1425 lines
43 KiB
C++
1425 lines
43 KiB
C++
#include "VersionedMap.h"
|
|
#include "Internal.h"
|
|
#include "RootSet.h"
|
|
|
|
#include <assert.h>
|
|
#include <atomic>
|
|
#include <inttypes.h>
|
|
#include <optional>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
|
|
static_assert(std::is_standard_layout_v<weaselab::VersionedMap::MutationType>);
|
|
static_assert(std::is_standard_layout_v<weaselab::VersionedMap::Key>);
|
|
static_assert(std::is_standard_layout_v<weaselab::VersionedMap::Mutation>);
|
|
static_assert(std::is_standard_layout_v<weaselab::VersionedMap::Iterator>);
|
|
static_assert(std::bidirectional_iterator<weaselab::VersionedMap::Iterator>);
|
|
static_assert(std::is_standard_layout_v<
|
|
weaselab::VersionedMap::Iterator::VersionedMutation>);
|
|
|
|
void *mmapSafe(void *addr, size_t len, int prot, int flags, int fd,
|
|
off_t offset) {
|
|
void *result = mmap(addr, len, prot, flags, fd, offset);
|
|
if (result == MAP_FAILED) {
|
|
int err = errno; // GCOVR_EXCL_LINE
|
|
fprintf( // GCOVR_EXCL_LINE
|
|
stderr, // GCOVR_EXCL_LINE
|
|
"Error calling mmap(%p, %zu, %d, %d, %d, %jd): %d %s\n", // GCOVR_EXCL_LINE
|
|
addr, len, prot, flags, fd, (intmax_t)offset, err, // GCOVR_EXCL_LINE
|
|
strerror(err)); // GCOVR_EXCL_LINE
|
|
fflush(stderr); // GCOVR_EXCL_LINE
|
|
abort(); // GCOVR_EXCL_LINE
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void mprotectSafe(void *p, size_t s, int prot) {
|
|
if (mprotect(p, s, prot) != 0) {
|
|
int err = errno; // GCOVR_EXCL_LINE
|
|
fprintf(stderr, // GCOVR_EXCL_LINE
|
|
"Error calling mprotect(%p, %zu, %d): %s\n", // GCOVR_EXCL_LINE
|
|
p, // GCOVR_EXCL_LINE
|
|
s, // GCOVR_EXCL_LINE
|
|
prot, // GCOVR_EXCL_LINE
|
|
strerror(err)); // GCOVR_EXCL_LINE
|
|
fflush(stderr); // GCOVR_EXCL_LINE
|
|
abort(); // GCOVR_EXCL_LINE
|
|
}
|
|
}
|
|
|
|
void munmapSafe(void *ptr, size_t size) {
|
|
if (munmap(ptr, size) != 0) {
|
|
int err = errno; // GCOVR_EXCL_LINE
|
|
fprintf(stderr, "Error calling munmap(%p, %zu): %s\n", // GCOVR_EXCL_LINE
|
|
ptr, // GCOVR_EXCL_LINE
|
|
size, // GCOVR_EXCL_LINE
|
|
strerror(err)); // GCOVR_EXCL_LINE
|
|
fflush(stderr); // GCOVR_EXCL_LINE
|
|
abort(); // GCOVR_EXCL_LINE
|
|
}
|
|
}
|
|
|
|
struct Random {
|
|
// *Really* minimal PCG32 code / (c) 2014 M.E. O'Neill / pcg-random.org
|
|
// Licensed under Apache License 2.0 (NO WARRANTY, etc. see website)
|
|
//
|
|
// Modified - mostly c -> c++
|
|
Random() = default;
|
|
|
|
Random(uint64_t initState, uint64_t initSeq) {
|
|
pcg32_srandom_r(initState, initSeq);
|
|
next();
|
|
}
|
|
|
|
/// Draws from a uniform distribution of uint32_t's
|
|
uint32_t next() {
|
|
auto result = next_;
|
|
next_ = pcg32_random_r();
|
|
return result;
|
|
}
|
|
|
|
/// Draws from a uniform distribution of [0, s). From
|
|
/// https://arxiv.org/pdf/1805.10941.pdf
|
|
uint32_t bounded(uint32_t s) {
|
|
assert(s != 0);
|
|
uint32_t x = next();
|
|
auto m = uint64_t(x) * uint64_t(s);
|
|
auto l = uint32_t(m);
|
|
if (l < s) {
|
|
uint32_t t = -s % s;
|
|
while (l < t) {
|
|
x = next();
|
|
m = uint64_t(x) * uint64_t(s);
|
|
l = uint32_t(m);
|
|
}
|
|
}
|
|
uint32_t result = m >> 32;
|
|
return result;
|
|
}
|
|
|
|
/// Fill `bytes` with `size` random hex bytes
|
|
void randomHex(uint8_t *bytes, int size);
|
|
|
|
private:
|
|
uint32_t pcg32_random_r() {
|
|
uint64_t oldState = state;
|
|
// Advance internal state
|
|
state = oldState * 6364136223846793005ULL + inc;
|
|
// Calculate output function (XSH RR), uses old state for max ILP
|
|
uint32_t xorShifted = ((oldState >> 18u) ^ oldState) >> 27u;
|
|
uint32_t rot = oldState >> 59u;
|
|
return (xorShifted >> rot) | (xorShifted << ((-rot) & 31));
|
|
}
|
|
|
|
// Seed the rng. Specified in two parts, state initializer and a
|
|
// sequence selection constant (a.k.a. stream id)
|
|
void pcg32_srandom_r(uint64_t initstate, uint64_t initSeq) {
|
|
state = 0U;
|
|
inc = (initSeq << 1u) | 1u;
|
|
pcg32_random_r();
|
|
state += initstate;
|
|
pcg32_random_r();
|
|
}
|
|
uint32_t next_{};
|
|
// RNG state. All values are possible.
|
|
uint64_t state{};
|
|
// Controls which RNG sequence (stream) is selected. Must *always* be odd.
