring_bitmap_t *answer = - roaring_bitmap_create_with_capacity(length1 + length2); - roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2)); - int pos1 = 0, pos2 = 0; - uint8_t type1, type2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - while (true) { - if (s1 == s2) { - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - container_t *c = - container_lazy_xor(c1, type1, c2, type2, &result_type); - - if (container_nonzero_cardinality(c, result_type)) { - ra_append(&answer->high_low_container, s1, c, result_type); - } else { - container_free(c, result_type); - } - - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - } else if (s1 < s2) { // s1 < s2 - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - c1 = get_copy_of_container(c1, &type1, is_cow(x1)); - if (is_cow(x1)) { - ra_set_container_at_index(&x1->high_low_container, pos1, c1, - type1); - } - ra_append(&answer->high_low_container, s1, c1, type1); - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - - } else { // s1 > s2 - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - c2 = get_copy_of_container(c2, &type2, is_cow(x2)); - if (is_cow(x2)) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - type2); - } - ra_append(&answer->high_low_container, s2, c2, type2); - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&answer->high_low_container, - &x2->high_low_container, pos2, length2, - is_cow(x2)); - } else if (pos2 == length2) { - ra_append_copy_range(&answer->high_low_container, - &x1->high_low_container, pos1, length1, - is_cow(x1)); - } - return answer; -} - -void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - assert(x1 != x2); - uint8_t result_type = 0; - int length1 = x1->high_low_container.size; - const int length2 = x2->high_low_container.size; - - if (0 == length2) return; - - if (0 == length1) { - roaring_bitmap_overwrite(x1, x2); - return; - } - int pos1 = 0, pos2 = 0; - uint8_t type1, type2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - while (true) { - if (s1 == s2) { - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - - // We do the computation "in place" only when c1 is not a shared - // container. Rationale: using a shared container safely with in - // place computation would require making a copy and then doing the - // computation in place which is likely less efficient than avoiding - // in place entirely and always generating a new container. - - container_t *c; - if (type1 == SHARED_CONTAINER_TYPE) { - c = container_lazy_xor(c1, type1, c2, type2, &result_type); - shared_container_free(CAST_shared(c1)); // release - } else { - c = container_lazy_ixor(c1, type1, c2, type2, &result_type); - } - - if (container_nonzero_cardinality(c, result_type)) { - ra_set_container_at_index(&x1->high_low_container, pos1, c, - result_type); - ++pos1; - } else { - container_free(c, result_type); - ra_remove_at_index(&x1->high_low_container, pos1); - --length1; - } - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - } else if (s1 < s2) { // s1 < s2 - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - - } else { // s1 > s2 - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - // container_t *c2_clone = container_clone(c2, type2); - c2 = get_copy_of_container(c2, &type2, is_cow(x2)); - if (is_cow(x2)) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - type2); - } - ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2, - type2); - pos1++; - length1++; - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&x1->high_low_container, &x2->high_low_container, - pos2, length2, is_cow(x2)); - } -} - -void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *r) { - roaring_array_t *ra = &r->high_low_container; - - for (int i = 0; i < ra->size; ++i) { - const uint8_t old_type = ra->typecodes[i]; - container_t *old_c = ra->containers[i]; - uint8_t new_type = old_type; - container_t *new_c = container_repair_after_lazy(old_c, &new_type); - ra->containers[i] = new_c; - ra->typecodes[i] = new_type; - } -} - -/** - * roaring_bitmap_rank returns the number of integers that are smaller or equal - * to x. - */ -uint64_t roaring_bitmap_rank(const roaring_bitmap_t *bm, uint32_t x) { - uint64_t size = 0; - uint32_t xhigh = x >> 16; - for (int i = 0; i < bm->high_low_container.size; i++) { - uint32_t key = bm->high_low_container.keys[i]; - if (xhigh > key) { - size += - container_get_cardinality(bm->high_low_container.containers[i], - bm->high_low_container.typecodes[i]); - } else if (xhigh == key) { - return size + container_rank(bm->high_low_container.containers[i], - bm->high_low_container.typecodes[i], - x & 0xFFFF); - } else { - return size; - } - } - return size; -} -void roaring_bitmap_rank_many(const roaring_bitmap_t *bm, const uint32_t *begin, - const uint32_t *end, uint64_t *ans) { - uint64_t size = 0; - - int i = 0; - const uint32_t *iter = begin; - while (i < bm->high_low_container.size && iter != end) { - uint32_t x = *iter; - uint32_t xhigh = x >> 16; - uint32_t key = bm->high_low_container.keys[i]; - if (xhigh > key) { - size += - container_get_cardinality(bm->high_low_container.containers[i], - bm->high_low_container.typecodes[i]); - i++; - } else if (xhigh == key) { - uint32_t consumed = container_rank_many( - bm->high_low_container.containers[i], - bm->high_low_container.typecodes[i], size, iter, end, ans); - iter += consumed; - ans += consumed; - } else { - *(ans++) = size; - iter++; - } - } -} - -/** - * roaring_bitmap_get_index returns the index of x, if not exsist return -1. - */ -int64_t roaring_bitmap_get_index(const roaring_bitmap_t *bm, uint32_t x) { - int64_t index = 0; - const uint16_t xhigh = x >> 16; - int32_t high_idx = ra_get_index(&bm->high_low_container, xhigh); - if (high_idx < 0) return -1; - - for (int i = 0; i < bm->high_low_container.size; i++) { - uint32_t key = bm->high_low_container.keys[i]; - if (xhigh > key) { - index += - container_get_cardinality(bm->high_low_container.containers[i], - bm->high_low_container.typecodes[i]); - } else if (xhigh == key) { - int32_t low_idx = container_get_index( - bm->high_low_container.containers[high_idx], - bm->high_low_container.typecodes[high_idx], x & 0xFFFF); - if (low_idx < 0) return -1; - return index + low_idx; - } else { - return -1; - } - } - return index; -} - -/** - * roaring_bitmap_smallest returns the smallest value in the set. - * Returns UINT32_MAX if the set is empty. - */ -uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *bm) { - if (bm->high_low_container.size > 0) { - container_t *c = bm->high_low_container.containers[0]; - uint8_t type = bm->high_low_container.typecodes[0]; - uint32_t key = bm->high_low_container.keys[0]; - uint32_t lowvalue = container_minimum(c, type); - return lowvalue | (key << 16); - } - return UINT32_MAX; -} - -/** - * roaring_bitmap_smallest returns the greatest value in the set. - * Returns 0 if the set is empty. - */ -uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *bm) { - if (bm->high_low_container.size > 0) { - container_t *container = - bm->high_low_container.containers[bm->high_low_container.size - 1]; - uint8_t typecode = - bm->high_low_container.typecodes[bm->high_low_container.size - 1]; - uint32_t key = - bm->high_low_container.keys[bm->high_low_container.size - 1]; - uint32_t lowvalue = container_maximum(container, typecode); - return lowvalue | (key << 16); - } - return 0; -} - -bool roaring_bitmap_select(const roaring_bitmap_t *bm, uint32_t rank, - uint32_t *element) { - container_t *container; - uint8_t typecode; - uint16_t key; - uint32_t start_rank = 0; - int i = 0; - bool valid = false; - while (!valid && i < bm->high_low_container.size) { - container = bm->high_low_container.containers[i]; - typecode = bm->high_low_container.typecodes[i]; - valid = - container_select(container, typecode, &start_rank, rank, element); - i++; - } - - if (valid) { - key = bm->high_low_container.keys[i - 1]; - *element |= (((uint32_t)key) << 16); // w/o cast, key promotes signed - return true; - } else - return false; -} - -bool roaring_bitmap_intersect(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - uint64_t answer = 0; - int pos1 = 0, pos2 = 0; - - while (pos1 < length1 && pos2 < length2) { - const uint16_t s1 = - ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - const uint16_t s2 = - ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - if (s1 == s2) { - uint8_t type1, type2; - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - if (container_intersect(c1, type1, c2, type2)) return true; - ++pos1; - ++pos2; - } else if (s1 < s2) { // s1 < s2 - pos1 = ra_advance_until(&x1->high_low_container, s2, pos1); - } else { // s1 > s2 - pos2 = ra_advance_until(&x2->high_low_container, s1, pos2); - } - } - return answer != 0; -} - -bool roaring_bitmap_intersect_with_range(const roaring_bitmap_t *bm, uint64_t x, - uint64_t y) { - if (x >= y) { - // Empty range. - return false; - } - roaring_uint32_iterator_t it; - roaring_iterator_init(bm, &it); - if (!roaring_uint32_iterator_move_equalorlarger(&it, (uint32_t)x)) { - // No values above x. - return false; - } - if (it.current_value >= y) { - // No values below y. - return false; - } - return true; -} - -uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - uint64_t answer = 0; - int pos1 = 0, pos2 = 0; - while (pos1 < length1 && pos2 < length2) { - const uint16_t s1 = - ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - const uint16_t s2 = - ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - if (s1 == s2) { - uint8_t type1, type2; - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - answer += container_and_cardinality(c1, type1, c2, type2); - ++pos1; - ++pos2; - } else if (s1 < s2) { // s1 < s2 - pos1 = ra_advance_until(&x1->high_low_container, s2, pos1); - } else { // s1 > s2 - pos2 = ra_advance_until(&x2->high_low_container, s1, pos2); - } - } - return answer; -} - -double roaring_bitmap_jaccard_index(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - const uint64_t c1 = roaring_bitmap_get_cardinality(x1); - const uint64_t c2 = roaring_bitmap_get_cardinality(x2); - const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2); - return (double)inter / (double)(c1 + c2 - inter); -} - -uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - const uint64_t c1 = roaring_bitmap_get_cardinality(x1); - const uint64_t c2 = roaring_bitmap_get_cardinality(x2); - const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2); - return c1 + c2 - inter; -} - -uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - const uint64_t c1 = roaring_bitmap_get_cardinality(x1); - const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2); - return c1 - inter; -} - -uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - const uint64_t c1 = roaring_bitmap_get_cardinality(x1); - const uint64_t c2 = roaring_bitmap_get_cardinality(x2); - const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2); - return c1 + c2 - 2 * inter; -} - -bool roaring_bitmap_contains(const roaring_bitmap_t *r, uint32_t val) { - const uint16_t hb = val >> 16; - /* - * the next function call involves a binary search and lots of branching. - */ - int32_t i = ra_get_index(&r->high_low_container, hb); - if (i < 0) return false; - - uint8_t typecode; - // next call ought to be cheap - container_t *container = ra_get_container_at_index(&r->high_low_container, - (uint16_t)i, &typecode); - // rest might be a tad expensive, possibly involving another round of binary - // search - return container_contains(container, val & 0xFFFF, typecode); -} - -/** - * Check whether a range of values from range_start (included) to range_end - * (excluded) is present - */ -bool roaring_bitmap_contains_range(const roaring_bitmap_t *r, - uint64_t range_start, uint64_t range_end) { - if (range_end >= UINT64_C(0x100000000)) { - range_end = UINT64_C(0x100000000); - } - if (range_start >= range_end) - return true; // empty range are always contained! - if (range_end - range_start == 1) - return roaring_bitmap_contains(r, (uint32_t)range_start); - uint16_t hb_rs = (uint16_t)(range_start >> 16); - uint16_t hb_re = (uint16_t)((range_end - 1) >> 16); - const int32_t span = hb_re - hb_rs; - const int32_t hlc_sz = ra_get_size(&r->high_low_container); - if (hlc_sz < span + 1) { - return false; - } - int32_t is = ra_get_index(&r->high_low_container, hb_rs); - int32_t ie = ra_get_index(&r->high_low_container, hb_re); - if ((ie < 0) || (is < 0) || ((ie - is) != span) || ie >= hlc_sz) { - return false; - } - const uint32_t lb_rs = range_start & 0xFFFF; - const uint32_t lb_re = ((range_end - 1) & 0xFFFF) + 1; - uint8_t type; - container_t *c = - ra_get_container_at_index(&r->high_low_container, (uint16_t)is, &type); - if (hb_rs == hb_re) { - return container_contains_range(c, lb_rs, lb_re, type); - } - if (!container_contains_range(c, lb_rs, 1 << 16, type)) { - return false; - } - c = ra_get_container_at_index(&r->high_low_container, (uint16_t)ie, &type); - if (!container_contains_range(c, 0, lb_re, type)) { - return false; - } - for (int32_t i = is + 1; i < ie; ++i) { - c = ra_get_container_at_index(&r->high_low_container, (uint16_t)i, - &type); - if (!container_is_full(c, type)) { - return false; - } - } - return true; -} - -bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *r1, - const roaring_bitmap_t *r2) { - return (roaring_bitmap_get_cardinality(r2) > - roaring_bitmap_get_cardinality(r1) && - roaring_bitmap_is_subset(r1, r2)); -} - -/* - * FROZEN SERIALIZATION FORMAT DESCRIPTION - * - * -- (beginning must be aligned by 32 bytes) -- - * uint64_t[BITSET_CONTAINER_SIZE_IN_WORDS * - * num_bitset_containers] rle16_t[total number of rle elements in - * all run containers] uint16_t[total number of array elements in - * all array containers] uint16_t[num_containers] - * uint16_t[num_containers] uint8_t[num_containers]
- * uint32_t - * - *
is a 4-byte value which is a bit union of FROZEN_COOKIE (15 bits) - * and the number of containers (17 bits). - * - * stores number of elements for every container. - * Its meaning depends on container type. - * For array and bitset containers, this value is the container cardinality - * minus one. For run container, it is the number of rle_t elements (n_runs). - * - * ,, are flat arrays of elements of - * all containers of respective type. - * - * <*_data> and are kept close together because they are not accessed - * during deserilization. This may reduce IO in case of large mmaped bitmaps. - * All members have their native alignments during deserilization except - *
, which is not guaranteed to be aligned by 4 bytes. - */ - -size_t roaring_bitmap_frozen_size_in_bytes(const roaring_bitmap_t *rb) { - const roaring_array_t *ra = &rb->high_low_container; - size_t num_bytes = 0; - for (int32_t i = 0; i < ra->size; i++) { - switch (ra->typecodes[i]) { - case BITSET_CONTAINER_TYPE: { - num_bytes += BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); - break; - } - case RUN_CONTAINER_TYPE: { - const run_container_t *rc = const_CAST_run(ra->containers[i]); - num_bytes += rc->n_runs * sizeof(rle16_t); - break; - } - case ARRAY_CONTAINER_TYPE: { - const array_container_t *ac = - const_CAST_array(ra->containers[i]); - num_bytes += ac->cardinality * sizeof(uint16_t); - break; - } - default: - roaring_unreachable; - } - } - num_bytes += (2 + 2 + 1) * ra->size; // keys, counts, typecodes - num_bytes += 4; // header - return num_bytes; -} - -inline static void *arena_alloc(char **arena, size_t num_bytes) { - char *res = *arena; - *arena += num_bytes; - return res; -} - -void roaring_bitmap_frozen_serialize(const roaring_bitmap_t *rb, char *buf) { - /* - * Note: we do not require user to supply a specifically aligned buffer. - * Thus we have to use memcpy() everywhere. - */ - - const roaring_array_t *ra = &rb->high_low_container; - - size_t bitset_zone_size = 0; - size_t run_zone_size = 0; - size_t array_zone_size = 0; - for (int32_t i = 0; i < ra->size; i++) { - switch (ra->typecodes[i]) { - case BITSET_CONTAINER_TYPE: { - bitset_zone_size += - BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); - break; - } - case RUN_CONTAINER_TYPE: { - const run_container_t *rc = const_CAST_run(ra->containers[i]); - run_zone_size += rc->n_runs * sizeof(rle16_t); - break; - } - case ARRAY_CONTAINER_TYPE: { - const array_container_t *ac = - const_CAST_array(ra->containers[i]); - array_zone_size += ac->cardinality * sizeof(uint16_t); - break; - } - default: - roaring_unreachable; - } - } - - uint64_t *bitset_zone = (uint64_t *)arena_alloc(&buf, bitset_zone_size); - rle16_t *run_zone = (rle16_t *)arena_alloc(&buf, run_zone_size); - uint16_t *array_zone = (uint16_t *)arena_alloc(&buf, array_zone_size); - uint16_t *key_zone = (uint16_t *)arena_alloc(&buf, 2 * ra->size); - uint16_t *count_zone = (uint16_t *)arena_alloc(&buf, 2 * ra->size); - uint8_t *typecode_zone = (uint8_t *)arena_alloc(&buf, ra->size); - uint32_t *header_zone = (uint32_t *)arena_alloc(&buf, 4); - - for (int32_t i = 0; i < ra->size; i++) { - uint16_t count; - switch (ra->typecodes[i]) { - case BITSET_CONTAINER_TYPE: { - const bitset_container_t *bc = - const_CAST_bitset(ra->containers[i]); - memcpy(bitset_zone, bc->words, - BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t)); - bitset_zone += BITSET_CONTAINER_SIZE_IN_WORDS; - if (bc->cardinality != BITSET_UNKNOWN_CARDINALITY) { - count = (uint16_t)(bc->cardinality - 1); - } else { - count = - (uint16_t)(bitset_container_compute_cardinality(bc) - - 1); - } - break; - } - case RUN_CONTAINER_TYPE: { - const run_container_t *rc = const_CAST_run(ra->containers[i]); - size_t num_bytes = rc->n_runs * sizeof(rle16_t); - memcpy(run_zone, rc->runs, num_bytes); - run_zone += rc->n_runs; - count = (uint16_t)rc->n_runs; - break; - } - case ARRAY_CONTAINER_TYPE: { - const array_container_t *ac = - const_CAST_array(ra->containers[i]); - size_t num_bytes = ac->cardinality * sizeof(uint16_t); - memcpy(array_zone, ac->array, num_bytes); - array_zone += ac->cardinality; - count = (uint16_t)(ac->cardinality - 1); - break; - } - default: - roaring_unreachable; - } - memcpy(&count_zone[i], &count, 2); - } - memcpy(key_zone, ra->keys, ra->size * sizeof(uint16_t)); - memcpy(typecode_zone, ra->typecodes, ra->size * sizeof(uint8_t)); - uint32_t header = ((uint32_t)ra->size << 15) | FROZEN_COOKIE; - memcpy(header_zone, &header, 4); -} - -const roaring_bitmap_t *roaring_bitmap_frozen_view(const char *buf, - size_t length) { - if ((uintptr_t)buf % 32 != 0) { - return NULL; - } - - // cookie and num_containers - if (length < 4) { - return NULL; - } - uint32_t header; - memcpy(&header, buf + length - 4, 4); // header may be misaligned - if ((header & 0x7FFF) != FROZEN_COOKIE) { - return NULL; - } - int32_t num_containers = (header >> 15); - - // typecodes, counts and keys - if (length < 4 + (size_t)num_containers * (1 + 2 + 2)) { - return NULL; - } - uint16_t *keys = (uint16_t *)(buf + length - 4 - num_containers * 5); - uint16_t *counts = (uint16_t *)(buf + length - 4 - num_containers * 3); - uint8_t *typecodes = (uint8_t *)(buf + length - 4 - num_containers * 1); - - // {bitset,array,run}_zone - int32_t num_bitset_containers = 0; - int32_t num_run_containers = 0; - int32_t num_array_containers = 0; - size_t bitset_zone_size = 0; - size_t run_zone_size = 0; - size_t array_zone_size = 0; - for (int32_t i = 0; i < num_containers; i++) { - switch (typecodes[i]) { - case BITSET_CONTAINER_TYPE: - num_bitset_containers++; - bitset_zone_size += - BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); - break; - case RUN_CONTAINER_TYPE: - num_run_containers++; - run_zone_size += counts[i] * sizeof(rle16_t); - break; - case ARRAY_CONTAINER_TYPE: - num_array_containers++; - array_zone_size += (counts[i] + UINT32_C(1)) * sizeof(uint16_t); - break; - default: - return NULL; - } - } - if (length != bitset_zone_size + run_zone_size + array_zone_size + - 5 * num_containers + 4) { - return NULL; - } - uint64_t *bitset_zone = (uint64_t *)(buf); - rle16_t *run_zone = (rle16_t *)(buf + bitset_zone_size); - uint16_t *array_zone = (uint16_t *)(buf + bitset_zone_size + run_zone_size); - - size_t alloc_size = 0; - alloc_size += sizeof(roaring_bitmap_t); - alloc_size += num_containers * sizeof(container_t *); - alloc_size += num_bitset_containers * sizeof(bitset_container_t); - alloc_size += num_run_containers * sizeof(run_container_t); - alloc_size += num_array_containers * sizeof(array_container_t); - - char *arena = (char *)roaring_malloc(alloc_size); - if (arena == NULL) { - return NULL; - } - - roaring_bitmap_t *rb = - (roaring_bitmap_t *)arena_alloc(&arena, sizeof(roaring_bitmap_t)); - rb->high_low_container.flags = ROARING_FLAG_FROZEN; - rb->high_low_container.allocation_size = num_containers; - rb->high_low_container.size = num_containers; - rb->high_low_container.keys = (uint16_t *)keys; - rb->high_low_container.typecodes = (uint8_t *)typecodes; - rb->high_low_container.containers = (container_t **)arena_alloc( - &arena, sizeof(container_t *) * num_containers); - // Ensure offset of high_low_container.containers is known distance used in - // C++ wrapper. sizeof(roaring_bitmap_t) is used as it is the size of the - // only allocation that precedes high_low_container.containers. If this is - // changed (new allocation or changed order), this offset will also need to - // be changed in the C++ wrapper. - assert(rb == - (roaring_bitmap_t *)((char *)rb->high_low_container.containers - - sizeof(roaring_bitmap_t))); - for (int32_t i = 0; i < num_containers; i++) { - switch (typecodes[i]) { - case BITSET_CONTAINER_TYPE: { - bitset_container_t *bitset = (bitset_container_t *)arena_alloc( - &arena, sizeof(bitset_container_t)); - bitset->words = bitset_zone; - bitset->cardinality = counts[i] + UINT32_C(1); - rb->high_low_container.containers[i] = bitset; - bitset_zone += BITSET_CONTAINER_SIZE_IN_WORDS; - break; - } - case RUN_CONTAINER_TYPE: { - run_container_t *run = (run_container_t *)arena_alloc( - &arena, sizeof(run_container_t)); - run->capacity = counts[i]; - run->n_runs = counts[i]; - run->runs = run_zone; - rb->high_low_container.containers[i] = run; - run_zone += run->n_runs; - break; - } - case ARRAY_CONTAINER_TYPE: { - array_container_t *array = (array_container_t *)arena_alloc( - &arena, sizeof(array_container_t)); - array->capacity = counts[i] + UINT32_C(1); - array->cardinality = counts[i] + UINT32_C(1); - array->array = array_zone; - rb->high_low_container.containers[i] = array; - array_zone += counts[i] + UINT32_C(1); - break; - } - default: - roaring_free(arena); - return NULL; - } - } - - return rb; -} - -ALLOW_UNALIGNED -roaring_bitmap_t *roaring_bitmap_portable_deserialize_frozen(const char *buf) { - char *start_of_buf = (char *)buf; - uint32_t cookie; - int32_t num_containers; - uint16_t *descriptive_headers; - uint32_t *offset_headers = NULL; - const char *run_flag_bitset = NULL; - bool hasrun = false; - - // deserialize cookie - memcpy(&cookie, buf, sizeof(uint32_t)); - buf += sizeof(uint32_t); - if (cookie == SERIAL_COOKIE_NO_RUNCONTAINER) { - memcpy(&num_containers, buf, sizeof(int32_t)); - buf += sizeof(int32_t); - descriptive_headers = (uint16_t *)buf; - buf += num_containers * 2 * sizeof(uint16_t); - offset_headers = (uint32_t *)buf; - buf += num_containers * sizeof(uint32_t); - } else if ((cookie & 0xFFFF) == SERIAL_COOKIE) { - num_containers = (cookie >> 16) + 1; - hasrun = true; - int32_t run_flag_bitset_size = (num_containers + 7) / 8; - run_flag_bitset = buf; - buf += run_flag_bitset_size; - descriptive_headers = (uint16_t *)buf; - buf += num_containers * 2 * sizeof(uint16_t); - if (num_containers >= NO_OFFSET_THRESHOLD) { - offset_headers = (uint32_t *)buf; - buf += num_containers * sizeof(uint32_t); - } - } else { - return NULL; - } - - // calculate total size for allocation - int32_t num_bitset_containers = 0; - int32_t num_run_containers = 0; - int32_t num_array_containers = 0; - - for (int32_t i = 0; i < num_containers; i++) { - uint16_t tmp; - memcpy(&tmp, descriptive_headers + 2 * i + 1, sizeof(tmp)); - uint32_t cardinality = tmp + 1; - bool isbitmap = (cardinality > DEFAULT_MAX_SIZE); - bool isrun = false; - if (hasrun) { - if ((run_flag_bitset[i / 8] & (1 << (i % 8))) != 0) { - isbitmap = false; - isrun = true; - } - } - - if (isbitmap) { - num_bitset_containers++; - } else if (isrun) { - num_run_containers++; - } else { - num_array_containers++; - } - } - - size_t alloc_size = 0; - alloc_size += sizeof(roaring_bitmap_t); - alloc_size += num_containers * sizeof(container_t *); - alloc_size += num_bitset_containers * sizeof(bitset_container_t); - alloc_size += num_run_containers * sizeof(run_container_t); - alloc_size += num_array_containers * sizeof(array_container_t); - alloc_size += num_containers * sizeof(uint16_t); // keys - alloc_size += num_containers * sizeof(uint8_t); // typecodes - - // allocate bitmap and construct containers - char *arena = (char *)roaring_malloc(alloc_size); - if (arena == NULL) { - return NULL; - } - - roaring_bitmap_t *rb = - (roaring_bitmap_t *)arena_alloc(&arena, sizeof(roaring_bitmap_t)); - rb->high_low_container.flags = ROARING_FLAG_FROZEN; - rb->high_low_container.allocation_size = num_containers; - rb->high_low_container.size = num_containers; - rb->high_low_container.containers = (container_t **)arena_alloc( - &arena, sizeof(container_t *) * num_containers); - - uint16_t *keys = - (uint16_t *)arena_alloc(&arena, num_containers * sizeof(uint16_t)); - uint8_t *typecodes = - (uint8_t *)arena_alloc(&arena, num_containers * sizeof(uint8_t)); - - rb->high_low_container.keys = keys; - rb->high_low_container.typecodes = typecodes; - - for (int32_t i = 0; i < num_containers; i++) { - uint16_t tmp; - memcpy(&tmp, descriptive_headers + 2 * i + 1, sizeof(tmp)); - int32_t cardinality = tmp + 1; - bool isbitmap = (cardinality > DEFAULT_MAX_SIZE); - bool isrun = false; - if (hasrun) { - if ((run_flag_bitset[i / 8] & (1 << (i % 8))) != 0) { - isbitmap = false; - isrun = true; - } - } - - keys[i] = descriptive_headers[2 * i]; - - if (isbitmap) { - typecodes[i] = BITSET_CONTAINER_TYPE; - bitset_container_t *c = (bitset_container_t *)arena_alloc( - &arena, sizeof(bitset_container_t)); - c->cardinality = cardinality; - if (offset_headers != NULL) { - c->words = (uint64_t *)(start_of_buf + offset_headers[i]); - } else { - c->words = (uint64_t *)buf; - buf += BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); - } - rb->high_low_container.containers[i] = c; - } else if (isrun) { - typecodes[i] = RUN_CONTAINER_TYPE; - run_container_t *c = - (run_container_t *)arena_alloc(&arena, sizeof(run_container_t)); - c->capacity = cardinality; - uint16_t n_runs; - if (offset_headers != NULL) { - memcpy(&n_runs, start_of_buf + offset_headers[i], - sizeof(uint16_t)); - c->n_runs = n_runs; - c->runs = (rle16_t *)(start_of_buf + offset_headers[i] + - sizeof(uint16_t)); - } else { - memcpy(&n_runs, buf, sizeof(uint16_t)); - c->n_runs = n_runs; - buf += sizeof(uint16_t); - c->runs = (rle16_t *)buf; - buf += c->n_runs * sizeof(rle16_t); - } - rb->high_low_container.containers[i] = c; - } else { - typecodes[i] = ARRAY_CONTAINER_TYPE; - array_container_t *c = (array_container_t *)arena_alloc( - &arena, sizeof(array_container_t)); - c->cardinality = cardinality; - c->capacity = cardinality; - if (offset_headers != NULL) { - c->array = (uint16_t *)(start_of_buf + offset_headers[i]); - } else { - c->array = (uint16_t *)buf; - buf += cardinality * sizeof(uint16_t); - } - rb->high_low_container.containers[i] = c; - } - } - - return rb; -} - -bool roaring_bitmap_to_bitset(const roaring_bitmap_t *r, bitset_t *bitset) { - uint32_t max_value = roaring_bitmap_maximum(r); - size_t new_array_size = (size_t)(((uint64_t)max_value + 63) / 64); - bool resize_ok = bitset_resize(bitset, new_array_size, true); - if (!resize_ok) { - return false; - } - const roaring_array_t *ra = &r->high_low_container; - for (int i = 0; i < ra->size; ++i) { - uint64_t *words = bitset->array + (ra->keys[i] << 10); - uint8_t type = ra->typecodes[i]; - const container_t *c = ra->containers[i]; - if (type == SHARED_CONTAINER_TYPE) { - c = container_unwrap_shared(c, &type); - } - switch (type) { - case BITSET_CONTAINER_TYPE: { - size_t max_word_index = new_array_size - (ra->keys[i] << 10); - if (max_word_index > 1024) { - max_word_index = 1024; - } - const bitset_container_t *src = const_CAST_bitset(c); - memcpy(words, src->words, max_word_index * sizeof(uint64_t)); - } break; - case ARRAY_CONTAINER_TYPE: { - const array_container_t *src = const_CAST_array(c); - bitset_set_list(words, src->array, src->cardinality); - } break; - case RUN_CONTAINER_TYPE: { - const run_container_t *src = const_CAST_run(c); - for (int32_t rlepos = 0; rlepos < src->n_runs; ++rlepos) { - rle16_t rle = src->runs[rlepos]; - bitset_set_lenrange(words, rle.value, rle.length); - } - } break; - default: - roaring_unreachable; - } - } - return true; -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { -#endif -/* end file src/roaring.c */ -/* begin file src/roaring64.c */ -#include -#include -#include -#include - - -// For serialization / deserialization -// containers.h last to avoid conflict with ROARING_CONTAINER_T. - -#ifdef __cplusplus -using namespace ::roaring::internal; - -extern "C" { -namespace roaring { -namespace api { -#endif - -// TODO: Copy on write. -// TODO: Error on failed allocation. - -typedef struct roaring64_bitmap_s { - art_t art; - uint8_t flags; -} roaring64_bitmap_t; - -// Leaf type of the ART used to keep the high 48 bits of each entry. -typedef struct roaring64_leaf_s { - art_val_t _pad; - uint8_t typecode; - container_t *container; -} roaring64_leaf_t; - -// Alias to make it easier to work with, since it's an internal-only type -// anyway. -typedef struct roaring64_leaf_s leaf_t; - -// Iterator struct to hold iteration state. -typedef struct roaring64_iterator_s { - const roaring64_bitmap_t *parent; - art_iterator_t art_it; - roaring_container_iterator_t container_it; - uint64_t high48; // Key that art_it points to. - - uint64_t value; - bool has_value; - - // If has_value is false, then the iterator is saturated. This field - // indicates the direction of saturation. If true, there are no more values - // in the forward direction. If false, there are no more values in the - // backward direction. - bool saturated_forward; -} roaring64_iterator_t; - -// Splits the given uint64 key into high 48 bit and low 16 bit components. -// Expects high48_out to be of length ART_KEY_BYTES. -static inline uint16_t split_key(uint64_t key, uint8_t high48_out[]) { - uint64_t tmp = croaring_htobe64(key); - memcpy(high48_out, (uint8_t *)(&tmp), ART_KEY_BYTES); - return (uint16_t)key; -} - -// Recombines the high 48 bit and low 16 bit components into a uint64 key. -// Expects high48_out to be of length ART_KEY_BYTES. -static inline uint64_t combine_key(const uint8_t high48[], uint16_t low16) { - uint64_t result = 0; - memcpy((uint8_t *)(&result), high48, ART_KEY_BYTES); - return croaring_be64toh(result) | low16; -} - -static inline uint64_t minimum(uint64_t a, uint64_t b) { - return (a < b) ? a : b; -} - -static inline leaf_t *create_leaf(container_t *container, uint8_t typecode) { - leaf_t *leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t)); - leaf->container = container; - leaf->typecode = typecode; - return leaf; -} - -static inline leaf_t *copy_leaf_container(const leaf_t *leaf) { - leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t)); - result_leaf->typecode = leaf->typecode; - // get_copy_of_container modifies the typecode passed in. - result_leaf->container = get_copy_of_container( - leaf->container, &result_leaf->typecode, /*copy_on_write=*/false); - return result_leaf; -} - -static inline void free_leaf(leaf_t *leaf) { roaring_free(leaf); } - -static inline int compare_high48(art_key_chunk_t key1[], - art_key_chunk_t key2[]) { - return art_compare_keys(key1, key2); -} - -static inline bool roaring64_iterator_init_at_leaf_first( - roaring64_iterator_t *it) { - it->high48 = combine_key(it->art_it.key, 0); - leaf_t *leaf = (leaf_t *)it->art_it.value; - uint16_t low16 = 0; - it->container_it = - container_init_iterator(leaf->container, leaf->typecode, &low16); - it->value = it->high48 | low16; - return (it->has_value = true); -} - -static inline bool roaring64_iterator_init_at_leaf_last( - roaring64_iterator_t *it) { - it->high48 = combine_key(it->art_it.key, 0); - leaf_t *leaf = (leaf_t *)it->art_it.value; - uint16_t low16 = 0; - it->container_it = - container_init_iterator_last(leaf->container, leaf->typecode, &low16); - it->value = it->high48 | low16; - return (it->has_value = true); -} - -static inline roaring64_iterator_t *roaring64_iterator_init_at( - const roaring64_bitmap_t *r, roaring64_iterator_t *it, bool first) { - it->parent = r; - it->art_it = art_init_iterator(&r->art, first); - it->has_value = it->art_it.value != NULL; - if (it->has_value) { - if (first) { - roaring64_iterator_init_at_leaf_first(it); - } else { - roaring64_iterator_init_at_leaf_last(it); - } - } else { - it->saturated_forward = first; - } - return it; -} - -roaring64_bitmap_t *roaring64_bitmap_create(void) { - roaring64_bitmap_t *r = - (roaring64_bitmap_t *)roaring_malloc(sizeof(roaring64_bitmap_t)); - r->art.root = NULL; - r->flags = 0; - return r; -} - -void roaring64_bitmap_free(roaring64_bitmap_t *r) { - art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); - while (it.value != NULL) { - leaf_t *leaf = (leaf_t *)it.value; - container_free(leaf->container, leaf->typecode); - free_leaf(leaf); - art_iterator_next(&it); - } - art_free(&r->art); - roaring_free(r); -} - -roaring64_bitmap_t *roaring64_bitmap_copy(const roaring64_bitmap_t *r) { - roaring64_bitmap_t *result = roaring64_bitmap_create(); - - art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); - while (it.value != NULL) { - leaf_t *leaf = (leaf_t *)it.value; - uint8_t result_typecode = leaf->typecode; - container_t *result_container = get_copy_of_container( - leaf->container, &result_typecode, /*copy_on_write=*/false); - leaf_t *result_leaf = create_leaf(result_container, result_typecode); - art_insert(&result->art, it.key, (art_val_t *)result_leaf); - art_iterator_next(&it); - } - return result; -} - -roaring64_bitmap_t *roaring64_bitmap_from_range(uint64_t min, uint64_t max, - uint64_t step) { - if (step == 0 || max <= min) { - return NULL; - } - roaring64_bitmap_t *r = roaring64_bitmap_create(); - if (step >= (1 << 16)) { - // Only one value per container. - for (uint64_t value = min; value < max; value += step) { - roaring64_bitmap_add(r, value); - if (value > UINT64_MAX - step) { - break; - } - } - return r; - } - do { - uint64_t high_bits = min & 0xFFFFFFFFFFFF0000; - uint16_t container_min = min & 0xFFFF; - uint32_t container_max = (uint32_t)minimum(max - high_bits, 1 << 16); - - uint8_t typecode; - container_t *container = container_from_range( - &typecode, container_min, container_max, (uint16_t)step); - - uint8_t high48[ART_KEY_BYTES]; - split_key(min, high48); - leaf_t *leaf = create_leaf(container, typecode); - art_insert(&r->art, high48, (art_val_t *)leaf); - - uint64_t gap = container_max - container_min + step - 1; - uint64_t increment = gap - (gap % step); - if (min > UINT64_MAX - increment) { - break; - } - min += increment; - } while (min < max); - return r; -} - -roaring64_bitmap_t *roaring64_bitmap_of_ptr(size_t n_args, - const uint64_t *vals) { - roaring64_bitmap_t *r = roaring64_bitmap_create(); - roaring64_bitmap_add_many(r, n_args, vals); - return r; -} - -roaring64_bitmap_t *roaring64_bitmap_of(size_t n_args, ...) { - roaring64_bitmap_t *r = roaring64_bitmap_create(); - roaring64_bulk_context_t context = {0}; - va_list ap; - va_start(ap, n_args); - for (size_t i = 0; i < n_args; i++) { - uint64_t val = va_arg(ap, uint64_t); - roaring64_bitmap_add_bulk(r, &context, val); - } - va_end(ap); - return r; -} - -static inline leaf_t *containerptr_roaring64_bitmap_add(roaring64_bitmap_t *r, - uint8_t *high48, - uint16_t low16, - leaf_t *leaf) { - if (leaf != NULL) { - uint8_t typecode2; - container_t *container2 = - container_add(leaf->container, low16, leaf->typecode, &typecode2); - if (container2 != leaf->container) { - container_free(leaf->container, leaf->typecode); - leaf->container = container2; - leaf->typecode = typecode2; - } - return leaf; - } else { - array_container_t *ac = array_container_create(); - uint8_t typecode; - container_t *container = - container_add(ac, low16, ARRAY_CONTAINER_TYPE, &typecode); - assert(ac == container); - leaf = create_leaf(container, typecode); - art_insert(&r->art, high48, (art_val_t *)leaf); - return leaf; - } -} - -void roaring64_bitmap_add(roaring64_bitmap_t *r, uint64_t val) { - uint8_t high48[ART_KEY_BYTES]; - uint16_t low16 = split_key(val, high48); - leaf_t *leaf = (leaf_t *)art_find(&r->art, high48); - containerptr_roaring64_bitmap_add(r, high48, low16, leaf); -} - -bool roaring64_bitmap_add_checked(roaring64_bitmap_t *r, uint64_t val) { - uint8_t high48[ART_KEY_BYTES]; - uint16_t low16 = split_key(val, high48); - leaf_t *leaf = (leaf_t *)art_find(&r->art, high48); - - int old_cardinality = 0; - if (leaf != NULL) { - old_cardinality = - container_get_cardinality(leaf->container, leaf->typecode); - } - leaf = containerptr_roaring64_bitmap_add(r, high48, low16, leaf); - int new_cardinality = - container_get_cardinality(leaf->container, leaf->typecode); - return old_cardinality != new_cardinality; -} - -void roaring64_bitmap_add_bulk(roaring64_bitmap_t *r, - roaring64_bulk_context_t *context, - uint64_t val) { - uint8_t high48[ART_KEY_BYTES]; - uint16_t low16 = split_key(val, high48); - if (context->leaf != NULL && - compare_high48(context->high_bytes, high48) == 0) { - // We're at a container with the correct high bits. - uint8_t typecode2; - container_t *container2 = - container_add(context->leaf->container, low16, - context->leaf->typecode, &typecode2); - if (container2 != context->leaf->container) { - container_free(context->leaf->container, context->leaf->typecode); - context->leaf->container = container2; - context->leaf->typecode = typecode2; - } - } else { - // We're not positioned anywhere yet or the high bits of the key - // differ. - leaf_t *leaf = (leaf_t *)art_find(&r->art, high48); - context->leaf = - containerptr_roaring64_bitmap_add(r, high48, low16, leaf); - memcpy(context->high_bytes, high48, ART_KEY_BYTES); - } -} - -void roaring64_bitmap_add_many(roaring64_bitmap_t *r, size_t n_args, - const uint64_t *vals) { - if (n_args == 0) { - return; - } - const uint64_t *end = vals + n_args; - roaring64_bulk_context_t context = {0}; - for (const uint64_t *current_val = vals; current_val != end; - current_val++) { - roaring64_bitmap_add_bulk(r, &context, *current_val); - } -} - -static inline void add_range_closed_at(art_t *art, uint8_t *high48, - uint16_t min, uint16_t max) { - leaf_t *leaf = (leaf_t *)art_find(art, high48); - if (leaf != NULL) { - uint8_t typecode2; - container_t *container2 = container_add_range( - leaf->container, leaf->typecode, min, max, &typecode2); - if (container2 != leaf->container) { - container_free(leaf->container, leaf->typecode); - leaf->container = container2; - leaf->typecode = typecode2; - } - return; - } - uint8_t typecode; - // container_add_range is inclusive, but `container_range_of_ones` is - // exclusive. - container_t *container = container_range_of_ones(min, max + 1, &typecode); - leaf = create_leaf(container, typecode); - art_insert(art, high48, (art_val_t *)leaf); -} - -void roaring64_bitmap_add_range(roaring64_bitmap_t *r, uint64_t min, - uint64_t max) { - if (min >= max) { - return; - } - roaring64_bitmap_add_range_closed(r, min, max - 1); -} - -void roaring64_bitmap_add_range_closed(roaring64_bitmap_t *r, uint64_t min, - uint64_t max) { - if (min > max) { - return; - } - - art_t *art = &r->art; - uint8_t min_high48[ART_KEY_BYTES]; - uint16_t min_low16 = split_key(min, min_high48); - uint8_t max_high48[ART_KEY_BYTES]; - uint16_t max_low16 = split_key(max, max_high48); - if (compare_high48(min_high48, max_high48) == 0) { - // Only populate range within one container. - add_range_closed_at(art, min_high48, min_low16, max_low16); - return; - } - - // Populate a range across containers. Fill intermediate containers - // entirely. - add_range_closed_at(art, min_high48, min_low16, 0xffff); - uint64_t min_high_bits = min >> 16; - uint64_t max_high_bits = max >> 16; - for (uint64_t current = min_high_bits + 1; current < max_high_bits; - ++current) { - uint8_t current_high48[ART_KEY_BYTES]; - split_key(current << 16, current_high48); - add_range_closed_at(art, current_high48, 0, 0xffff); - } - add_range_closed_at(art, max_high48, 0, max_low16); -} - -bool roaring64_bitmap_contains(const roaring64_bitmap_t *r, uint64_t val) { - uint8_t high48[ART_KEY_BYTES]; - uint16_t low16 = split_key(val, high48); - leaf_t *leaf = (leaf_t *)art_find(&r->art, high48); - if (leaf != NULL) { - return container_contains(leaf->container, low16, leaf->typecode); - } - return false; -} - -bool roaring64_bitmap_contains_range(const roaring64_bitmap_t *r, uint64_t min, - uint64_t max) { - if (min >= max) { - return true; - } - - uint8_t min_high48[ART_KEY_BYTES]; - uint16_t min_low16 = split_key(min, min_high48); - uint8_t max_high48[ART_KEY_BYTES]; - uint16_t max_low16 = split_key(max, max_high48); - uint64_t max_high48_bits = (max - 1) & 0xFFFFFFFFFFFF0000; // Inclusive - - art_iterator_t it = art_lower_bound(&r->art, min_high48); - if (it.value == NULL || combine_key(it.key, 0) > min) { - return false; - } - uint64_t prev_high48_bits = min & 0xFFFFFFFFFFFF0000; - while (it.value != NULL) { - uint64_t current_high48_bits = combine_key(it.key, 0); - if (current_high48_bits > max_high48_bits) { - // We've passed the end of the range with all containers containing - // the range. - return true; - } - if (current_high48_bits - prev_high48_bits > 0x10000) { - // There is a gap in the iterator that falls in the range. - return false; - } - - leaf_t *leaf = (leaf_t *)it.value; - uint32_t container_min = 0; - if (compare_high48(it.key, min_high48) == 0) { - container_min = min_low16; - } - uint32_t container_max = 0xFFFF + 1; // Exclusive - if (compare_high48(it.key, max_high48) == 0) { - container_max = max_low16; - } - - // For the first and last containers we use container_contains_range, - // for the intermediate containers we can use container_is_full. - if (container_min == 0 && container_max == 0xFFFF + 1) { - if (!container_is_full(leaf->container, leaf->typecode)) { - return false; - } - } else if (!container_contains_range(leaf->container, container_min, - container_max, leaf->typecode)) { - return false; - } - prev_high48_bits = current_high48_bits; - art_iterator_next(&it); - } - return prev_high48_bits == max_high48_bits; -} - -bool roaring64_bitmap_contains_bulk(const roaring64_bitmap_t *r, - roaring64_bulk_context_t *context, - uint64_t val) { - uint8_t high48[ART_KEY_BYTES]; - uint16_t low16 = split_key(val, high48); - - if (context->leaf == NULL || context->high_bytes != high48) { - // We're not positioned anywhere yet or the high bits of the key - // differ. - leaf_t *leaf = (leaf_t *)art_find(&r->art, high48); - if (leaf == NULL) { - return false; - } - context->leaf = leaf; - memcpy(context->high_bytes, high48, ART_KEY_BYTES); - } - return container_contains(context->leaf->container, low16, - context->leaf->typecode); -} - -bool roaring64_bitmap_select(const roaring64_bitmap_t *r, uint64_t rank, - uint64_t *element) { - art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); - uint64_t start_rank = 0; - while (it.value != NULL) { - leaf_t *leaf = (leaf_t *)it.value; - uint64_t cardinality = - container_get_cardinality(leaf->container, leaf->typecode); - if (start_rank + cardinality > rank) { - uint32_t uint32_start = 0; - uint32_t uint32_rank = rank - start_rank; - uint32_t uint32_element = 0; - if (container_select(leaf->container, leaf->typecode, &uint32_start, - uint32_rank, &uint32_element)) { - *element = combine_key(it.key, (uint16_t)uint32_element); - return true; - } - return false; - } - start_rank += cardinality; - art_iterator_next(&it); - } - return false; -} - -uint64_t roaring64_bitmap_rank(const roaring64_bitmap_t *r, uint64_t val) { - uint8_t high48[ART_KEY_BYTES]; - uint16_t low16 = split_key(val, high48); - - art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); - uint64_t rank = 0; - while (it.value != NULL) { - leaf_t *leaf = (leaf_t *)it.value; - int compare_result = compare_high48(it.key, high48); - if (compare_result < 0) { - rank += container_get_cardinality(leaf->container, leaf->typecode); - } else if (compare_result == 0) { - return rank + - container_rank(leaf->container, leaf->typecode, low16); - } else { - return rank; - } - art_iterator_next(&it); - } - return rank; -} - -bool roaring64_bitmap_get_index(const roaring64_bitmap_t *r, uint64_t val, - uint64_t *out_index) { - uint8_t high48[ART_KEY_BYTES]; - uint16_t low16 = split_key(val, high48); - - art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); - uint64_t index = 0; - while (it.value != NULL) { - leaf_t *leaf = (leaf_t *)it.value; - int compare_result = compare_high48(it.key, high48); - if (compare_result < 0) { - index += container_get_cardinality(leaf->container, leaf->typecode); - } else if (compare_result == 0) { - int index16 = - container_get_index(leaf->container, leaf->typecode, low16); - if (index16 < 0) { - return false; - } - *out_index = index + index16; - return true; - } else { - return false; - } - art_iterator_next(&it); - } - return false; -} - -static inline leaf_t *containerptr_roaring64_bitmap_remove( - roaring64_bitmap_t *r, uint8_t *high48, uint16_t low16, leaf_t *leaf) { - if (leaf == NULL) { - return NULL; - } - - container_t *container = leaf->container; - uint8_t typecode = leaf->typecode; - uint8_t typecode2; - container_t *container2 = - container_remove(container, low16, typecode, &typecode2); - if (container2 != container) { - container_free(container, typecode); - leaf->container = container2; - leaf->typecode = typecode2; - } - if (!container_nonzero_cardinality(container2, typecode2)) { - container_free(container2, typecode2); - leaf = (leaf_t *)art_erase(&r->art, high48); - if (leaf != NULL) { - free_leaf(leaf); - } - return NULL; - } - return leaf; -} - -void roaring64_bitmap_remove(roaring64_bitmap_t *r, uint64_t val) { - art_t *art = &r->art; - uint8_t high48[ART_KEY_BYTES]; - uint16_t low16 = split_key(val, high48); - - leaf_t *leaf = (leaf_t *)art_find(art, high48); - containerptr_roaring64_bitmap_remove(r, high48, low16, leaf); -} - -bool roaring64_bitmap_remove_checked(roaring64_bitmap_t *r, uint64_t val) { - art_t *art = &r->art; - uint8_t high48[ART_KEY_BYTES]; - uint16_t low16 = split_key(val, high48); - leaf_t *leaf = (leaf_t *)art_find(art, high48); - - if (leaf == NULL) { - return false; - } - int old_cardinality = - container_get_cardinality(leaf->container, leaf->typecode); - leaf = containerptr_roaring64_bitmap_remove(r, high48, low16, leaf); - if (leaf == NULL) { - return true; - } - int new_cardinality = - container_get_cardinality(leaf->container, leaf->typecode); - return new_cardinality != old_cardinality; -} - -void roaring64_bitmap_remove_bulk(roaring64_bitmap_t *r, - roaring64_bulk_context_t *context, - uint64_t val) { - art_t *art = &r->art; - uint8_t high48[ART_KEY_BYTES]; - uint16_t low16 = split_key(val, high48); - if (context->leaf != NULL && - compare_high48(context->high_bytes, high48) == 0) { - // We're at a container with the correct high bits. - uint8_t typecode2; - container_t *container2 = - container_remove(context->leaf->container, low16, - context->leaf->typecode, &typecode2); - if (container2 != context->leaf->container) { - container_free(context->leaf->container, context->leaf->typecode); - context->leaf->container = container2; - context->leaf->typecode = typecode2; - } - if (!container_nonzero_cardinality(container2, typecode2)) { - leaf_t *leaf = (leaf_t *)art_erase(art, high48); - container_free(container2, typecode2); - free_leaf(leaf); - } - } else { - // We're not positioned anywhere yet or the high bits of the key - // differ. - leaf_t *leaf = (leaf_t *)art_find(art, high48); - context->leaf = - containerptr_roaring64_bitmap_remove(r, high48, low16, leaf); - memcpy(context->high_bytes, high48, ART_KEY_BYTES); - } -} - -void roaring64_bitmap_remove_many(roaring64_bitmap_t *r, size_t n_args, - const uint64_t *vals) { - if (n_args == 0) { - return; - } - const uint64_t *end = vals + n_args; - roaring64_bulk_context_t context = {0}; - for (const uint64_t *current_val = vals; current_val != end; - current_val++) { - roaring64_bitmap_remove_bulk(r, &context, *current_val); - } -} - -static inline void remove_range_closed_at(art_t *art, uint8_t *high48, - uint16_t min, uint16_t max) { - leaf_t *leaf = (leaf_t *)art_find(art, high48); - if (leaf == NULL) { - return; - } - uint8_t typecode2; - container_t *container2 = container_remove_range( - leaf->container, leaf->typecode, min, max, &typecode2); - if (container2 != leaf->container) { - container_free(leaf->container, leaf->typecode); - if (container2 != NULL) { - leaf->container = container2; - leaf->typecode = typecode2; - } else { - art_erase(art, high48); - free_leaf(leaf); - } - } -} - -void roaring64_bitmap_remove_range(roaring64_bitmap_t *r, uint64_t min, - uint64_t max) { - if (min >= max) { - return; - } - roaring64_bitmap_remove_range_closed(r, min, max - 1); -} - -void roaring64_bitmap_remove_range_closed(roaring64_bitmap_t *r, uint64_t min, - uint64_t max) { - if (min > max) { - return; - } - - art_t *art = &r->art; - uint8_t min_high48[ART_KEY_BYTES]; - uint16_t min_low16 = split_key(min, min_high48); - uint8_t max_high48[ART_KEY_BYTES]; - uint16_t max_low16 = split_key(max, max_high48); - if (compare_high48(min_high48, max_high48) == 0) { - // Only remove a range within one container. - remove_range_closed_at(art, min_high48, min_low16, max_low16); - return; - } - - // Remove a range across containers. Remove intermediate containers - // entirely. - remove_range_closed_at(art, min_high48, min_low16, 0xffff); - - art_iterator_t it = art_upper_bound(art, min_high48); - while (it.value != NULL && art_compare_keys(it.key, max_high48) < 0) { - leaf_t *leaf = (leaf_t *)art_iterator_erase(art, &it); - container_free(leaf->container, leaf->typecode); - free_leaf(leaf); - } - remove_range_closed_at(art, max_high48, 0, max_low16); -} - -uint64_t roaring64_bitmap_get_cardinality(const roaring64_bitmap_t *r) { - art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); - uint64_t cardinality = 0; - while (it.value != NULL) { - leaf_t *leaf = (leaf_t *)it.value; - cardinality += - container_get_cardinality(leaf->container, leaf->typecode); - art_iterator_next(&it); - } - return cardinality; -} - -uint64_t roaring64_bitmap_range_cardinality(const roaring64_bitmap_t *r, - uint64_t min, uint64_t max) { - if (min >= max) { - return 0; - } - max--; // A closed range is easier to work with. - - uint64_t cardinality = 0; - uint8_t min_high48[ART_KEY_BYTES]; - uint16_t min_low16 = split_key(min, min_high48); - uint8_t max_high48[ART_KEY_BYTES]; - uint16_t max_low16 = split_key(max, max_high48); - - art_iterator_t it = art_lower_bound(&r->art, min_high48); - while (it.value != NULL) { - int max_compare_result = compare_high48(it.key, max_high48); - if (max_compare_result > 0) { - // We're outside the range. - break; - } - - leaf_t *leaf = (leaf_t *)it.value; - if (max_compare_result == 0) { - // We're at the max high key, add only the range up to the low - // 16 bits of max. - cardinality += - container_rank(leaf->container, leaf->typecode, max_low16); - } else { - // We're not yet at the max high key, add the full container - // range. - cardinality += - container_get_cardinality(leaf->container, leaf->typecode); - } - if (compare_high48(it.key, min_high48) == 0 && min_low16 > 0) { - // We're at the min high key, remove the range up to the low 16 - // bits of min. - cardinality -= - container_rank(leaf->container, leaf->typecode, min_low16 - 1); - } - art_iterator_next(&it); - } - return cardinality; -} - -bool roaring64_bitmap_is_empty(const roaring64_bitmap_t *r) { - return art_is_empty(&r->art); -} - -uint64_t roaring64_bitmap_minimum(const roaring64_bitmap_t *r) { - art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); - if (it.value == NULL) { - return UINT64_MAX; - } - leaf_t *leaf = (leaf_t *)it.value; - return combine_key(it.key, - container_minimum(leaf->container, leaf->typecode)); -} - -uint64_t roaring64_bitmap_maximum(const roaring64_bitmap_t *r) { - art_iterator_t it = art_init_iterator(&r->art, /*first=*/false); - if (it.value == NULL) { - return 0; - } - leaf_t *leaf = (leaf_t *)it.value; - return combine_key(it.key, - container_maximum(leaf->container, leaf->typecode)); -} - -bool roaring64_bitmap_run_optimize(roaring64_bitmap_t *r) { - art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); - bool has_run_container = false; - while (it.value != NULL) { - leaf_t *leaf = (leaf_t *)it.value; - uint8_t new_typecode; - // We don't need to free the existing container if a new one was - // created, convert_run_optimize does that internally. - leaf->container = convert_run_optimize(leaf->container, leaf->typecode, - &new_typecode); - leaf->typecode = new_typecode; - has_run_container |= new_typecode == RUN_CONTAINER_TYPE; - art_iterator_next(&it); - } - return has_run_container; -} - -static bool roaring64_leaf_internal_validate(const art_val_t *val, - const char **reason) { - leaf_t *leaf = (leaf_t *)val; - return container_internal_validate(leaf->container, leaf->typecode, reason); -} - -bool roaring64_bitmap_internal_validate(const roaring64_bitmap_t *r, - const char **reason) { - return art_internal_validate(&r->art, reason, - roaring64_leaf_internal_validate); -} - -bool roaring64_bitmap_equals(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); - art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true); - - while (it1.value != NULL && it2.value != NULL) { - if (compare_high48(it1.key, it2.key) != 0) { - return false; - } - leaf_t *leaf1 = (leaf_t *)it1.value; - leaf_t *leaf2 = (leaf_t *)it2.value; - if (!container_equals(leaf1->container, leaf1->typecode, - leaf2->container, leaf2->typecode)) { - return false; - } - art_iterator_next(&it1); - art_iterator_next(&it2); - } - return it1.value == NULL && it2.value == NULL; -} - -bool roaring64_bitmap_is_subset(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); - art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true); - - while (it1.value != NULL) { - bool it2_present = it2.value != NULL; - - int compare_result = 0; - if (it2_present) { - compare_result = compare_high48(it1.key, it2.key); - if (compare_result == 0) { - leaf_t *leaf1 = (leaf_t *)it1.value; - leaf_t *leaf2 = (leaf_t *)it2.value; - if (!container_is_subset(leaf1->container, leaf1->typecode, - leaf2->container, leaf2->typecode)) { - return false; - } - art_iterator_next(&it1); - art_iterator_next(&it2); - } - } - if (!it2_present || compare_result < 0) { - return false; - } else if (compare_result > 0) { - art_iterator_lower_bound(&it2, it1.key); - } - } - return true; -} - -bool roaring64_bitmap_is_strict_subset(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - return roaring64_bitmap_get_cardinality(r1) < - roaring64_bitmap_get_cardinality(r2) && - roaring64_bitmap_is_subset(r1, r2); -} - -roaring64_bitmap_t *roaring64_bitmap_and(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - roaring64_bitmap_t *result = roaring64_bitmap_create(); - - art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); - art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true); - - while (it1.value != NULL && it2.value != NULL) { - // Cases: - // 1. it1 < it2 -> it1++ - // 2. it1 == it1 -> output it1 & it2, it1++, it2++ - // 3. it1 > it2 -> it2++ - int compare_result = compare_high48(it1.key, it2.key); - if (compare_result == 0) { - // Case 2: iterators at the same high key position. - leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t)); - leaf_t *leaf1 = (leaf_t *)it1.value; - leaf_t *leaf2 = (leaf_t *)it2.value; - result_leaf->container = container_and( - leaf1->container, leaf1->typecode, leaf2->container, - leaf2->typecode, &result_leaf->typecode); - - if (container_nonzero_cardinality(result_leaf->container, - result_leaf->typecode)) { - art_insert(&result->art, it1.key, (art_val_t *)result_leaf); - } else { - container_free(result_leaf->container, result_leaf->typecode); - free_leaf(result_leaf); - } - art_iterator_next(&it1); - art_iterator_next(&it2); - } else if (compare_result < 0) { - // Case 1: it1 is before it2. - art_iterator_lower_bound(&it1, it2.key); - } else { - // Case 3: it2 is before it1. - art_iterator_lower_bound(&it2, it1.key); - } - } - return result; -} - -uint64_t roaring64_bitmap_and_cardinality(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - uint64_t result = 0; - - art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); - art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true); - - while (it1.value != NULL && it2.value != NULL) { - // Cases: - // 1. it1 < it2 -> it1++ - // 2. it1 == it1 -> output cardinaltiy it1 & it2, it1++, it2++ - // 3. it1 > it2 -> it2++ - int compare_result = compare_high48(it1.key, it2.key); - if (compare_result == 0) { - // Case 2: iterators at the same high key position. - leaf_t *leaf1 = (leaf_t *)it1.value; - leaf_t *leaf2 = (leaf_t *)it2.value; - result += - container_and_cardinality(leaf1->container, leaf1->typecode, - leaf2->container, leaf2->typecode); - art_iterator_next(&it1); - art_iterator_next(&it2); - } else if (compare_result < 0) { - // Case 1: it1 is before it2. - art_iterator_lower_bound(&it1, it2.key); - } else { - // Case 3: it2 is before it1. - art_iterator_lower_bound(&it2, it1.key); - } - } - return result; -} - -// Inplace and (modifies its first argument). -void roaring64_bitmap_and_inplace(roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - if (r1 == r2) { - return; - } - art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); - art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true); - - while (it1.value != NULL) { - // Cases: - // 1. !it2_present -> erase it1 - // 2. it2_present - // a. it1 < it2 -> erase it1 - // b. it1 == it2 -> output it1 & it2, it1++, it2++ - // c. it1 > it2 -> it2++ - bool it2_present = it2.value != NULL; - int compare_result = 0; - if (it2_present) { - compare_result = compare_high48(it1.key, it2.key); - if (compare_result == 0) { - // Case 2a: iterators at the same high key position. - leaf_t *leaf1 = (leaf_t *)it1.value; - leaf_t *leaf2 = (leaf_t *)it2.value; - - // We do the computation "in place" only when c1 is not a - // shared container. Rationale: using a shared container - // safely with in place computation would require making a - // copy and then doing the computation in place which is - // likely less efficient than avoiding in place entirely and - // always generating a new container. - uint8_t typecode2; - container_t *container2; - if (leaf1->typecode == SHARED_CONTAINER_TYPE) { - container2 = container_and( - leaf1->container, leaf1->typecode, leaf2->container, - leaf2->typecode, &typecode2); - } else { - container2 = container_iand( - leaf1->container, leaf1->typecode, leaf2->container, - leaf2->typecode, &typecode2); - } - - if (container2 != leaf1->container) { - container_free(leaf1->container, leaf1->typecode); - leaf1->container = container2; - leaf1->typecode = typecode2; - } - if (!container_nonzero_cardinality(container2, typecode2)) { - container_free(container2, typecode2); - art_iterator_erase(&r1->art, &it1); - free_leaf(leaf1); - } else { - // Only advance the iterator if we didn't delete the - // leaf, as erasing advances by itself. - art_iterator_next(&it1); - } - art_iterator_next(&it2); - } - } - - if (!it2_present || compare_result < 0) { - // Cases 1 and 3a: it1 is the only iterator or is before it2. - leaf_t *leaf = (leaf_t *)art_iterator_erase(&r1->art, &it1); - assert(leaf != NULL); - container_free(leaf->container, leaf->typecode); - free_leaf(leaf); - } else if (compare_result > 0) { - // Case 2c: it1 is after it2. - art_iterator_lower_bound(&it2, it1.key); - } - } -} - -bool roaring64_bitmap_intersect(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - bool intersect = false; - art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); - art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true); - - while (it1.value != NULL && it2.value != NULL) { - // Cases: - // 1. it1 < it2 -> it1++ - // 2. it1 == it1 -> intersect |= it1 & it2, it1++, it2++ - // 3. it1 > it2 -> it2++ - int compare_result = compare_high48(it1.key, it2.key); - if (compare_result == 0) { - // Case 2: iterators at the same high key position. - leaf_t *leaf1 = (leaf_t *)it1.value; - leaf_t *leaf2 = (leaf_t *)it2.value; - intersect |= container_intersect(leaf1->container, leaf1->typecode, - leaf2->container, leaf2->typecode); - art_iterator_next(&it1); - art_iterator_next(&it2); - } else if (compare_result < 0) { - // Case 1: it1 is before it2. - art_iterator_lower_bound(&it1, it2.key); - } else { - // Case 3: it2 is before it1. - art_iterator_lower_bound(&it2, it1.key); - } - } - return intersect; -} - -bool roaring64_bitmap_intersect_with_range(const roaring64_bitmap_t *r, - uint64_t min, uint64_t max) { - if (min >= max) { - return false; - } - roaring64_iterator_t it; - roaring64_iterator_init_at(r, &it, /*first=*/true); - if (!roaring64_iterator_move_equalorlarger(&it, min)) { - return false; - } - return roaring64_iterator_has_value(&it) && - roaring64_iterator_value(&it) < max; -} - -double roaring64_bitmap_jaccard_index(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - uint64_t c1 = roaring64_bitmap_get_cardinality(r1); - uint64_t c2 = roaring64_bitmap_get_cardinality(r2); - uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2); - return (double)inter / (double)(c1 + c2 - inter); -} - -roaring64_bitmap_t *roaring64_bitmap_or(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - roaring64_bitmap_t *result = roaring64_bitmap_create(); - - art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); - art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true); - - while (it1.value != NULL || it2.value != NULL) { - bool it1_present = it1.value != NULL; - bool it2_present = it2.value != NULL; - - // Cases: - // 1. it1_present && !it2_present -> output it1, it1++ - // 2. !it1_present && it2_present -> output it2, it2++ - // 3. it1_present && it2_present - // a. it1 < it2 -> output it1, it1++ - // b. it1 == it2 -> output it1 | it2, it1++, it2++ - // c. it1 > it2 -> output it2, it2++ - int compare_result = 0; - if (it1_present && it2_present) { - compare_result = compare_high48(it1.key, it2.key); - if (compare_result == 0) { - // Case 3b: iterators at the same high key position. - leaf_t *leaf1 = (leaf_t *)it1.value; - leaf_t *leaf2 = (leaf_t *)it2.value; - leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t)); - result_leaf->container = container_or( - leaf1->container, leaf1->typecode, leaf2->container, - leaf2->typecode, &result_leaf->typecode); - art_insert(&result->art, it1.key, (art_val_t *)result_leaf); - art_iterator_next(&it1); - art_iterator_next(&it2); - } - } - if ((it1_present && !it2_present) || compare_result < 0) { - // Cases 1 and 3a: it1 is the only iterator or is before it2. - leaf_t *result_leaf = copy_leaf_container((leaf_t *)it1.value); - art_insert(&result->art, it1.key, (art_val_t *)result_leaf); - art_iterator_next(&it1); - } else if ((!it1_present && it2_present) || compare_result > 0) { - // Cases 2 and 3c: it2 is the only iterator or is before it1. - leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value); - art_insert(&result->art, it2.key, (art_val_t *)result_leaf); - art_iterator_next(&it2); - } - } - return result; -} - -uint64_t roaring64_bitmap_or_cardinality(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - uint64_t c1 = roaring64_bitmap_get_cardinality(r1); - uint64_t c2 = roaring64_bitmap_get_cardinality(r2); - uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2); - return c1 + c2 - inter; -} - -void roaring64_bitmap_or_inplace(roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - if (r1 == r2) { - return; - } - art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); - art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true); - - while (it1.value != NULL || it2.value != NULL) { - bool it1_present = it1.value != NULL; - bool it2_present = it2.value != NULL; - - // Cases: - // 1. it1_present && !it2_present -> it1++ - // 2. !it1_present && it2_present -> add it2, it2++ - // 3. it1_present && it2_present - // a. it1 < it2 -> it1++ - // b. it1 == it2 -> it1 | it2, it1++, it2++ - // c. it1 > it2 -> add it2, it2++ - int compare_result = 0; - if (it1_present && it2_present) { - compare_result = compare_high48(it1.key, it2.key); - if (compare_result == 0) { - // Case 3b: iterators at the same high key position. - leaf_t *leaf1 = (leaf_t *)it1.value; - leaf_t *leaf2 = (leaf_t *)it2.value; - uint8_t typecode2; - container_t *container2; - if (leaf1->typecode == SHARED_CONTAINER_TYPE) { - container2 = container_or(leaf1->container, leaf1->typecode, - leaf2->container, leaf2->typecode, - &typecode2); - } else { - container2 = container_ior( - leaf1->container, leaf1->typecode, leaf2->container, - leaf2->typecode, &typecode2); - } - if (container2 != leaf1->container) { - container_free(leaf1->container, leaf1->typecode); - leaf1->container = container2; - leaf1->typecode = typecode2; - } - art_iterator_next(&it1); - art_iterator_next(&it2); - } - } - if ((it1_present && !it2_present) || compare_result < 0) { - // Cases 1 and 3a: it1 is the only iterator or is before it2. - art_iterator_next(&it1); - } else if ((!it1_present && it2_present) || compare_result > 0) { - // Cases 2 and 3c: it2 is the only iterator or is before it1. - leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value); - art_iterator_insert(&r1->art, &it1, it2.key, - (art_val_t *)result_leaf); - art_iterator_next(&it2); - } - } -} - -roaring64_bitmap_t *roaring64_bitmap_xor(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - roaring64_bitmap_t *result = roaring64_bitmap_create(); - - art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); - art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true); - - while (it1.value != NULL || it2.value != NULL) { - bool it1_present = it1.value != NULL; - bool it2_present = it2.value != NULL; - - // Cases: - // 1. it1_present && !it2_present -> output it1, it1++ - // 2. !it1_present && it2_present -> output it2, it2++ - // 3. it1_present && it2_present - // a. it1 < it2 -> output it1, it1++ - // b. it1 == it2 -> output it1 ^ it2, it1++, it2++ - // c. it1 > it2 -> output it2, it2++ - int compare_result = 0; - if (it1_present && it2_present) { - compare_result = compare_high48(it1.key, it2.key); - if (compare_result == 0) { - // Case 3b: iterators at the same high key position. - leaf_t *leaf1 = (leaf_t *)it1.value; - leaf_t *leaf2 = (leaf_t *)it2.value; - leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t)); - result_leaf->container = container_xor( - leaf1->container, leaf1->typecode, leaf2->container, - leaf2->typecode, &result_leaf->typecode); - if (container_nonzero_cardinality(result_leaf->container, - result_leaf->typecode)) { - art_insert(&result->art, it1.key, (art_val_t *)result_leaf); - } else { - container_free(result_leaf->container, - result_leaf->typecode); - free_leaf(result_leaf); - } - art_iterator_next(&it1); - art_iterator_next(&it2); - } - } - if ((it1_present && !it2_present) || compare_result < 0) { - // Cases 1 and 3a: it1 is the only iterator or is before it2. - leaf_t *result_leaf = copy_leaf_container((leaf_t *)it1.value); - art_insert(&result->art, it1.key, (art_val_t *)result_leaf); - art_iterator_next(&it1); - } else if ((!it1_present && it2_present) || compare_result > 0) { - // Cases 2 and 3c: it2 is the only iterator or is before it1. - leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value); - art_insert(&result->art, it2.key, (art_val_t *)result_leaf); - art_iterator_next(&it2); - } - } - return result; -} - -uint64_t roaring64_bitmap_xor_cardinality(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - uint64_t c1 = roaring64_bitmap_get_cardinality(r1); - uint64_t c2 = roaring64_bitmap_get_cardinality(r2); - uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2); - return c1 + c2 - 2 * inter; -} - -void roaring64_bitmap_xor_inplace(roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - assert(r1 != r2); - art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); - art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true); - - while (it1.value != NULL || it2.value != NULL) { - bool it1_present = it1.value != NULL; - bool it2_present = it2.value != NULL; - - // Cases: - // 1. it1_present && !it2_present -> it1++ - // 2. !it1_present && it2_present -> add it2, it2++ - // 3. it1_present && it2_present - // a. it1 < it2 -> it1++ - // b. it1 == it2 -> it1 ^ it2, it1++, it2++ - // c. it1 > it2 -> add it2, it2++ - int compare_result = 0; - if (it1_present && it2_present) { - compare_result = compare_high48(it1.key, it2.key); - if (compare_result == 0) { - // Case 3b: iterators at the same high key position. - leaf_t *leaf1 = (leaf_t *)it1.value; - leaf_t *leaf2 = (leaf_t *)it2.value; - container_t *container1 = leaf1->container; - uint8_t typecode1 = leaf1->typecode; - uint8_t typecode2; - container_t *container2; - if (leaf1->typecode == SHARED_CONTAINER_TYPE) { - container2 = container_xor( - leaf1->container, leaf1->typecode, leaf2->container, - leaf2->typecode, &typecode2); - if (container2 != container1) { - // We only free when doing container_xor, not - // container_ixor, as ixor frees the original - // internally. - container_free(container1, typecode1); - } - } else { - container2 = container_ixor( - leaf1->container, leaf1->typecode, leaf2->container, - leaf2->typecode, &typecode2); - } - leaf1->container = container2; - leaf1->typecode = typecode2; - - if (!container_nonzero_cardinality(container2, typecode2)) { - container_free(container2, typecode2); - art_iterator_erase(&r1->art, &it1); - free_leaf(leaf1); - } else { - // Only advance the iterator if we didn't delete the - // leaf, as erasing advances by itself. - art_iterator_next(&it1); - } - art_iterator_next(&it2); - } - } - if ((it1_present && !it2_present) || compare_result < 0) { - // Cases 1 and 3a: it1 is the only iterator or is before it2. - art_iterator_next(&it1); - } else if ((!it1_present && it2_present) || compare_result > 0) { - // Cases 2 and 3c: it2 is the only iterator or is before it1. - leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value); - if (it1_present) { - art_iterator_insert(&r1->art, &it1, it2.key, - (art_val_t *)result_leaf); - art_iterator_next(&it1); - } else { - art_insert(&r1->art, it2.key, (art_val_t *)result_leaf); - } - art_iterator_next(&it2); - } - } -} - -roaring64_bitmap_t *roaring64_bitmap_andnot(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - roaring64_bitmap_t *result = roaring64_bitmap_create(); - - art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); - art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true); - - while (it1.value != NULL) { - // Cases: - // 1. it1_present && !it2_present -> output it1, it1++ - // 2. it1_present && it2_present - // a. it1 < it2 -> output it1, it1++ - // b. it1 == it2 -> output it1 - it2, it1++, it2++ - // c. it1 > it2 -> it2++ - bool it2_present = it2.value != NULL; - int compare_result = 0; - if (it2_present) { - compare_result = compare_high48(it1.key, it2.key); - if (compare_result == 0) { - // Case 2b: iterators at the same high key position. - leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t)); - leaf_t *leaf1 = (leaf_t *)it1.value; - leaf_t *leaf2 = (leaf_t *)it2.value; - result_leaf->container = container_andnot( - leaf1->container, leaf1->typecode, leaf2->container, - leaf2->typecode, &result_leaf->typecode); - - if (container_nonzero_cardinality(result_leaf->container, - result_leaf->typecode)) { - art_insert(&result->art, it1.key, (art_val_t *)result_leaf); - } else { - container_free(result_leaf->container, - result_leaf->typecode); - free_leaf(result_leaf); - } - art_iterator_next(&it1); - art_iterator_next(&it2); - } - } - if (!it2_present || compare_result < 0) { - // Cases 1 and 2a: it1 is the only iterator or is before it2. - leaf_t *result_leaf = copy_leaf_container((leaf_t *)it1.value); - art_insert(&result->art, it1.key, (art_val_t *)result_leaf); - art_iterator_next(&it1); - } else if (compare_result > 0) { - // Case 2c: it1 is after it2. - art_iterator_next(&it2); - } - } - return result; -} - -uint64_t roaring64_bitmap_andnot_cardinality(const roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - uint64_t c1 = roaring64_bitmap_get_cardinality(r1); - uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2); - return c1 - inter; -} - -void roaring64_bitmap_andnot_inplace(roaring64_bitmap_t *r1, - const roaring64_bitmap_t *r2) { - art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); - art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true); - - while (it1.value != NULL) { - // Cases: - // 1. it1_present && !it2_present -> it1++ - // 2. it1_present && it2_present - // a. it1 < it2 -> it1++ - // b. it1 == it2 -> it1 - it2, it1++, it2++ - // c. it1 > it2 -> it2++ - bool it2_present = it2.value != NULL; - int compare_result = 0; - if (it2_present) { - compare_result = compare_high48(it1.key, it2.key); - if (compare_result == 0) { - // Case 2b: iterators at the same high key position. - leaf_t *leaf1 = (leaf_t *)it1.value; - leaf_t *leaf2 = (leaf_t *)it2.value; - container_t *container1 = leaf1->container; - uint8_t typecode1 = leaf1->typecode; - uint8_t typecode2; - container_t *container2; - if (leaf1->typecode == SHARED_CONTAINER_TYPE) { - container2 = container_andnot( - leaf1->container, leaf1->typecode, leaf2->container, - leaf2->typecode, &typecode2); - if (container2 != container1) { - // We only free when doing container_andnot, not - // container_iandnot, as iandnot frees the original - // internally. - container_free(container1, typecode1); - } - } else { - container2 = container_iandnot( - leaf1->container, leaf1->typecode, leaf2->container, - leaf2->typecode, &typecode2); - } - if (container2 != container1) { - leaf1->container = container2; - leaf1->typecode = typecode2; - } - - if (!container_nonzero_cardinality(container2, typecode2)) { - container_free(container2, typecode2); - art_iterator_erase(&r1->art, &it1); - free_leaf(leaf1); - } else { - // Only advance the iterator if we didn't delete the - // leaf, as erasing advances by itself. - art_iterator_next(&it1); - } - art_iterator_next(&it2); - } - } - if (!it2_present || compare_result < 0) { - // Cases 1 and 2a: it1 is the only iterator or is before it2. - art_iterator_next(&it1); - } else if (compare_result > 0) { - // Case 2c: it1 is after it2. - art_iterator_next(&it2); - } - } -} - -/** - * Flips the leaf at high48 in the range [min, max), returning a new leaf with a - * new container. If the high48 key is not found in the existing bitmap, a new - * container is created. Returns null if the negation results in an empty range. - */ -static leaf_t *roaring64_flip_leaf(const roaring64_bitmap_t *r, - uint8_t high48[], uint32_t min, - uint32_t max) { - leaf_t *leaf1 = (leaf_t *)art_find(&r->art, high48); - container_t *container2; - uint8_t typecode2; - if (leaf1 == NULL) { - // No container at this key, create a full container. - container2 = container_range_of_ones(min, max, &typecode2); - } else if (min == 0 && max > 0xFFFF) { - // Flip whole container. - container2 = - container_not(leaf1->container, leaf1->typecode, &typecode2); - } else { - // Partially flip a container. - container2 = container_not_range(leaf1->container, leaf1->typecode, min, - max, &typecode2); - } - if (container_nonzero_cardinality(container2, typecode2)) { - return create_leaf(container2, typecode2); - } - container_free(container2, typecode2); - return NULL; -} - -/** - * Flips the leaf at high48 in the range [min, max). If the high48 key is not - * found in the bitmap, a new container is created. Deletes the leaf and - * associated container if the negation results in an empty range. - */ -static void roaring64_flip_leaf_inplace(roaring64_bitmap_t *r, uint8_t high48[], - uint32_t min, uint32_t max) { - leaf_t *leaf = (leaf_t *)art_find(&r->art, high48); - container_t *container2; - uint8_t typecode2; - if (leaf == NULL) { - // No container at this key, insert a full container. - container2 = container_range_of_ones(min, max, &typecode2); - art_insert(&r->art, high48, - (art_val_t *)create_leaf(container2, typecode2)); - return; - } - - if (min == 0 && max > 0xFFFF) { - // Flip whole container. - container2 = - container_inot(leaf->container, leaf->typecode, &typecode2); - } else { - // Partially flip a container. - container2 = container_inot_range(leaf->container, leaf->typecode, min, - max, &typecode2); - } - - leaf->container = container2; - leaf->typecode = typecode2; - - if (!container_nonzero_cardinality(leaf->container, leaf->typecode)) { - art_erase(&r->art, high48); - container_free(leaf->container, leaf->typecode); - free_leaf(leaf); - } -} - -roaring64_bitmap_t *roaring64_bitmap_flip(const roaring64_bitmap_t *r, - uint64_t min, uint64_t max) { - if (min >= max) { - return roaring64_bitmap_copy(r); - } - return roaring64_bitmap_flip_closed(r, min, max - 1); -} - -roaring64_bitmap_t *roaring64_bitmap_flip_closed(const roaring64_bitmap_t *r1, - uint64_t min, uint64_t max) { - if (min > max) { - return roaring64_bitmap_copy(r1); - } - uint8_t min_high48_key[ART_KEY_BYTES]; - uint16_t min_low16 = split_key(min, min_high48_key); - uint8_t max_high48_key[ART_KEY_BYTES]; - uint16_t max_low16 = split_key(max, max_high48_key); - uint64_t min_high48_bits = (min & 0xFFFFFFFFFFFF0000ULL) >> 16; - uint64_t max_high48_bits = (max & 0xFFFFFFFFFFFF0000ULL) >> 16; - - roaring64_bitmap_t *r2 = roaring64_bitmap_create(); - art_iterator_t it = art_init_iterator(&r1->art, /*first=*/true); - - // Copy the containers before min unchanged. - while (it.value != NULL && compare_high48(it.key, min_high48_key) < 0) { - leaf_t *leaf1 = (leaf_t *)it.value; - uint8_t typecode2 = leaf1->typecode; - container_t *container2 = get_copy_of_container( - leaf1->container, &typecode2, /*copy_on_write=*/false); - art_insert(&r2->art, it.key, - (art_val_t *)create_leaf(container2, typecode2)); - art_iterator_next(&it); - } - - // Flip the range (including non-existent containers!) between min and max. - for (uint64_t high48_bits = min_high48_bits; high48_bits <= max_high48_bits; - high48_bits++) { - uint8_t current_high48_key[ART_KEY_BYTES]; - split_key(high48_bits << 16, current_high48_key); - - uint32_t min_container = 0; - if (high48_bits == min_high48_bits) { - min_container = min_low16; - } - uint32_t max_container = 0xFFFF + 1; // Exclusive range. - if (high48_bits == max_high48_bits) { - max_container = max_low16 + 1; // Exclusive. - } - - leaf_t *leaf = roaring64_flip_leaf(r1, current_high48_key, - min_container, max_container); - if (leaf != NULL) { - art_insert(&r2->art, current_high48_key, (art_val_t *)leaf); - } - } - - // Copy the containers after max unchanged. - it = art_upper_bound(&r1->art, max_high48_key); - while (it.value != NULL) { - leaf_t *leaf1 = (leaf_t *)it.value; - uint8_t typecode2 = leaf1->typecode; - container_t *container2 = get_copy_of_container( - leaf1->container, &typecode2, /*copy_on_write=*/false); - art_insert(&r2->art, it.key, - (art_val_t *)create_leaf(container2, typecode2)); - art_iterator_next(&it); - } - - return r2; -} - -void roaring64_bitmap_flip_inplace(roaring64_bitmap_t *r, uint64_t min, - uint64_t max) { - if (min >= max) { - return; - } - roaring64_bitmap_flip_closed_inplace(r, min, max - 1); -} - -void roaring64_bitmap_flip_closed_inplace(roaring64_bitmap_t *r, uint64_t min, - uint64_t max) { - if (min > max) { - return; - } - uint16_t min_low16 = (uint16_t)min; - uint16_t max_low16 = (uint16_t)max; - uint64_t min_high48_bits = (min & 0xFFFFFFFFFFFF0000ULL) >> 16; - uint64_t max_high48_bits = (max & 0xFFFFFFFFFFFF0000ULL) >> 16; - - // Flip the range (including non-existent containers!) between min and max. - for (uint64_t high48_bits = min_high48_bits; high48_bits <= max_high48_bits; - high48_bits++) { - uint8_t current_high48_key[ART_KEY_BYTES]; - split_key(high48_bits << 16, current_high48_key); - - uint32_t min_container = 0; - if (high48_bits == min_high48_bits) { - min_container = min_low16; - } - uint32_t max_container = 0xFFFF + 1; // Exclusive range. - if (high48_bits == max_high48_bits) { - max_container = max_low16 + 