|
|
uint64_t inc{};
|
|
};
|
|
|
|
void Random::randomHex(uint8_t *bytes, int size) {
|
|
int i = 0;
|
|
while (i + 8 < size) {
|
|
uint32_t r = next();
|
|
bytes[i++] = "0123456789abcdef"[r & 0b1111];
|
|
r >>= 4;
|
|
bytes[i++] = "0123456789abcdef"[r & 0b1111];
|
|
r >>= 4;
|
|
bytes[i++] = "0123456789abcdef"[r & 0b1111];
|
|
r >>= 4;
|
|
bytes[i++] = "0123456789abcdef"[r & 0b1111];
|
|
r >>= 4;
|
|
bytes[i++] = "0123456789abcdef"[r & 0b1111];
|
|
r >>= 4;
|
|
bytes[i++] = "0123456789abcdef"[r & 0b1111];
|
|
r >>= 4;
|
|
bytes[i++] = "0123456789abcdef"[r & 0b1111];
|
|
r >>= 4;
|
|
bytes[i++] = "0123456789abcdef"[r & 0b1111];
|
|
}
|
|
uint32_t r = next();
|
|
while (i < size) {
|
|
bytes[i++] = "0123456789abcdef"[r & 0b1111];
|
|
r >>= 4;
|
|
}
|
|
}
|
|
|
|
Random seededRandom() {
|
|
FILE *f = fopen("/dev/urandom", "r");
|
|
if (f == nullptr) {
|
|
fprintf(stderr, "Failed to open /dev/urandom\n");
|
|
abort();
|
|
}
|
|
uint64_t seed[2];
|
|
if (fread(seed, sizeof(seed[0]), sizeof(seed) / sizeof(seed[0]), f) !=
|
|
sizeof(seed) / sizeof(seed[0])) {
|
|
fprintf(stderr, "Failed to read from /dev/urandom\n");
|
|
abort();
|
|
}
|
|
fclose(f);
|
|
return Random{seed[0], seed[1]};
|
|
}
|
|
|
|
namespace weaselab {
|
|
|
|
// 96 is enough for an entire search path in a tree with a size that
|
|
// overflows int. See
|
|
// https://en.wikipedia.org/wiki/Random_binary_tree#The_longest_path
|
|
constexpr int kPathLengthUpperBound = 96;
|
|
|
|
struct Entry {
|
|
// If there is a point mutation at key, then pointVersion is its version.
|
|
// Otherwise it's negative.
|
|
int64_t pointVersion;
|
|
// If there is a range mutation ending at key, then rangeVersion is its
|
|
// version. Otherwise it's negative.
|
|
int64_t rangeVersion;
|
|
int keyLen;
|
|
// Negative if this key is cleared. Only meaningful if this is a point
|
|
// mutation.
|
|
int valLen;
|
|
mutable int refCount;
|
|
uint32_t priority;
|
|
|
|
// True if the entry is a point mutation. If false, this entry's key should be
|
|
// read through to the underlying data structure.
|
|
bool pointMutation() const { return pointVersion >= 0; }
|
|
|
|
// True if mutations in (pred, this) are cleared. If false, (pred, this)
|
|
// should be read through to the underlying data structure.
|
|
bool clearTo() const { return rangeVersion >= 0; }
|
|
|
|
// There's an extra zero byte past the end of getKey, used for
|
|
// reconstructing logical mutations without copies.
|
|
const uint8_t *getKey() const { return (const uint8_t *)(this + 1); }
|
|
|
|
const uint8_t *getVal() const {
|
|
return (const uint8_t *)(this + 1) + 1 + keyLen;
|
|
}
|
|
|
|
Entry *addref() const {
|
|
++refCount;
|
|
#if DEBUG_VERBOSE
|
|
if (debugVerboseEnabled) {
|
|
printf("addref %p to %d\n", this, refCount);
|
|
}
|
|
#endif
|
|
return (Entry *)this;
|
|
}
|
|
|
|
void delref() const {
|
|
#if DEBUG_VERBOSE
|
|
if (debugVerboseEnabled) {
|
|
printf("delref %p to %d\n", this, refCount - 1);
|
|
}
|
|
#endif
|
|
if (--refCount == 0) {
|
|
safe_free((void *)this, sizeof(Entry) + keyLen + 1 + std::max(valLen, 0));
|
|
}
|
|
}
|
|
|
|
static Entry *make(int64_t pointVersion, int64_t rangeVersion,
|
|
const uint8_t *key, int keyLen, const uint8_t *val,
|
|
int valLen, uint32_t priority) {
|
|
auto e =
|
|
(Entry *)safe_malloc(sizeof(Entry) + keyLen + 1 + std::max(valLen, 0));
|
|
e->pointVersion = pointVersion;
|
|
e->rangeVersion = rangeVersion;
|
|
e->keyLen = keyLen;
|
|
e->valLen = valLen;
|
|
e->refCount = 1;
|
|
e->priority = priority;
|
|
if (keyLen > 0) {
|
|
memcpy((uint8_t *)e->getKey(), key, keyLen);
|
|
}
|
|
((uint8_t *)e->getKey())[keyLen] = 0;
|
|
if (valLen > 0) {
|
|
memcpy((uint8_t *)e->getVal(), val, valLen);
|
|
}
|
|
return e;
|
|
}
|
|
};
|
|
|
|
struct Node {
|
|
union {
|
|
int64_t updateVersion;
|
|
uint32_t nextFree;
|
|
};
|
|
Entry *entry;
|
|
uint32_t pointer[3];
|
|
bool replacedPointer;
|
|
std::atomic<bool> updated;
|
|
};
|
|
|
|
// Limit mmap to 32 GiB so valgrind doesn't complain.
|
|
// https://bugs.kde.org/show_bug.cgi?id=229500
|
|
constexpr size_t kMapSize = size_t(32) * (1 << 30);
|
|
|
|
const size_t kPageSize = sysconf(_SC_PAGESIZE);
|
|
const uint32_t kNodesPerPage = kPageSize / sizeof(Node);
|
|
const uint32_t kMinAddressable = kNodesPerPage;
|
|
|
|
constexpr uint32_t kUpsizeBytes = 1 << 20;
|
|
constexpr uint32_t kUpsizeNodes = kUpsizeBytes / sizeof(Node);
|
|
static_assert(kUpsizeNodes * sizeof(Node) == kUpsizeBytes);
|
|
|
|
struct BitSet {
|
|
explicit BitSet(uint32_t size)
|
|
: words((uint64_t *)safe_calloc(size / 64 + 1, 8)), size(size) {}
|
|
|
|
bool test(uint32_t i) const {
|
|
return words[i >> 6] & (uint64_t(1) << (i & 63));
|
|
}
|
|
|
|
// Returns former value
|
|
bool set(uint32_t i) {
|
|
const auto prev = words[i >> 6];
|
|
const auto mask = uint64_t(1) << (i & 63);
|
|
words[i >> 6] |= mask;
|
|
max_ = std::max(i, max_);
|
|
return prev & mask;
|
|
}
|
|
|
|
// Returns 0 if set is empty
|
|
uint32_t max() const { return max_; }
|
|
|
|
template <class F>
|
|
void iterateAbsentApproxBackwards(F f, uint32_t begin, uint32_t end) const {
|
|
// TODO can this be improved? We can do something with a word at a time
|
|
// instead of a bit at a time. The first attempt at doing so benchmarked as
|
|
// slower.
|
|
assert(begin != 0);
|
|
for (uint32_t i = end - 1; i >= begin; --i) {
|
|
if (!test(i)) {
|
|
f(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
~BitSet() { safe_free(words, (size / 64 + 1) * 8); }
|
|
|
|
private:
|
|
uint32_t max_ = 0;
|
|
uint64_t *const words;
|
|
const uint32_t size;
|
|
};
|
|
|
|
int64_t mmapBytes = 0;
|
|
int64_t peakMmapBytes = 0;
|
|
|
|
struct MemManager {
|
|
MemManager()
|
|
: base((Node *)mmapSafe(nullptr, kMapSize, PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)) {
|
|
if (kPageSize % sizeof(Node) != 0) {
|
|
fprintf(stderr, // GCOVR_EXCL_LINE
|
|
"kPageSize not a multiple of Node size\n"); // GCOVR_EXCL_LINE
|
|
abort(); // GCOVR_EXCL_LINE
|
|
}
|
|
if (kUpsizeBytes % kPageSize != 0) {
|
|
fprintf(stderr, // GCOVR_EXCL_LINE
|
|
"kUpsizeBytes not a multiple of kPageSize\n"); // GCOVR_EXCL_LINE
|
|
abort(); // GCOVR_EXCL_LINE
|
|
}
|
|
}
|
|
~MemManager() {
|
|
gc(nullptr, 0, 0);
|
|
munmapSafe(base, kMapSize);
|
|
}
|
|
|
|
Node *const base;
|
|
|
|
uint32_t allocate() {
|
|
if (freeList != 0) {
|
|
uint32_t result = freeList;
|
|
freeList = base[result].nextFree;
|
|
assert(base[result].entry == nullptr);
|
|
return result;
|
|
}
|
|
|
|
if (next == firstUnaddressable) {
|
|
mprotectSafe(base + firstUnaddressable, kUpsizeBytes,
|
|
PROT_READ | PROT_WRITE);
|
|
firstUnaddressable += kUpsizeNodes;
|
|
#if SHOW_MEMORY
|
|
mmapBytes = getBytes();
|
|
peakMmapBytes = std::max(peakMmapBytes, mmapBytes);
|
|
#endif
|
|
if (firstUnaddressable > kMapSize / sizeof(Node)) {
|
|
fprintf( // GCOVR_EXCL_LINE
|
|
stderr, // GCOVR_EXCL_LINE
|
|
"Out of memory: firstUnaddressable > kMapSize / " // GCOVR_EXCL_LINE
|
|
"sizeof(Node)\n"); // GCOVR_EXCL_LINE
|
|
abort(); // GCOVR_EXCL_LINE
|
|
}
|
|
}
|
|
|
|
return next++;
|
|
}
|
|
|
|
void gc(const uint32_t *roots, int numRoots, int64_t oldestVersion) {
|
|
#if DEBUG_VERBOSE
|
|
if (debugVerboseEnabled) {
|
|
printf("GC roots:\n");
|
|
for (int i = 0; i < numRoots; ++i) {
|
|
printf(" %u\n", roots[i]);
|
|
}
|
|
}
|
|
#endif
|
|
// Calculate reachable set
|
|
BitSet reachable{next};
|
|
// Each node has at most 3 children and nodes along the search path aren't
|
|
// in the stack, so we need 2 * kPathLengthUpperBound
|
|
uint32_t stack[2 * kPathLengthUpperBound];
|
|
int stackIndex = 0;
|
|
auto tryPush = [&](uint32_t p) {
|
|
#if DEBUG_VERBOSE
|
|
if (debugVerboseEnabled) {
|
|
printf(" GC: visit: %u\n", p);
|
|
}
|
|
#endif
|
|
if (!reachable.set(p)) {
|
|
#if DEBUG_VERBOSE
|
|
if (debugVerboseEnabled) {
|
|
printf(" GC: push on to stack: %u\n", p);
|
|
}
|
|
#endif
|
|
assert(stackIndex < sizeof(stack) / sizeof(stack[0]));
|
|
stack[stackIndex++] = p;
|
|
}
|
|
};
|
|
for (int i = 0; i < numRoots; ++i) {
|
|
if (roots[i] == 0) {
|
|
continue;
|
|
}
|
|
tryPush(roots[i]);
|
|
while (stackIndex > 0) {
|
|
uint32_t p = stack[--stackIndex];
|
|
auto &node = base[p];
|
|
if (node.updated.load(std::memory_order_relaxed)) {
|
|
if (node.pointer[!node.replacedPointer] != 0) {
|
|
tryPush(node.pointer[!node.replacedPointer]);