1; // Exclusive. - } - - roaring64_flip_leaf_inplace(r, current_high48_key, min_container, - max_container); - } -} - -// Returns the number of distinct high 32-bit entries in the bitmap. -static inline uint64_t count_high32(const roaring64_bitmap_t *r) { - art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); - uint64_t high32_count = 0; - uint32_t prev_high32 = 0; - while (it.value != NULL) { - uint32_t current_high32 = (uint32_t)(combine_key(it.key, 0) >> 32); - if (high32_count == 0 || prev_high32 != current_high32) { - high32_count++; - prev_high32 = current_high32; - } - art_iterator_next(&it); - } - return high32_count; -} - -// Frees the (32-bit!) bitmap without freeing the containers. -static inline void roaring_bitmap_free_without_containers(roaring_bitmap_t *r) { - ra_clear_without_containers(&r->high_low_container); - roaring_free(r); -} - -size_t roaring64_bitmap_portable_size_in_bytes(const roaring64_bitmap_t *r) { - // https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations - size_t size = 0; - - // Write as uint64 the distinct number of "buckets", where a bucket is - // defined as the most significant 32 bits of an element. - uint64_t high32_count; - size += sizeof(high32_count); - - art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); - uint32_t prev_high32 = 0; - roaring_bitmap_t *bitmap32 = NULL; - - // Iterate through buckets ordered by increasing keys. - while (it.value != NULL) { - uint32_t current_high32 = (uint32_t)(combine_key(it.key, 0) >> 32); - if (bitmap32 == NULL || prev_high32 != current_high32) { - if (bitmap32 != NULL) { - // Write as uint32 the most significant 32 bits of the bucket. - size += sizeof(prev_high32); - - // Write the 32-bit Roaring bitmaps representing the least - // significant bits of a set of elements. - size += roaring_bitmap_portable_size_in_bytes(bitmap32); - roaring_bitmap_free_without_containers(bitmap32); - } - - // Start a new 32-bit bitmap with the current high 32 bits. - art_iterator_t it2 = it; - uint32_t containers_with_high32 = 0; - while (it2.value != NULL && (uint32_t)(combine_key(it2.key, 0) >> - 32) == current_high32) { - containers_with_high32++; - art_iterator_next(&it2); - } - bitmap32 = - roaring_bitmap_create_with_capacity(containers_with_high32); - - prev_high32 = current_high32; - } - leaf_t *leaf = (leaf_t *)it.value; - ra_append(&bitmap32->high_low_container, - (uint16_t)(current_high32 >> 16), leaf->container, - leaf->typecode); - art_iterator_next(&it); - } - - if (bitmap32 != NULL) { - // Write as uint32 the most significant 32 bits of the bucket. - size += sizeof(prev_high32); - - // Write the 32-bit Roaring bitmaps representing the least - // significant bits of a set of elements. - size += roaring_bitmap_portable_size_in_bytes(bitmap32); - roaring_bitmap_free_without_containers(bitmap32); - } - - return size; -} - -size_t roaring64_bitmap_portable_serialize(const roaring64_bitmap_t *r, - char *buf) { - // https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations - if (buf == NULL) { - return 0; - } - const char *initial_buf = buf; - - // Write as uint64 the distinct number of "buckets", where a bucket is - // defined as the most significant 32 bits of an element. - uint64_t high32_count = count_high32(r); - memcpy(buf, &high32_count, sizeof(high32_count)); - buf += sizeof(high32_count); - - art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); - uint32_t prev_high32 = 0; - roaring_bitmap_t *bitmap32 = NULL; - - // Iterate through buckets ordered by increasing keys. - while (it.value != NULL) { - uint64_t current_high48 = combine_key(it.key, 0); - uint32_t current_high32 = (uint32_t)(current_high48 >> 32); - if (bitmap32 == NULL || prev_high32 != current_high32) { - if (bitmap32 != NULL) { - // Write as uint32 the most significant 32 bits of the bucket. - memcpy(buf, &prev_high32, sizeof(prev_high32)); - buf += sizeof(prev_high32); - - // Write the 32-bit Roaring bitmaps representing the least - // significant bits of a set of elements. - buf += roaring_bitmap_portable_serialize(bitmap32, buf); - roaring_bitmap_free_without_containers(bitmap32); - } - - // Start a new 32-bit bitmap with the current high 32 bits. - art_iterator_t it2 = it; - uint32_t containers_with_high32 = 0; - while (it2.value != NULL && - (uint32_t)combine_key(it2.key, 0) == current_high32) { - containers_with_high32++; - art_iterator_next(&it2); - } - bitmap32 = - roaring_bitmap_create_with_capacity(containers_with_high32); - - prev_high32 = current_high32; - } - leaf_t *leaf = (leaf_t *)it.value; - ra_append(&bitmap32->high_low_container, - (uint16_t)(current_high48 >> 16), leaf->container, - leaf->typecode); - art_iterator_next(&it); - } - - if (bitmap32 != NULL) { - // Write as uint32 the most significant 32 bits of the bucket. - memcpy(buf, &prev_high32, sizeof(prev_high32)); - buf += sizeof(prev_high32); - - // Write the 32-bit Roaring bitmaps representing the least - // significant bits of a set of elements. - buf += roaring_bitmap_portable_serialize(bitmap32, buf); - roaring_bitmap_free_without_containers(bitmap32); - } - - return buf - initial_buf; -} - -size_t roaring64_bitmap_portable_deserialize_size(const char *buf, - size_t maxbytes) { - // https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations - if (buf == NULL) { - return 0; - } - size_t read_bytes = 0; - - // Read as uint64 the distinct number of "buckets", where a bucket is - // defined as the most significant 32 bits of an element. - uint64_t buckets; - if (read_bytes + sizeof(buckets) > maxbytes) { - return 0; - } - memcpy(&buckets, buf, sizeof(buckets)); - buf += sizeof(buckets); - read_bytes += sizeof(buckets); - - // Buckets should be 32 bits with 4 bits of zero padding. - if (buckets > UINT32_MAX) { - return 0; - } - - // Iterate through buckets ordered by increasing keys. - for (uint64_t bucket = 0; bucket < buckets; ++bucket) { - // Read as uint32 the most significant 32 bits of the bucket. - uint32_t high32; - if (read_bytes + sizeof(high32) > maxbytes) { - return 0; - } - buf += sizeof(high32); - read_bytes += sizeof(high32); - - // Read the 32-bit Roaring bitmaps representing the least significant - // bits of a set of elements. - size_t bitmap32_size = roaring_bitmap_portable_deserialize_size( - buf, maxbytes - read_bytes); - if (bitmap32_size == 0) { - return 0; - } - buf += bitmap32_size; - read_bytes += bitmap32_size; - } - return read_bytes; -} - -roaring64_bitmap_t *roaring64_bitmap_portable_deserialize_safe( - const char *buf, size_t maxbytes) { - // https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations - if (buf == NULL) { - return NULL; - } - size_t read_bytes = 0; - - // Read as uint64 the distinct number of "buckets", where a bucket is - // defined as the most significant 32 bits of an element. - uint64_t buckets; - if (read_bytes + sizeof(buckets) > maxbytes) { - return NULL; - } - memcpy(&buckets, buf, sizeof(buckets)); - buf += sizeof(buckets); - read_bytes += sizeof(buckets); - - // Buckets should be 32 bits with 4 bits of zero padding. - if (buckets > UINT32_MAX) { - return NULL; - } - - roaring64_bitmap_t *r = roaring64_bitmap_create(); - // Iterate through buckets ordered by increasing keys. - for (uint64_t bucket = 0; bucket < buckets; ++bucket) { - // Read as uint32 the most significant 32 bits of the bucket. - uint32_t high32; - if (read_bytes + sizeof(high32) > maxbytes) { - roaring64_bitmap_free(r); - return NULL; - } - memcpy(&high32, buf, sizeof(high32)); - buf += sizeof(high32); - read_bytes += sizeof(high32); - - // Read the 32-bit Roaring bitmaps representing the least significant - // bits of a set of elements. - size_t bitmap32_size = roaring_bitmap_portable_deserialize_size( - buf, maxbytes - read_bytes); - if (bitmap32_size == 0) { - roaring64_bitmap_free(r); - return NULL; - } - - roaring_bitmap_t *bitmap32 = roaring_bitmap_portable_deserialize_safe( - buf, maxbytes - read_bytes); - if (bitmap32 == NULL) { - roaring64_bitmap_free(r); - return NULL; - } - buf += bitmap32_size; - read_bytes += bitmap32_size; - - // Insert all containers of the 32-bit bitmap into the 64-bit bitmap. - uint32_t r32_size = ra_get_size(&bitmap32->high_low_container); - for (size_t i = 0; i < r32_size; ++i) { - uint16_t key16 = - ra_get_key_at_index(&bitmap32->high_low_container, (uint16_t)i); - uint8_t typecode; - container_t *container = ra_get_container_at_index( - &bitmap32->high_low_container, (uint16_t)i, &typecode); - - uint64_t high48_bits = - (((uint64_t)high32) << 32) | (((uint64_t)key16) << 16); - uint8_t high48[ART_KEY_BYTES]; - split_key(high48_bits, high48); - leaf_t *leaf = create_leaf(container, typecode); - art_insert(&r->art, high48, (art_val_t *)leaf); - } - roaring_bitmap_free_without_containers(bitmap32); - } - return r; -} - -bool roaring64_bitmap_iterate(const roaring64_bitmap_t *r, - roaring_iterator64 iterator, void *ptr) { - art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); - while (it.value != NULL) { - uint64_t high48 = combine_key(it.key, 0); - uint64_t high32 = high48 & 0xFFFFFFFF00000000ULL; - uint32_t low32 = high48; - leaf_t *leaf = (leaf_t *)it.value; - if (!container_iterate64(leaf->container, leaf->typecode, low32, - iterator, high32, ptr)) { - return false; - } - art_iterator_next(&it); - } - return true; -} - -void roaring64_bitmap_to_uint64_array(const roaring64_bitmap_t *r, - uint64_t *out) { - roaring64_iterator_t it = {0}; - roaring64_iterator_init_at(r, &it, /*first=*/true); - roaring64_iterator_read(&it, out, UINT64_MAX); -} - -roaring64_iterator_t *roaring64_iterator_create(const roaring64_bitmap_t *r) { - roaring64_iterator_t *it = - (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t)); - return roaring64_iterator_init_at(r, it, /*first=*/true); -} - -roaring64_iterator_t *roaring64_iterator_create_last( - const roaring64_bitmap_t *r) { - roaring64_iterator_t *it = - (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t)); - return roaring64_iterator_init_at(r, it, /*first=*/false); -} - -void roaring64_iterator_reinit(const roaring64_bitmap_t *r, - roaring64_iterator_t *it) { - roaring64_iterator_init_at(r, it, /*first=*/true); -} - -void roaring64_iterator_reinit_last(const roaring64_bitmap_t *r, - roaring64_iterator_t *it) { - roaring64_iterator_init_at(r, it, /*first=*/false); -} - -roaring64_iterator_t *roaring64_iterator_copy(const roaring64_iterator_t *it) { - roaring64_iterator_t *new_it = - (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t)); - memcpy(new_it, it, sizeof(*it)); - return new_it; -} - -void roaring64_iterator_free(roaring64_iterator_t *it) { roaring_free(it); } - -bool roaring64_iterator_has_value(const roaring64_iterator_t *it) { - return it->has_value; -} - -uint64_t roaring64_iterator_value(const roaring64_iterator_t *it) { - return it->value; -} - -bool roaring64_iterator_advance(roaring64_iterator_t *it) { - if (it->art_it.value == NULL) { - if (it->saturated_forward) { - return (it->has_value = false); - } - roaring64_iterator_init_at(it->parent, it, /*first=*/true); - return it->has_value; - } - leaf_t *leaf = (leaf_t *)it->art_it.value; - uint16_t low16 = (uint16_t)it->value; - if (container_iterator_next(leaf->container, leaf->typecode, - &it->container_it, &low16)) { - it->value = it->high48 | low16; - return (it->has_value = true); - } - if (art_iterator_next(&it->art_it)) { - return roaring64_iterator_init_at_leaf_first(it); - } - it->saturated_forward = true; - return (it->has_value = false); -} - -bool roaring64_iterator_previous(roaring64_iterator_t *it) { - if (it->art_it.value == NULL) { - if (!it->saturated_forward) { - // Saturated backward. - return (it->has_value = false); - } - roaring64_iterator_init_at(it->parent, it, /*first=*/false); - return it->has_value; - } - leaf_t *leaf = (leaf_t *)it->art_it.value; - uint16_t low16 = (uint16_t)it->value; - if (container_iterator_prev(leaf->container, leaf->typecode, - &it->container_it, &low16)) { - it->value = it->high48 | low16; - return (it->has_value = true); - } - if (art_iterator_prev(&it->art_it)) { - return roaring64_iterator_init_at_leaf_last(it); - } - it->saturated_forward = false; // Saturated backward. - return (it->has_value = false); -} - -bool roaring64_iterator_move_equalorlarger(roaring64_iterator_t *it, - uint64_t val) { - uint8_t val_high48[ART_KEY_BYTES]; - uint16_t val_low16 = split_key(val, val_high48); - if (!it->has_value || it->high48 != (val & 0xFFFFFFFFFFFF0000)) { - // The ART iterator is before or after the high48 bits of `val` (or - // beyond the ART altogether), so we need to move to a leaf with a key - // equal or greater. - if (!art_iterator_lower_bound(&it->art_it, val_high48)) { - // Only smaller keys found. - it->saturated_forward = true; - return (it->has_value = false); - } - it->high48 = combine_key(it->art_it.key, 0); - // Fall through to the next if statement. - } - - if (it->high48 == (val & 0xFFFFFFFFFFFF0000)) { - // We're at equal high bits, check if a suitable value can be found in - // this container. - leaf_t *leaf = (leaf_t *)it->art_it.value; - uint16_t low16 = (uint16_t)it->value; - if (container_iterator_lower_bound(leaf->container, leaf->typecode, - &it->container_it, &low16, - val_low16)) { - it->value = it->high48 | low16; - return (it->has_value = true); - } - // Only smaller entries in this container, move to the next. - if (!art_iterator_next(&it->art_it)) { - it->saturated_forward = true; - return (it->has_value = false); - } - } - - // We're at a leaf with high bits greater than `val`, so the first entry in - // this container is our result. - return roaring64_iterator_init_at_leaf_first(it); -} - -uint64_t roaring64_iterator_read(roaring64_iterator_t *it, uint64_t *buf, - uint64_t count) { - uint64_t consumed = 0; - while (it->has_value && consumed < count) { - uint32_t container_consumed; - leaf_t *leaf = (leaf_t *)it->art_it.value; - uint16_t low16 = (uint16_t)it->value; - uint32_t container_count = UINT32_MAX; - if (count - consumed < (uint64_t)UINT32_MAX) { - container_count = count - consumed; - } - bool has_value = container_iterator_read_into_uint64( - leaf->container, leaf->typecode, &it->container_it, it->high48, buf, - container_count, &container_consumed, &low16); - consumed += container_consumed; - buf += container_consumed; - if (has_value) { - it->has_value = true; - it->value = it->high48 | low16; - assert(consumed == count); - return consumed; - } - it->has_value = art_iterator_next(&it->art_it); - if (it->has_value) { - roaring64_iterator_init_at_leaf_first(it); - } - } - return consumed; -} - -#ifdef __cplusplus -} // extern "C" -} // namespace roaring -} // namespace api -#endif -/* end file src/roaring64.c */ -/* begin file src/roaring_array.c */ -#include -#include -#include -#include -#include -#include - - -#ifdef __cplusplus -extern "C" { -namespace roaring { -namespace internal { -#endif - -// Convention: [0,ra->size) all elements are initialized -// [ra->size, ra->allocation_size) is junk and contains nothing needing freeing - -extern inline int32_t ra_get_size(const roaring_array_t *ra); -extern inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x); - -extern inline container_t *ra_get_container_at_index(const roaring_array_t *ra, - uint16_t i, - uint8_t *typecode); - -extern inline void ra_unshare_container_at_index(roaring_array_t *ra, - uint16_t i); - -extern inline void ra_replace_key_and_container_at_index(roaring_array_t *ra, - int32_t i, - uint16_t key, - container_t *c, - uint8_t typecode); - -extern inline void ra_set_container_at_index(const roaring_array_t *ra, - int32_t i, container_t *c, - uint8_t typecode); - -static bool realloc_array(roaring_array_t *ra, int32_t new_capacity) { - // - // Note: not implemented using C's realloc(), because the memory layout is - // Struct-of-Arrays vs. Array-of-Structs: - // https://github.com/RoaringBitmap/CRoaring/issues/256 - - if (new_capacity == 0) { - roaring_free(ra->containers); - ra->containers = NULL; - ra->keys = NULL; - ra->typecodes = NULL; - ra->allocation_size = 0; - return true; - } - const size_t memoryneeded = - new_capacity * - (sizeof(uint16_t) + sizeof(container_t *) + sizeof(uint8_t)); - void *bigalloc = roaring_malloc(memoryneeded); - if (!bigalloc) return false; - void *oldbigalloc = ra->containers; - container_t **newcontainers = (container_t **)bigalloc; - uint16_t *newkeys = (uint16_t *)(newcontainers + new_capacity); - uint8_t *newtypecodes = (uint8_t *)(newkeys + new_capacity); - assert((char *)(newtypecodes + new_capacity) == - (char *)bigalloc + memoryneeded); - if (ra->size > 0) { - memcpy(newcontainers, ra->containers, sizeof(container_t *) * ra->size); - memcpy(newkeys, ra->keys, sizeof(uint16_t) * ra->size); - memcpy(newtypecodes, ra->typecodes, sizeof(uint8_t) * ra->size); - } - ra->containers = newcontainers; - ra->keys = newkeys; - ra->typecodes = newtypecodes; - ra->allocation_size = new_capacity; - roaring_free(oldbigalloc); - return true; -} - -bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap) { - if (!new_ra) return false; - ra_init(new_ra); - - // Containers hold 64Ki elements, so 64Ki containers is enough to hold - // `0x10000 * 0x10000` (all 2^32) elements - if (cap > 0x10000) { - cap = 0x10000; - } - - if (cap > 0) { - void *bigalloc = roaring_malloc( - cap * (sizeof(uint16_t) + sizeof(container_t *) + sizeof(uint8_t))); - if (bigalloc == NULL) return false; - new_ra->containers = (container_t **)bigalloc; - new_ra->keys = (uint16_t *)(new_ra->containers + cap); - new_ra->typecodes = (uint8_t *)(new_ra->keys + cap); - // Narrowing is safe because of above check - new_ra->allocation_size = (int32_t)cap; - } - return true; -} - -int ra_shrink_to_fit(roaring_array_t *ra) { - int savings = (ra->allocation_size - ra->size) * - (sizeof(uint16_t) + sizeof(container_t *) + sizeof(uint8_t)); - if (!realloc_array(ra, ra->size)) { - return 0; - } - ra->allocation_size = ra->size; - return savings; -} - -void ra_init(roaring_array_t *new_ra) { - if (!new_ra) { - return; - } - new_ra->keys = NULL; - new_ra->containers = NULL; - new_ra->typecodes = NULL; - - new_ra->allocation_size = 0; - new_ra->size = 0; - new_ra->flags = 0; -} - -bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest, - bool copy_on_write) { - ra_clear_containers(dest); // we are going to overwrite them - if (source->size == 0) { // Note: can't call memcpy(NULL), even w/size - dest->size = 0; // <--- This is important. - return true; // output was just cleared, so they match - } - if (dest->allocation_size < source->size) { - if (!realloc_array(dest, source->size)) { - return false; - } - } - dest->size = source->size; - memcpy(dest->keys, source->keys, dest->size * sizeof(uint16_t)); - // we go through the containers, turning them into shared containers... - if (copy_on_write) { - for (int32_t i = 0; i < dest->size; ++i) { - source->containers[i] = get_copy_of_container( - source->containers[i], &source->typecodes[i], copy_on_write); - } - // we do a shallow copy to the other bitmap - memcpy(dest->containers, source->containers, - dest->size * sizeof(container_t *)); - memcpy(dest->typecodes, source->typecodes, - dest->size * sizeof(uint8_t)); - } else { - memcpy(dest->typecodes, source->typecodes, - dest->size * sizeof(uint8_t)); - for (int32_t i = 0; i < dest->size; i++) { - dest->containers[i] = - container_clone(source->containers[i], source->typecodes[i]); - if (dest->containers[i] == NULL) { - for (int32_t j = 0; j < i; j++) { - container_free(dest->containers[j], dest->typecodes[j]); - } - ra_clear_without_containers(dest); - return false; - } - } - } - return true; -} - -void ra_clear_containers(roaring_array_t *ra) { - for (int32_t i = 0; i < ra->size; ++i) { - container_free(ra->containers[i], ra->typecodes[i]); - } -} - -void ra_reset(roaring_array_t *ra) { - ra_clear_containers(ra); - ra->size = 0; - ra_shrink_to_fit(ra); -} - -void ra_clear_without_containers(roaring_array_t *ra) { - roaring_free( - ra->containers); // keys and typecodes are allocated with containers - ra->size = 0; - ra->allocation_size = 0; - ra->containers = NULL; - ra->keys = NULL; - ra->typecodes = NULL; -} - -void ra_clear(roaring_array_t *ra) { - ra_clear_containers(ra); - ra_clear_without_containers(ra); -} - -bool extend_array(roaring_array_t *ra, int32_t k) { - int32_t desired_size = ra->size + k; - const int32_t max_containers = 65536; - assert(desired_size <= max_containers); - if (desired_size > ra->allocation_size) { - int32_t new_capacity = - (ra->size < 1024) ? 2 * desired_size : 5 * desired_size / 4; - if (new_capacity > max_containers) { - new_capacity = max_containers; - } - - return realloc_array(ra, new_capacity); - } - return true; -} - -void ra_append(roaring_array_t *ra, uint16_t key, container_t *c, - uint8_t typecode) { - extend_array(ra, 1); - const int32_t pos = ra->size; - - ra->keys[pos] = key; - ra->containers[pos] = c; - ra->typecodes[pos] = typecode; - ra->size++; -} - -void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa, - uint16_t index, bool copy_on_write) { - extend_array(ra, 1); - const int32_t pos = ra->size; - - // old contents is junk that does not need freeing - ra->keys[pos] = sa->keys[index]; - // the shared container will be in two bitmaps - if (copy_on_write) { - sa->containers[index] = get_copy_of_container( - sa->containers[index], &sa->typecodes[index], copy_on_write); - ra->containers[pos] = sa->containers[index]; - ra->typecodes[pos] = sa->typecodes[index]; - } else { - ra->containers[pos] = - container_clone(sa->containers[index], sa->typecodes[index]); - ra->typecodes[pos] = sa->typecodes[index]; - } - ra->size++; -} - -void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa, - uint16_t stopping_key, bool copy_on_write) { - for (int32_t i = 0; i < sa->size; ++i) { - if (sa->keys[i] >= stopping_key) break; - ra_append_copy(ra, sa, (uint16_t)i, copy_on_write); - } -} - -void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa, - int32_t start_index, int32_t end_index, - bool copy_on_write) { - extend_array(ra, end_index - start_index); - for (int32_t i = start_index; i < end_index; ++i) { - const int32_t pos = ra->size; - ra->keys[pos] = sa->keys[i]; - if (copy_on_write) { - sa->containers[i] = get_copy_of_container( - sa->containers[i], &sa->typecodes[i], copy_on_write); - ra->containers[pos] = sa->containers[i]; - ra->typecodes[pos] = sa->typecodes[i]; - } else { - ra->containers[pos] = - container_clone(sa->containers[i], sa->typecodes[i]); - ra->typecodes[pos] = sa->typecodes[i]; - } - ra->size++; - } -} - -void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa, - uint16_t before_start, bool copy_on_write) { - int start_location = ra_get_index(sa, before_start); - if (start_location >= 0) - ++start_location; - else - start_location = -start_location - 1; - ra_append_copy_range(ra, sa, start_location, sa->size, copy_on_write); -} - -void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa, - int32_t start_index, int32_t end_index) { - extend_array(ra, end_index - start_index); - - for (int32_t i = start_index; i < end_index; ++i) { - const int32_t pos = ra->size; - - ra->keys[pos] = sa->keys[i]; - ra->containers[pos] = sa->containers[i]; - ra->typecodes[pos] = sa->typecodes[i]; - ra->size++; - } -} - -void ra_append_range(roaring_array_t *ra, roaring_array_t *sa, - int32_t start_index, int32_t end_index, - bool copy_on_write) { - extend_array(ra, end_index - start_index); - - for (int32_t i = start_index; i < end_index; ++i) { - const int32_t pos = ra->size; - ra->keys[pos] = sa->keys[i]; - if (copy_on_write) { - sa->containers[i] = get_copy_of_container( - sa->containers[i], &sa->typecodes[i], copy_on_write); - ra->containers[pos] = sa->containers[i]; - ra->typecodes[pos] = sa->typecodes[i]; - } else { - ra->containers[pos] = - container_clone(sa->containers[i], sa->typecodes[i]); - ra->typecodes[pos] = sa->typecodes[i]; - } - ra->size++; - } -} - -container_t *ra_get_container(roaring_array_t *ra, uint16_t x, - uint8_t *typecode) { - int i = binarySearch(ra->keys, (int32_t)ra->size, x); - if (i < 0) return NULL; - *typecode = ra->typecodes[i]; - return ra->containers[i]; -} - -extern inline container_t *ra_get_container_at_index(const roaring_array_t *ra, - uint16_t i, - uint8_t *typecode); - -extern inline uint16_t ra_get_key_at_index(const roaring_array_t *ra, - uint16_t i); - -extern inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x); - -extern inline int32_t ra_advance_until(const roaring_array_t *ra, uint16_t x, - int32_t pos); - -// everything skipped over is freed -int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos) { - while (pos < ra->size && ra->keys[pos] < x) { - container_free(ra->containers[pos], ra->typecodes[pos]); - ++pos; - } - return pos; -} - -void ra_insert_new_key_value_at(roaring_array_t *ra, int32_t i, uint16_t key, - container_t *c, uint8_t typecode) { - extend_array(ra, 1); - // May be an optimization opportunity with DIY memmove - memmove(&(ra->keys[i + 1]), &(ra->keys[i]), - sizeof(uint16_t) * (ra->size - i)); - memmove(&(ra->containers[i + 1]), &(ra->containers[i]), - sizeof(container_t *) * (ra->size - i)); - memmove(&(ra->typecodes[i + 1]), &(ra->typecodes[i]), - sizeof(uint8_t) * (ra->size - i)); - ra->keys[i] = key; - ra->containers[i] = c; - ra->typecodes[i] = typecode; - ra->size++; -} - -// note: Java routine set things to 0, enabling GC. -// Java called it "resize" but it was always used to downsize. -// Allowing upsize would break the conventions about -// valid containers below ra->size. - -void ra_downsize(roaring_array_t *ra, int32_t new_length) { - assert(new_length <= ra->size); - ra->size = new_length; -} - -void ra_remove_at_index(roaring_array_t *ra, int32_t i) { - memmove(&(ra->containers[i]), &(ra->containers[i + 1]), - sizeof(container_t *) * (ra->size - i - 1)); - memmove(&(ra->keys[i]), &(ra->keys[i + 1]), - sizeof(uint16_t) * (ra->size - i - 1)); - memmove(&(ra->typecodes[i]), &(ra->typecodes[i + 1]), - sizeof(uint8_t) * (ra->size - i - 1)); - ra->size--; -} - -void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i) { - container_free(ra->containers[i], ra->typecodes[i]); - ra_remove_at_index(ra, i); -} - -// used in inplace andNot only, to slide left the containers from -// the mutated RoaringBitmap that are after the largest container of -// the argument RoaringBitmap. In use it should be followed by a call to -// downsize. -// -void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end, - uint32_t new_begin) { - assert(begin <= end); - assert(new_begin < begin); - - const int range = end - begin; - - // We ensure to previously have freed overwritten containers - // that are not copied elsewhere - - memmove(&(ra->containers[new_begin]), &(ra->containers[begin]), - sizeof(container_t *) * range); - memmove(&(ra->keys[new_begin]), &(ra->keys[begin]), - sizeof(uint16_t) * range); - memmove(&(ra->typecodes[new_begin]), &(ra->typecodes[begin]), - sizeof(uint8_t) * range); -} - -void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance) { - if (distance > 0) { - extend_array(ra, distance); - } - int32_t srcpos = ra->size - count; - int32_t dstpos = srcpos + distance; - memmove(&(ra->keys[dstpos]), &(ra->keys[srcpos]), sizeof(uint16_t) * count); - memmove(&(ra->containers[dstpos]), &(ra->containers[srcpos]), - sizeof(container_t *) * count); - memmove(&(ra->typecodes[dstpos]), &(ra->typecodes[srcpos]), - sizeof(uint8_t) * count); - ra->size += distance; -} - -void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans) { - size_t ctr = 0; - for (int32_t i = 0; i < ra->size; ++i) { - int num_added = container_to_uint32_array( - ans + ctr, ra->containers[i], ra->typecodes[i], - ((uint32_t)ra->keys[i]) << 16); - ctr += num_added; - } -} - -bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset, - size_t limit, uint32_t *ans) { - size_t ctr = 0; - size_t dtr = 0; - - size_t t_limit = 0; - - bool first = false; - size_t first_skip = 0; - - uint32_t *t_ans = NULL; - size_t cur_len = 0; - - for (int i = 0; i < ra->size; ++i) { - const container_t *c = - container_unwrap_shared(ra->containers[i], &ra->typecodes[i]); - switch (ra->typecodes[i]) { - case BITSET_CONTAINER_TYPE: - t_limit = (const_CAST_bitset(c))->cardinality; - break; - case ARRAY_CONTAINER_TYPE: - t_limit = (const_CAST_array(c))->cardinality; - break; - case RUN_CONTAINER_TYPE: - t_limit = run_container_cardinality(const_CAST_run(c)); - break; - } - if (ctr + t_limit - 1 >= offset && ctr < offset + limit) { - if (!first) { - // first_skip = t_limit - (ctr + t_limit - offset); - first_skip = offset - ctr; - first = true; - t_ans = (uint32_t *)roaring_malloc(sizeof(*t_ans) * - (first_skip + limit)); - if (t_ans == NULL) { - return false; - } - memset(t_ans, 0, sizeof(*t_ans) * (first_skip + limit)); - cur_len = first_skip + limit; - } - if (dtr + t_limit > cur_len) { - uint32_t *append_ans = (uint32_t *)roaring_malloc( - sizeof(*append_ans) * (cur_len + t_limit)); - if (append_ans == NULL) { - if (t_ans != NULL) roaring_free(t_ans); - return false; - } - memset(append_ans, 0, - sizeof(*append_ans) * (cur_len + t_limit)); - cur_len = cur_len + t_limit; - memcpy(append_ans, t_ans, dtr * sizeof(uint32_t)); - roaring_free(t_ans); - t_ans = append_ans; - } - switch (ra->typecodes[i]) { - case BITSET_CONTAINER_TYPE: - container_to_uint32_array(t_ans + dtr, const_CAST_bitset(c), - ra->typecodes[i], - ((uint32_t)ra->keys[i]) << 16); - break; - case ARRAY_CONTAINER_TYPE: - container_to_uint32_array(t_ans + dtr, const_CAST_array(c), - ra->typecodes[i], - ((uint32_t)ra->keys[i]) << 16); - break; - case RUN_CONTAINER_TYPE: - container_to_uint32_array(t_ans + dtr, const_CAST_run(c), - ra->typecodes[i], - ((uint32_t)ra->keys[i]) << 16); - break; - } - dtr += t_limit; - } - ctr += t_limit; - if (dtr - first_skip >= limit) break; - } - if (t_ans != NULL) { - memcpy(ans, t_ans + first_skip, limit * sizeof(uint32_t)); - free(t_ans); - } - return true; -} - -bool ra_has_run_container(const roaring_array_t *ra) { - for (int32_t k = 0; k < ra->size; ++k) { - if (get_container_type(ra->containers[k], ra->typecodes[k]) == - RUN_CONTAINER_TYPE) - return true; - } - return false; -} - -uint32_t ra_portable_header_size(const roaring_array_t *ra) { - if (ra_has_run_container(ra)) { - if (ra->size < - NO_OFFSET_THRESHOLD) { // for small bitmaps, we omit the offsets - return 4 + (ra->size + 7) / 8 + 4 * ra->size; - } - return 4 + (ra->size + 7) / 8 + - 8 * ra->size; // - 4 because we pack the size with the cookie - } else { - return 4 + 4 + 8 * ra->size; - } -} - -size_t ra_portable_size_in_bytes(const roaring_array_t *ra) { - size_t count = ra_portable_header_size(ra); - - for (int32_t k = 0; k < ra->size; ++k) { - count += container_size_in_bytes(ra->containers[k], ra->typecodes[k]); - } - return count; -} - -// This function is endian-sensitive. -size_t ra_portable_serialize(const roaring_array_t *ra, char *buf) { - char *initbuf = buf; - uint32_t startOffset = 0; - bool hasrun = ra_has_run_container(ra); - if (hasrun) { - uint32_t cookie = SERIAL_COOKIE | ((uint32_t)(ra->size - 1) << 16); - memcpy(buf, &cookie, sizeof(cookie)); - buf += sizeof(cookie); - uint32_t s = (ra->size + 7) / 8; - uint8_t *bitmapOfRunContainers = (uint8_t *)roaring_calloc(s, 1); - assert(bitmapOfRunContainers != NULL); // todo: handle - for (int32_t i = 0; i < ra->size; ++i) { - if (get_container_type(ra->containers[i], ra->typecodes[i]) == - RUN_CONTAINER_TYPE) { - bitmapOfRunContainers[i / 8] |= (1 << (i % 8)); - } - } - memcpy(buf, bitmapOfRunContainers, s); - buf += s; - roaring_free(bitmapOfRunContainers); - if (ra->size < NO_OFFSET_THRESHOLD) { - startOffset = 4 + 4 * ra->size + s; - } else { - startOffset = 4 + 8 * ra->size + s; - } - } else { // backwards compatibility - uint32_t cookie = SERIAL_COOKIE_NO_RUNCONTAINER; - - memcpy(buf, &cookie, sizeof(cookie)); - buf += sizeof(cookie); - memcpy(buf, &ra->size, sizeof(ra->size)); - buf += sizeof(ra->size); - - startOffset = 4 + 4 + 4 * ra->size + 4 * ra->size; - } - for (int32_t k = 0; k < ra->size; ++k) { - memcpy(buf, &ra->keys[k], sizeof(ra->keys[k])); - buf += sizeof(ra->keys[k]); - // get_cardinality returns a value in [1,1<<16], subtracting one - // we get [0,1<<16 - 1] which fits in 16 bits - uint16_t card = (uint16_t)(container_get_cardinality(ra->containers[k], - ra->typecodes[k]) - - 1); - memcpy(buf, &card, sizeof(card)); - buf += sizeof(card); - } - if ((!hasrun) || (ra->size >= NO_OFFSET_THRESHOLD)) { - // writing the containers offsets - for (int32_t k = 0; k < ra->size; k++) { - memcpy(buf, &startOffset, sizeof(startOffset)); - buf += sizeof(startOffset); - startOffset = - startOffset + - container_size_in_bytes(ra->containers[k], ra->typecodes[k]); - } - } - for (int32_t k = 0; k < ra->size; ++k) { - buf += container_write(ra->containers[k], ra->typecodes[k], buf); - } - return buf - initbuf; -} - -// Quickly checks whether there is a serialized bitmap at the pointer, -// not exceeding size "maxbytes" in bytes. This function does not allocate -// memory dynamically. -// -// This function returns 0 if and only if no valid bitmap is found. -// Otherwise, it returns how many bytes are occupied. -// -size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes) { - size_t bytestotal = sizeof(int32_t); // for cookie - if (bytestotal > maxbytes) return 0; - uint32_t cookie; - memcpy(&cookie, buf, sizeof(int32_t)); - buf += sizeof(uint32_t); - if ((cookie & 0xFFFF) != SERIAL_COOKIE && - cookie != SERIAL_COOKIE_NO_RUNCONTAINER) { - return 0; - } - int32_t size; - - if ((cookie & 0xFFFF) == SERIAL_COOKIE) - size = (cookie >> 16) + 1; - else { - bytestotal += sizeof(int32_t); - if (bytestotal > maxbytes) return 0; - memcpy(&size, buf, sizeof(int32_t)); - buf += sizeof(uint32_t); - } - if (size > (1 << 16)) { - return 0; - } - char *bitmapOfRunContainers = NULL; - bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE; - if (hasrun) { - int32_t s = (size + 7) / 8; - bytestotal += s; - if (bytestotal > maxbytes) return 0; - bitmapOfRunContainers = (char *)buf; - buf += s; - } - bytestotal += size * 2 * sizeof(uint16_t); - if (bytestotal > maxbytes) return 0; - uint16_t *keyscards = (uint16_t *)buf; - buf += size * 2 * sizeof(uint16_t); - if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) { - // skipping the offsets - bytestotal += size * 4; - if (bytestotal > maxbytes) return 0; - buf += size * 4; - } - // Reading the containers - for (int32_t k = 0; k < size; ++k) { - uint16_t tmp; - memcpy(&tmp, keyscards + 2 * k + 1, sizeof(tmp)); - uint32_t thiscard = tmp + 1; - bool isbitmap = (thiscard > DEFAULT_MAX_SIZE); - bool isrun = false; - if (hasrun) { - if ((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) { - isbitmap = false; - isrun = true; - } - } - if (isbitmap) { - size_t containersize = - BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); - bytestotal += containersize; - if (bytestotal > maxbytes) return 0; - buf += containersize; - } else if (isrun) { - bytestotal += sizeof(uint16_t); - if (bytestotal > maxbytes) return 0; - uint16_t n_runs; - memcpy(&n_runs, buf, sizeof(uint16_t)); - buf += sizeof(uint16_t); - size_t containersize = n_runs * sizeof(rle16_t); - bytestotal += containersize; - if (bytestotal > maxbytes) return 0; - buf += containersize; - } else { - size_t containersize = thiscard * sizeof(uint16_t); - bytestotal += containersize; - if (bytestotal > maxbytes) return 0; - buf += containersize; - } - } - return bytestotal; -} - -// This function populates answer from the content of buf (reading up to -// maxbytes bytes). The function returns false if a properly serialized bitmap -// cannot be found. If it returns true, readbytes is populated by how many bytes -// were read, we have that *readbytes <= maxbytes. -// -// This function is endian-sensitive. -bool ra_portable_deserialize(roaring_array_t *answer, const char *buf, - const size_t maxbytes, size_t *readbytes) { - *readbytes = sizeof(int32_t); // for cookie - if (*readbytes > maxbytes) { - // Ran out of bytes while reading first 4 bytes. - return false; - } - uint32_t cookie; - memcpy(&cookie, buf, sizeof(int32_t)); - buf += sizeof(uint32_t); - if ((cookie & 0xFFFF) != SERIAL_COOKIE && - cookie != SERIAL_COOKIE_NO_RUNCONTAINER) { - // "I failed to find one of the right cookies. - return false; - } - int32_t size; - - if ((cookie & 0xFFFF) == SERIAL_COOKIE) - size = (cookie >> 16) + 1; - else { - *readbytes += sizeof(int32_t); - if (*readbytes > maxbytes) { - // Ran out of bytes while reading second part of the cookie. - return false; - } - memcpy(&size, buf, sizeof(int32_t)); - buf += sizeof(uint32_t); - } - if (size < 0) { - // You cannot have a negative number of containers, the data must be - // corrupted. - return false; - } - if (size > (1 << 16)) { - // You cannot have so many containers, the data must be corrupted. - return false; - } - const char *bitmapOfRunContainers = NULL; - bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE; - if (hasrun) { - int32_t s = (size + 7) / 8; - *readbytes += s; - if (*readbytes > maxbytes) { // data is corrupted? - // Ran out of bytes while reading run bitmap. - return false; - } - bitmapOfRunContainers = buf; - buf += s; - } - uint16_t *keyscards = (uint16_t *)buf; - - *readbytes += size * 2 * sizeof(uint16_t); - if (*readbytes > maxbytes) { - // Ran out of bytes while reading key-cardinality array. - return false; - } - buf += size * 2 * sizeof(uint16_t); - - bool is_ok = ra_init_with_capacity(answer, size); - if (!is_ok) { - // Failed to allocate memory for roaring array. Bailing out. - return false; - } - - for (int32_t k = 0; k < size; ++k) { - uint16_t tmp; - memcpy(&tmp, keyscards + 2 * k, sizeof(tmp)); - answer->keys[k] = tmp; - } - if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) { - *readbytes += size * 4; - if (*readbytes > maxbytes) { // data is corrupted? - // Ran out of bytes while reading offsets. - ra_clear(answer); // we need to clear the containers already - // allocated, and the roaring array - return false; - } - - // skipping the offsets - buf += size * 4; - } - // Reading the containers - for (int32_t k = 0; k < size; ++k) { - uint16_t tmp; - memcpy(&tmp, keyscards + 2 * k + 1, sizeof(tmp)); - uint32_t thiscard = tmp + 1; - bool isbitmap = (thiscard > DEFAULT_MAX_SIZE); - bool isrun = false; - if (hasrun) { - if ((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) { - isbitmap = false; - isrun = true; - } - } - if (isbitmap) { - // we check that the read is allowed - size_t containersize = - BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); - *readbytes += containersize; - if (*readbytes > maxbytes) { - // Running out of bytes while reading a bitset container. - ra_clear(answer); // we need to clear the containers already - // allocated, and the roaring array - return false; - } - // it is now safe to read - bitset_container_t *c = bitset_container_create(); - if (c == NULL) { // memory allocation failure - // Failed to allocate memory for a bitset container. - ra_clear(answer); // we need to clear the containers already - // allocated, and the roaring array - return false; - } - answer->size++; - buf += bitset_container_read(thiscard, c, buf); - answer->containers[k] = c; - answer->typecodes[k] = BITSET_CONTAINER_TYPE; - } else if (isrun) { - // we check that the read is allowed - *readbytes += sizeof(uint16_t); - if (*readbytes > maxbytes) { - // Running out of bytes while reading a run container (header). - ra_clear(answer); // we need to clear the containers already - // allocated, and the roaring array - return false; - } - uint16_t n_runs; - memcpy(&n_runs, buf, sizeof(uint16_t)); - size_t containersize = n_runs * sizeof(rle16_t); - *readbytes += containersize; - if (*readbytes > maxbytes) { // data is corrupted? - // Running out of bytes while reading a run container. - ra_clear(answer); // we need to clear the containers already - // allocated, and the roaring array - return false; - } - // it is now safe to read - - run_container_t *c = run_container_create(); - if (c == NULL) { // memory allocation failure - // Failed to allocate memory for a run container. - ra_clear(answer); // we need to clear the containers already - // allocated, and the roaring array - return false; - } - answer->size++; - buf += run_container_read(thiscard, c, buf); - answer->containers[k] = c; - answer->typecodes[k] = RUN_CONTAINER_TYPE; - } else { - // we check that the read is allowed - size_t containersize = thiscard * sizeof(uint16_t); - *readbytes += containersize; - if (*readbytes > maxbytes) { // data is corrupted? - // Running out of bytes while reading an array container. - ra_clear(answer); // we need to clear the containers already - // allocated, and the roaring array - return false; - } - // it is now safe to read - array_container_t *c = - array_container_create_given_capacity(thiscard); - if (c == NULL) { // memory allocation failure - // Failed to allocate memory for an array container. - ra_clear(answer); // we need to clear the containers already - // allocated, and the roaring array - return false; - } - answer->size++; - buf += array_container_read(thiscard, c, buf); - answer->containers[k] = c; - answer->typecodes[k] = ARRAY_CONTAINER_TYPE; - } - } - return true; -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace internal { -#endif -/* end file src/roaring_array.c */ -/* begin file src/roaring_priority_queue.c */ - -#ifdef __cplusplus -using namespace ::roaring::internal; - -extern "C" { -namespace roaring { -namespace api { -#endif - -struct roaring_pq_element_s { - uint64_t size; - bool is_temporary; - roaring_bitmap_t *bitmap; -}; - -typedef struct roaring_pq_element_s roaring_pq_element_t; - -struct roaring_pq_s { - roaring_pq_element_t *elements; - uint64_t size; -}; - -typedef struct roaring_pq_s roaring_pq_t; - -static inline bool compare(roaring_pq_element_t *t1, roaring_pq_element_t *t2) { - return t1->size < t2->size; -} - -static void pq_add(roaring_pq_t *pq, roaring_pq_element_t *t) { - uint64_t i = pq->size; - pq->elements[pq->size++] = *t; - while (i > 0) { - uint64_t p = (i - 1) >> 1; - roaring_pq_element_t ap = pq->elements[p]; - if (!compare(t, &ap)) break; - pq->elements[i] = ap; - i = p; - } - pq->elements[i] = *t; -} - -static void pq_free(roaring_pq_t *pq) { roaring_free(pq); } - -static void percolate_down(roaring_pq_t *pq, uint32_t i) { - uint32_t size = (uint32_t)pq->size; - uint32_t hsize = size >> 1; - roaring_pq_element_t ai = pq->elements[i]; - while (i < hsize) { - uint32_t l = (i << 1) + 1; - uint32_t r = l + 1; - roaring_pq_element_t bestc = pq->elements[l]; - if (r < size) { - if (compare(pq->elements + r, &bestc)) { - l = r; - bestc = pq->elements[r]; - } - } - if (!compare(&bestc, &ai)) { - break; - } - pq->elements[i] = bestc; - i = l; - } - pq->elements[i] = ai; -} - -static roaring_pq_t *create_pq(const roaring_bitmap_t **arr, uint32_t length) { - size_t alloc_size = - sizeof(roaring_pq_t) + sizeof(roaring_pq_element_t) * length; - roaring_pq_t *answer = (roaring_pq_t *)roaring_malloc(alloc_size); - answer->elements = (roaring_pq_element_t *)(answer + 1); - answer->size = length; - for (uint32_t i = 0; i < length; i++) { - answer->elements[i].bitmap = (roaring_bitmap_t *)arr[i]; - answer->elements[i].is_temporary = false; - answer->elements[i].size = - roaring_bitmap_portable_size_in_bytes(arr[i]); - } - for (int32_t i = (length >> 1); i >= 0; i--) { - percolate_down(answer, i); - } - return answer; -} - -static roaring_pq_element_t pq_poll(roaring_pq_t *pq) { - roaring_pq_element_t ans = *pq->elements; - if (pq->size > 1) { - pq->elements[0] = pq->elements[--pq->size]; - percolate_down(pq, 0); - } else - --pq->size; - // memmove(pq->elements,pq->elements+1,(pq->size-1)*sizeof(roaring_pq_element_t));--pq->size; - return ans; -} - -// this function consumes and frees the inputs -static roaring_bitmap_t *lazy_or_from_lazy_inputs(roaring_bitmap_t *x1, - roaring_bitmap_t *x2) { - uint8_t result_type = 0; - const int length1 = ra_get_size(&x1->high_low_container), - length2 = ra_get_size(&x2->high_low_container); - if (0 == length1) { - roaring_bitmap_free(x1); - return x2; - } - if (0 == length2) { - roaring_bitmap_free(x2); - return x1; - } - uint32_t neededcap = length1 > length2 ? length2 : length1; - roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap); - int pos1 = 0, pos2 = 0; - uint8_t type1, type2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - while (true) { - if (s1 == s2) { - // todo: unsharing can be inefficient as it may create a clone where - // none - // is needed, but it has the benefit of being easy to reason about. - - ra_unshare_container_at_index(&x1->high_low_container, - (uint16_t)pos1); - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - assert(type1 != SHARED_CONTAINER_TYPE); - - ra_unshare_container_at_index(&x2->high_low_container, - (uint16_t)pos2); - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - assert(type2 != SHARED_CONTAINER_TYPE); - - container_t *c; - - if ((type2 == BITSET_CONTAINER_TYPE) && - (type1 != BITSET_CONTAINER_TYPE)) { - c = container_lazy_ior(c2, type2, c1, type1, &result_type); - container_free(c1, type1); - if (c != c2) { - container_free(c2, type2); - } - } else { - c = container_lazy_ior(c1, type1, c2, type2, &result_type); - container_free(c2, type2); - if (c != c1) { - container_free(c1, type1); - } - } - // since we assume that the initial containers are non-empty, the - // result here - // can only be non-empty - ra_append(&answer->high_low_container, s1, c, result_type); - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - - } else if (s1 < s2) { // s1 < s2 - container_t *c1 = ra_get_container_at_index(&x1->high_low_container, - (uint16_t)pos1, &type1); - ra_append(&answer->high_low_container, s1, c1, type1); - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1); - - } else { // s1 > s2 - container_t *c2 = ra_get_container_at_index(&x2->high_low_container, - (uint16_t)pos2, &type2); - ra_append(&answer->high_low_container, s2, c2, type2); - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2); - } - } - if (pos1 == length1) { - ra_append_move_range(&answer->high_low_container, - &x2->high_low_container, pos2, length2); - } else if (pos2 == length2) { - ra_append_move_range(&answer->high_low_container, - &x1->high_low_container, pos1, length1); - } - ra_clear_without_containers(&x1->high_low_container); - ra_clear_without_containers(&x2->high_low_container); - roaring_free(x1); - roaring_free(x2); - return answer; -} - -/** - * Compute the union of 'number' bitmaps using a heap. This can - * sometimes be faster than roaring_bitmap_or_many which uses - * a naive algorithm. Caller is responsible for freeing the - * result. - */ -roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number, - const roaring_bitmap_t **x) { - if (number == 0) { - return roaring_bitmap_create(); - } - if (number == 1) { - return roaring_bitmap_copy(x[0]); - } - roaring_pq_t *pq = create_pq(x, number); - while (pq->size > 1) { - roaring_pq_element_t x1 = pq_poll(pq); - roaring_pq_element_t x2 = pq_poll(pq); - - if (x1.is_temporary && x2.is_temporary) { - roaring_bitmap_t *newb = - lazy_or_from_lazy_inputs(x1.bitmap, x2.bitmap); - // should normally return a fresh new bitmap *except* that - // it can return x1.bitmap or x2.bitmap in degenerate cases - bool temporary = !((newb == x1.bitmap) && (newb == x2.bitmap)); - uint64_t bsize = roaring_bitmap_portable_size_in_bytes(newb); - roaring_pq_element_t newelement = { - .size = bsize, .is_temporary = temporary, .bitmap = newb}; - pq_add(pq, &newelement); - } else if (x2.is_temporary) { - roaring_bitmap_lazy_or_inplace(x2.bitmap, x1.bitmap, false); - x2.size = roaring_bitmap_portable_size_in_bytes(x2.bitmap); - pq_add(pq, &x2); - } else if (x1.is_temporary) { - roaring_bitmap_lazy_or_inplace(x1.bitmap, x2.bitmap, false); - x1.size = roaring_bitmap_portable_size_in_bytes(x1.bitmap); - - pq_add(pq, &x1); - } else { - roaring_bitmap_t *newb = - roaring_bitmap_lazy_or(x1.bitmap, x2.bitmap, false); - uint64_t bsize = roaring_bitmap_portable_size_in_bytes(newb); - roaring_pq_element_t newelement = { - .size = bsize, .is_temporary = true, .bitmap = newb}; - - pq_add(pq, &newelement); - } - } - roaring_pq_element_t X = pq_poll(pq); - roaring_bitmap_t *answer = X.bitmap; - roaring_bitmap_repair_after_lazy(answer); - pq_free(pq); - return answer; -} - -#ifdef __cplusplus -} -} -} // extern "C" { namespace roaring { namespace api { -#endif -/* end file src/roaring_priority_queue.c */