|
|
}
|
|
if (oldestVersion < node.updateVersion) {
|
|
if (node.pointer[node.replacedPointer] != 0) {
|
|
tryPush(node.pointer[node.replacedPointer]);
|
|
}
|
|
}
|
|
if (node.pointer[2] != 0) {
|
|
tryPush(node.pointer[2]);
|
|
}
|
|
} else {
|
|
if (node.pointer[0] != 0) {
|
|
tryPush(node.pointer[0]);
|
|
}
|
|
if (node.pointer[1] != 0) {
|
|
tryPush(node.pointer[1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reclaim memory on the right side
|
|
uint32_t max = reachable.max();
|
|
if (max == 0) {
|
|
max = kMinAddressable - 1;
|
|
}
|
|
assert(max < next);
|
|
uint32_t newFirstUnaddressable = (max / kNodesPerPage + 1) * kNodesPerPage;
|
|
if (newFirstUnaddressable < firstUnaddressable) {
|
|
for (int i = newFirstUnaddressable; i < firstUnaddressable; ++i) {
|
|
if (base[i].entry != nullptr) {
|
|
#if DEBUG_VERBOSE
|
|
if (debugVerboseEnabled) {
|
|
printf("Collecting %u while shrinking right\n", i);
|
|
}
|
|
#endif
|
|
base[i].entry->delref();
|
|
}
|
|
}
|
|
mprotectSafe(base + newFirstUnaddressable,
|
|
(firstUnaddressable - newFirstUnaddressable) * sizeof(Node),
|
|
PROT_NONE);
|
|
firstUnaddressable = newFirstUnaddressable;
|
|
#if SHOW_MEMORY
|
|
mmapBytes = getBytes();
|
|
#endif
|
|
}
|
|
next = max + 1;
|
|
|
|
// Rebuild free list and delref entries
|
|
freeList = 0;
|
|
reachable.iterateAbsentApproxBackwards(
|
|
[&](uint32_t i) {
|
|
if (base[i].entry != nullptr) {
|
|
#if DEBUG_VERBOSE
|
|
if (debugVerboseEnabled) {
|
|
printf("Collecting %u while building free list\n", i);
|
|
}
|
|
#endif
|
|
base[i].entry->delref();
|
|
base[i].entry = nullptr;
|
|
}
|
|
base[i].nextFree = freeList;
|
|
freeList = i;
|
|
},
|
|
kMinAddressable, next);
|
|
}
|
|
|
|
int64_t getBytes() const {
|
|
return (firstUnaddressable - kMinAddressable) * sizeof(Node);
|
|
}
|
|
|
|
private:
|
|
uint32_t next = kMinAddressable;
|
|
uint32_t firstUnaddressable = kMinAddressable;
|
|
uint32_t freeList = 0;
|
|
};
|
|
|
|
auto operator<=>(const VersionedMap::Key &lhs, const Node &rhs) {
|
|
int cl = std::min(lhs.len, rhs.entry->keyLen);
|
|
if (cl > 0) {
|
|
int c = memcmp(lhs.p, rhs.entry->getKey(), cl);
|
|
if (c != 0) {
|
|
return c <=> 0;
|
|
}
|
|
}
|
|
return lhs.len <=> rhs.entry->keyLen;
|
|
}
|
|
|
|
constexpr int orderToInt(std::strong_ordering o) {
|
|
return o == std::strong_ordering::less ? -1
|
|
: o == std::strong_ordering::equal ? 0
|
|
: 1;
|
|
}
|
|
|
|
struct Finger {
|
|
void push(uint32_t node, bool dir) {
|
|
searchPath[searchPathSize_] = node;
|
|
direction[searchPathSize_] = dir;
|
|
++searchPathSize_;
|
|
}
|
|
void pop() {
|
|
assert(searchPathSize_ > 0);
|
|
--searchPathSize_;
|
|
}
|
|
uint32_t root() const {
|
|
assert(searchPathSize_ > 0);
|
|
return searchPath[0];
|
|
}
|
|
uint32_t backNode() const {
|
|
assert(searchPathSize_ > 0);
|
|
return searchPath[searchPathSize_ - 1];
|
|
}
|
|
uint32_t &backNodeRef() {
|
|
assert(searchPathSize_ > 0);
|
|
return searchPath[searchPathSize_ - 1];
|
|
}
|
|
bool backDirection() const {
|
|
assert(searchPathSize_ > 0);
|
|
return direction[searchPathSize_ - 1];
|
|
}
|
|
uint32_t searchPathSize() const { return searchPathSize_; }
|
|
|
|
void setSearchPathSizeUnsafe(int size) { searchPathSize_ = size; }
|
|
|
|
Finger() { clear(); }
|
|
|
|
void clear() {
|
|
#ifndef NDEBUG
|
|
memset(searchPath, 0, sizeof(searchPath));
|
|
memset(direction, 0, sizeof(direction));
|
|
#endif
|
|
searchPathSize_ = 0;
|
|
}
|
|
|
|
void copyTo(Finger &result) {
|
|
#ifndef NDEBUG
|
|
memset(result.searchPath, 0, sizeof(searchPath));
|
|
memset(result.direction, 0, sizeof(direction));
|
|
#endif
|
|
memcpy(result.searchPath, searchPath,
|
|
searchPathSize_ * sizeof(searchPath[0]));
|
|
memcpy(result.direction, direction, searchPathSize_ * sizeof(direction[0]));
|
|
result.searchPathSize_ = searchPathSize_;
|
|
}
|
|
|
|
Finger(const Finger &) = delete;
|
|
Finger &operator=(const Finger &) = delete;
|
|
Finger(Finger &&) = delete;
|
|
Finger &operator=(Finger &&) = delete;
|
|
|
|
private:
|
|
uint32_t searchPath[kPathLengthUpperBound];
|
|
bool direction[kPathLengthUpperBound];
|
|
int searchPathSize_;
|
|
};
|
|
|
|
struct __attribute__((__visibility__("hidden"))) VersionedMap::Impl {
|
|
|
|
// The last node is allowed to be 0, in which case this is the search path of
|
|
// where an entry would exist
|
|
template <std::memory_order kOrder>
|
|
void move(Finger &finger, int64_t at, bool direction) const {
|
|
uint32_t c;
|
|
if (finger.backNode() != 0 &&
|
|
(c = child<kOrder>(finger.backNode(), direction, at)) != 0) {
|
|
finger.push(c, direction);
|
|
while ((c = child<kOrder>(finger.backNode(), !direction, at)) != 0) {
|
|
finger.push(c, !direction);
|
|
}
|
|
} else {
|
|
while (finger.searchPathSize() > 1 && finger.backDirection() == true) {
|
|
finger.pop();
|
|
}
|
|
finger.pop();
|
|
}
|
|
}
|
|
|
|
template <std::memory_order kOrder>
|
|
uint32_t child(uint32_t node, bool which, int64_t at) const {
|
|
assert(node != 0);
|
|
static_assert(kOrder == std::memory_order_acquire ||
|
|
kOrder == std::memory_order_relaxed);
|
|
auto &n = mm.base[node];
|
|
uint32_t result;
|
|
if (n.updated.load(kOrder) && n.updateVersion <= at &&
|
|
which == n.replacedPointer) {
|
|
result = n.pointer[2];
|
|
} else {
|
|
result = n.pointer[which];
|
|
}
|
|
assert(result == 0 || result >= kMinAddressable);
|
|
return result;
|
|
}
|
|
|
|
template <std::memory_order kOrder>
|
|
uint32_t left(uint32_t node, bool which, int64_t at) {
|
|
return child<kOrder>(node, false, at);
|
|
}
|
|
|
|
template <std::memory_order kOrder>
|
|
uint32_t right(uint32_t node, bool which, int64_t at) {
|
|
return child<kOrder>(node, true, at);
|
|
}
|
|
|
|
// Returns the node that results from setting `which` to `child` on `node`
|
|
uint32_t update(uint32_t node, bool which, uint32_t child, int64_t version) {
|
|
assert(node == 0 || node >= kMinAddressable);
|
|
assert(child == 0 || child >= kMinAddressable);
|
|
if (this->child<std::memory_order_relaxed>(node, which, version) == child) {
|
|
return node;
|
|
}
|
|
auto &n = mm.base[node];
|
|
const bool updated = n.updated.load(std::memory_order_relaxed);
|
|
|
|
auto doCopy = [&]() {
|
|
uint32_t copy = mm.allocate();
|
|
#if DEBUG_VERBOSE
|
|
if (debugVerboseEnabled) {
|
|
printf("Copy %u to %u\n", node, copy);
|
|
}
|
|
#endif
|
|
auto &c = mm.base[copy];
|
|
c.entry = n.entry->addref();
|
|
c.pointer[which] = child;
|
|
c.pointer[!which] = n.pointer[!which];
|
|
c.updated.store(false, std::memory_order_relaxed);
|
|
c.updateVersion = version;
|
|
assert(copy == 0 || copy >= kMinAddressable);
|
|
return copy;
|
|
};
|
|
|
|
if (n.updateVersion == version) {
|
|
// The reason these aren't data races is that concurrent readers are
|
|
// reading < `version`
|
|
if (updated && n.replacedPointer != which) {
|
|
// We can't update n.replacedPointer without introducing a data race
|
|
// (unless we packed it into the atomic?) so we copy. pointer[2] becomes
|
|
// unreachable, but need to tell the garbage collector.
|
|
n.pointer[2] = 0;
|
|
return doCopy();
|
|
} else if (updated) {
|
|
n.pointer[2] = child;
|
|
} else {
|
|
n.pointer[which] = child;
|
|
}
|
|
assert(node == 0 || node >= kMinAddressable);
|
|
return node;
|
|
}
|
|
|
|
if (updated) {
|
|
// We already used this node's in-place update
|
|
return doCopy();
|
|
} else {
|
|
n.updateVersion = version;
|
|
n.pointer[2] = child;
|
|
n.replacedPointer = which;
|
|
n.updated.store(true, std::memory_order_release); // Must be last
|
|
assert(node == 0 || node >= kMinAddressable);
|
|
return node;
|
|
}
|
|
}
|
|
|
|
void rotate(uint32_t &n, int64_t at, bool right) {
|
|
auto l = child<std::memory_order_relaxed>(n, !right, at);
|
|
n = update(
|
|
l, right,
|
|
update(n, !right, child<std::memory_order_relaxed>(l, right, at), at),
|
|
at);
|
|
}
|
|
|
|
struct Val {
|
|
const uint8_t *p;
|
|
int len;
|
|
};
|
|
|
|
template <std::memory_order kOrder, class T>
|
|
void search(Key key, T root, int64_t version, Finger &finger) const {
|
|
// Prevent integer promotion etc
|
|
static_assert(std::is_same_v<T, uint32_t>);
|
|
finger.clear();
|
|
if (root == 0) {
|
|
return;
|
|
}
|
|
bool ignored;
|
|
finger.push(root, ignored);
|
|
|
|
// Initialize finger to the search path of `key`
|
|
for (;;) {
|
|
auto n = finger.backNode();
|
|
if (n == 0) {
|
|
break;
|
|
}
|
|
auto c = key <=> mm.base[n];
|
|
if (c == 0) {
|
|
// No duplicates
|
|
break;
|
|
}
|
|
finger.push(child<kOrder>(n, c > 0, version), c > 0);
|
|
}
|
|
}
|
|
|
|
// If `val` is set, then this is a point mutation at `latestVersion`.
|
|
// Otherwise it's the end of a range mutation at `latestVersion`.
|
|
void insert(Key key, std::optional<Val> val) {
|
|
Finger finger;
|
|
bool ignored;
|
|
finger.push(latestRoot, ignored);
|
|
bool inserted;
|
|
|
|
// Initialize finger to the search path of `key`
|
|
for (;;) {
|
|
auto n = finger.backNode();
|
|
if (n == 0) {
|
|
inserted = true;
|
|
break;
|
|
}
|
|
auto c = key <=> mm.base[n];
|
|
if (c == 0) {
|
|
// No duplicates
|
|
inserted = false;
|
|
break;
|
|
}
|
|
finger.push(child<std::memory_order_relaxed>(n, c > 0, latestVersion),
|
|
c > 0);
|
|
}
|
|
|
|
int64_t pointVersion, rangeVersion;
|
|
if (val.has_value()) {
|
|
pointVersion = latestVersion;
|
|
if (inserted) {
|
|
Finger copy;
|
|
finger.copyTo(copy);
|
|
move<std::memory_order_relaxed>(copy, latestVersion, true);
|
|
if (copy.searchPathSize() == 0) {
|
|
rangeVersion = -1; // Sentinel for "no mutation ending here"
|
|
} else {
|
|
rangeVersion = mm.base[copy.backNode()].entry->rangeVersion;
|
|
}
|
|
} else {
|
|
auto *entry = mm.base[finger.backNode()].entry;
|
|
rangeVersion = entry->rangeVersion;
|
|
}
|
|
} else {
|
|
rangeVersion = latestVersion;
|
|
if (inserted) {
|
|
val = {nullptr, -1}; // Sentinel for "no point mutation here"
|
|
pointVersion = -1; // Sentinel for "no point mutation here"
|
|
} else {
|
|
auto *entry = mm.base[finger.backNode()].entry;
|
|
val = {entry->getVal(), entry->valLen};
|
|
pointVersion = entry->pointVersion;
|
|
}
|
|
}
|
|
|
|
// Prepare new node
|
|
uint32_t node = newNode(
|
|
pointVersion, rangeVersion, key.p, key.len, val->p, val->len,
|
|
inserted ? random.next() : mm.base[finger.backNode()].entry->priority);
|
|
if (!inserted) {
|
|
auto &n = mm.base[node];
|
|
n.pointer[0] = child<std::memory_order_relaxed>(finger.backNode(), false,
|
|
latestVersion);
|
|
n.pointer[1] = child<std::memory_order_relaxed>(finger.backNode(), true,
|
|
latestVersion);
|
|
}
|
|
|
|
// Rotate and propagate up the search path
|
|
for (;;) {
|
|
if (finger.searchPathSize() == 1) {
|
|
// Made it to the root
|
|
latestRoot = node;
|
|
break;
|
|
}
|
|
const bool direction = finger.backDirection();
|
|
finger.pop();
|
|
auto parent = finger.backNode();
|
|
parent = update(parent, direction, node, latestVersion);
|
|
if (inserted &&
|
|
mm.base[node].entry->priority > mm.base[parent].entry->priority) {
|
|
rotate(parent, latestVersion, !direction);
|
|
} else {
|
|
if (parent == finger.backNode()) {
|
|
break;
|
|
}
|
|
}
|
|
node = parent;
|
|
}
|
|
}
|
|
|
|
// Removes `finger` from the tree, and leaves `finger` pointing to the next
|
|
// entry.
|
|
void remove(Finger &finger) {
|
|
|
|
#ifndef NDEBUG
|
|
uint32_t expected;
|
|
{
|
|
Finger copy;
|
|
finger.copyTo(copy);
|
|
move<std::memory_order_relaxed>(copy, latestVersion, true);
|
|
expected = copy.searchPathSize() > 0 ? copy.backNode() : 0;
|
|
}
|
|
#endif
|
|
|
|
// True if finger is pointing to an entry > than the entry we're removing
|
|
// after we rotate it down
|
|
bool greaterThan;
|
|
|
|
// Rotate down until we can remove the entry
|
|
for (;;) {
|
|
auto &node = finger.backNodeRef();
|
|
const auto l =
|
|
child<std::memory_order_relaxed>(node, false, latestVersion);
|
|
const auto r =
|
|
child<std::memory_order_relaxed>(node, true, latestVersion);
|
|
if (l == 0) {
|
|
node = r;
|
|
greaterThan = true;
|
|
break;
|
|
} else if (r == 0) {
|
|
node = l;
|
|
greaterThan = false;
|
|
break;
|
|
} else {
|
|
const bool direction =
|
|
mm.base[l].entry->priority > mm.base[r].entry->priority;
|
|
rotate(node, latestVersion, direction);
|
|
assert(node != 0);
|
|
finger.push(
|
|
child<std::memory_order_relaxed>(node, direction, latestVersion),
|
|
direction);
|
|
}
|
|
}
|
|
|
|
// propagate up the search path, all the way to the root since we may have
|
|
// more rotations to do even if an update doesn't change a node pointer
|
|
auto node = finger.backNode();
|
|
const auto oldSize = finger.searchPathSize();
|
|
for (;;) {
|
|
if (finger.searchPathSize() == 1) {
|
|
// Made it to the root
|
|
latestRoot = node;
|
|
break;
|
|
}
|
|
const bool direction = finger.backDirection();
|
|
finger.pop();
|
|
auto &parent = finger.backNodeRef();
|
|
auto old = parent;
|
|
parent = update(parent, direction, node, latestVersion);
|
|
node = parent;
|
|
}
|
|
finger.setSearchPathSizeUnsafe(oldSize);
|
|
|
|
if (greaterThan && finger.backNode() != 0) {
|
|
uint32_t c;
|
|
while ((c = child<std::memory_order_relaxed>(finger.backNode(), false,
|
|
latestVersion)) != 0) {
|
|
finger.push(c, false);
|
|
}
|
|
} else {
|
|
move<std::memory_order_relaxed>(finger, latestVersion, true);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
if (finger.searchPathSize() > 0) {
|
|
assert(finger.backNode() == expected);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
uint32_t newNode(int64_t version, int64_t rangeVersion, const uint8_t *key,
|
|
int keyLen, const uint8_t *val, int valLen,
|
|
uint32_t priority) {
|
|
auto result = mm.allocate();
|
|
auto &node = mm.base[result];
|
|
node.updateVersion = version;
|
|
node.pointer[0] = 0;
|
|
node.pointer[1] = 0;
|
|
node.updated.store(false, std::memory_order_relaxed);
|
|
node.entry =
|
|
Entry::make(version, rangeVersion, key, keyLen, val, valLen, priority);
|
|
return result;
|
|
}
|
|
|
|
void setOldestVersion(int64_t oldestVersion) {
|
|
mallocBytesDelta = 0;
|
|
this->oldestVersion = oldestVersion;
|
|
roots.setOldestVersion(oldestVersion);
|
|
mm.gc(roots.roots(), roots.rootCount(), oldestVersion);
|
|
totalMallocBytes += mallocBytesDelta;
|
|
}
|
|
|
|
int64_t getBytes() const { return totalMallocBytes + mm.getBytes(); }
|
|
|
|
void printInOrder(int64_t version);
|
|
|
|
void printInOrderHelper(int64_t version, uint32_t node, int depth);
|
|
|
|
void addMutations(const Mutation *mutations, int numMutations,
|
|
int64_t version) {
|
|
mallocBytesDelta = 0;
|
|
// TODO scan to remove mutations older than oldestVersion
|
|
assert(latestVersion < version);
|
|
latestVersion = version;
|
|
latestRoot = roots.roots()[roots.rootCount() - 1];
|
|
// TODO Improve ILP?
|
|
for (int i = 0; i < numMutations; ++i) {
|
|
const auto &m = mutations[i];
|
|
switch (m.type) {
|
|
case Set: {
|
|
insert({m.param1, m.param1Len}, {{m.param2, m.param2Len}});
|
|
} break;
|
|
case Clear: {
|
|
insert({m.param1, m.param1Len}, {{nullptr, -1}});
|
|
if (m.param2Len > 0) {
|
|
Finger iter;
|
|
search<std::memory_order_relaxed>({m.param1, m.param1Len}, latestRoot,
|
|
latestVersion, iter);
|
|
move<std::memory_order_relaxed>(iter, latestVersion, true);
|
|
while (iter.searchPathSize() > 0 &&
|
|
mm.base[iter.backNode()] < Key{m.param2, m.param2Len}) {
|
|
remove(iter);
|
|
}
|
|
insert({m.param2, m.param2Len}, {});
|
|
}
|
|
} break;
|
|
default: // GCOVR_EXCL_LINE
|
|
assert(false); // GCOVR_EXCL_LINE
|
|
__builtin_unreachable(); // GCOVR_EXCL_LINE
|
|
}
|
|
}
|
|
roots.add(latestRoot, latestVersion);
|
|
totalMallocBytes += mallocBytesDelta;
|
|
}
|
|
|
|
void firstGeq(const Key *key, const int64_t *version, Iterator *iterator,
|
|
int count) const;
|
|
|
|
Random random = seededRandom();
|
|
MemManager mm;
|
|
RootSet roots;
|
|
// Only meaningful within the callstack of `addMutations`
|
|
uint32_t latestRoot;
|
|
int64_t oldestVersion = 0;
|
|
int64_t latestVersion = 0;
|
|
int64_t totalMallocBytes = sizeof(Impl);
|
|
};
|
|
|
|
VersionedMap::Impl *internal_makeImpl(int64_t version) {
|
|
mallocBytesDelta = 0;
|
|
auto *result =
|
|
new (safe_malloc(sizeof(VersionedMap::Impl))) VersionedMap::Impl();
|
|
result->totalMallocBytes = mallocBytesDelta;
|
|
result->latestVersion = version;
|
|
return result;
|
|
}
|
|
|
|
VersionedMap::VersionedMap(int64_t version)
|
|
: impl(internal_makeImpl(version)) {}
|
|
|
|
VersionedMap::~VersionedMap() {
|
|
if (impl != nullptr) {
|
|
impl->~Impl();
|
|
safe_free(impl, sizeof(*impl));
|
|
}
|
|
}
|
|
|
|
VersionedMap::VersionedMap(VersionedMap &&other) noexcept {
|
|
impl = std::exchange(other.impl, nullptr);
|
|
}
|
|
VersionedMap &VersionedMap::operator=(VersionedMap &&other) noexcept {
|
|
impl = std::exchange(other.impl, nullptr);
|
|
return *this;
|
|
}
|
|
|
|
void VersionedMap::addMutations(const Mutation *mutations, int numMutations,
|
|
int64_t version) {
|
|
impl->addMutations(mutations, numMutations, version);
|
|
}
|
|
|
|
struct VersionedMap::Iterator::Impl {
|
|
Finger finger;
|
|
int64_t version;
|
|
const VersionedMap::Impl *map;
|
|
int cmp;
|
|
|
|
// State for materializing mutations associated with the entry at `finger`.
|
|
// Cases:
|
|
// - If finger is a set and the end of a clear, then mutation[0] is the clear
|
|
// and mutation[1] is the set.
|
|
// - If finger is a set and not the end of a clear, then mutation[0] is the
|
|
// set
|
|
// - If finger is a clear and not a set, then mutation[0] is the clear
|
|
int mutationCount;
|
|
int mutationIndex;
|
|
VersionedMutation mutations[2];
|
|
|
|
void copyTo(Impl &result) {
|
|
result.cmp = cmp;
|
|
result.map = map;
|
|
result.version = version;
|
|
result.mutationCount = mutationCount;
|
|
result.mutationIndex = mutationIndex;
|
|
result.mutations[0] = mutations[0];
|
|
result.mutations[1] = mutations[1];
|
|
finger.copyTo(result.finger);
|
|
}
|
|
};
|
|
|
|
VersionedMap::Iterator::~Iterator() {
|
|
if (impl != nullptr) {
|
|
impl->~Impl();
|
|
safe_free(impl, sizeof(*impl));
|
|
}
|
|
}
|
|
|
|
VersionedMap::Iterator::Iterator(const Iterator &other)
|
|
: impl(new(safe_malloc(sizeof(Impl))) Impl()) {
|
|
other.impl->copyTo(*impl);
|
|
}
|
|
|
|
VersionedMap::Iterator &
|
|
VersionedMap::Iterator::operator=(const Iterator &other) {
|
|
if (impl != nullptr) {
|
|
impl->~Impl();
|
|
safe_free(impl, sizeof(*impl));
|
|
}
|
|
impl = new (safe_malloc(sizeof(Impl))) Impl();
|
|
other.impl->copyTo(*impl);
|
|
return *this;
|
|
}
|
|
|
|
VersionedMap::Iterator::Iterator(Iterator &&other) noexcept
|
|
: impl(std::exchange(other.impl, nullptr)) {}
|
|
|
|
VersionedMap::Iterator &
|
|
VersionedMap::Iterator::operator=(Iterator &&other) noexcept {
|
|
if (impl != nullptr) {
|
|
impl->~Impl();
|
|
safe_free(impl, sizeof(*impl));
|
|
}
|
|
impl = std::exchange(other.impl, nullptr);
|
|
return *this;
|
|
}
|
|
|
|
VersionedMap::Iterator::VersionedMutation
|
|
VersionedMap::Iterator::operator*() const {
|
|
#if DEBUG_VERBOSE
|
|
if (debugVerboseEnabled) {
|
|
printf("Dereference %u\n", impl->finger.backNode());
|
|
}
|
|
#endif
|
|
assert(impl->finger.searchPathSize() != 0);
|
|
assert(impl->mutationIndex < impl->mutationCount);
|
|
assert(impl->mutationIndex >= 0);
|
|
return impl->mutations[impl->mutationIndex];
|
|
}
|
|
|
|
void materializeMutations(VersionedMap::Iterator::Impl *impl, const Entry *prev,
|
|
const Entry *next) {
|
|
if (prev == nullptr) {
|
|
Finger copy;
|
|
impl->finger.copyTo(copy);
|
|
impl->map->move<std::memory_order_acquire>(copy, impl->version, false);
|
|
if (copy.searchPathSize() > 0) {
|
|
prev = impl->map->mm.base[copy.backNode()].entry;
|
|
} else {
|
|
assert(!impl->map->mm.base[impl->finger.backNode()].entry->clearTo());
|
|
}
|
|
}
|
|
if (next == nullptr) {
|
|
Finger copy;
|
|
impl->finger.copyTo(copy);
|
|
impl->map->move<std::memory_order_acquire>(copy, impl->version, true);
|
|
if (copy.searchPathSize() > 0) {
|
|
next = impl->map->mm.base[copy.backNode()].entry;
|
|
}
|
|
}
|
|
|
|
const auto &entry = *impl->map->mm.base[impl->finger.backNode()].entry;
|
|
impl->mutationCount = 0;
|
|
if (entry.clearTo()) {
|
|
impl->mutations[impl->mutationCount++] = {
|
|
prev->getKey(),
|
|
entry.getKey(),
|
|
prev->pointMutation() && prev->valLen < 0 &&
|
|
prev->pointVersion == entry.rangeVersion
|
|
? prev->keyLen
|
|
: prev->keyLen + 1,
|
|
entry.keyLen,
|
|
VersionedMap::Clear,
|
|
entry.rangeVersion};
|
|
}
|
|
if (entry.pointMutation()) {
|
|
if (entry.valLen < 0) {
|
|
if (next == nullptr ||
|
|
!(next->clearTo() && next->rangeVersion == entry.pointVersion)) {
|
|
impl->mutations[impl->mutationCount++] = {
|
|
entry.getKey(), nullptr, entry.keyLen, 0,
|
|
VersionedMap::Clear, entry.pointVersion};
|
|
}
|
|
} else {
|
|
impl->mutations[impl->mutationCount++] = {
|
|
entry.getKey(), entry.getVal(), entry.keyLen,
|
|
entry.valLen, VersionedMap::Set, entry.pointVersion};
|
|
}
|
|
}
|
|
}
|
|
|
|
VersionedMap::Iterator &VersionedMap::Iterator::operator++() {
|
|
if (impl->mutationIndex < impl->mutationCount - 1) {
|
|
++impl->mutationIndex;
|
|
return *this;
|
|
}
|
|
|
|
do {
|
|
const auto &entry = *impl->map->mm.base[impl->finger.backNode()].entry;
|
|
impl->map->move<std::memory_order_acquire>(impl->finger, impl->version,
|
|
true);
|
|
if (impl->finger.searchPathSize() > 0) {
|
|
materializeMutations(impl, &entry, nullptr);
|
|
}
|
|
} while (impl->mutationCount == 0);
|
|
impl->mutationIndex = 0;
|
|
|
|
return *this;
|
|
}
|
|
|
|
VersionedMap::Iterator VersionedMap::Iterator::operator++(int) {
|
|
auto result = *this;
|
|
++*this;
|
|
return result;
|
|
}
|
|
|
|
VersionedMap::Iterator &VersionedMap::Iterator::operator--() {
|
|
if (impl->mutationIndex > 0) {
|
|
--impl->mutationIndex;
|
|
return *this;
|
|
}
|
|
|
|
// TODO support decrementing end
|
|
|
|
do {
|
|
const auto &entry = *impl->map->mm.base[impl->finger.backNode()].entry;
|
|
impl->map->move<std::memory_order_acquire>(impl->finger, impl->version,
|
|
false);
|
|
if (impl->finger.searchPathSize() > 0) {
|
|
materializeMutations(impl, nullptr, &entry);
|
|
}
|
|
} while (impl->mutationCount == 0);
|
|
impl->mutationIndex = impl->mutationCount - 1;
|
|
return *this;
|
|
}
|
|
|
|
VersionedMap::Iterator VersionedMap::Iterator::operator--(int) {
|
|
auto result = *this;
|
|
--*this;
|
|
return result;
|
|
}
|
|
|
|
bool VersionedMap::Iterator::operator==(const Iterator &other) const {
|
|
assert(impl->map == other.impl->map);
|
|
assert(impl->version == other.impl->version);
|
|
if (impl->finger.searchPathSize() == 0 ||
|
|
other.impl->finger.searchPathSize() == 0) {
|
|
return impl->finger.searchPathSize() == other.impl->finger.searchPathSize();
|
|
}
|
|
return impl->finger.backNode() == other.impl->finger.backNode() &&
|
|
impl->mutationIndex == other.impl->mutationIndex;
|
|
}
|
|
|
|
void VersionedMap::Impl::firstGeq(const Key *key, const int64_t *version,
|
|
Iterator *iterator, int count) const {
|
|
// TODO ILP!
|
|
auto handle = roots.getThreadSafeHandle();
|
|
for (int i = 0; i < count; ++i) {
|
|
|
|
uint32_t root;
|
|
if (iterator[i].impl != nullptr) {
|
|
root = iterator[i].impl->version == version[i]
|
|
? iterator[i].impl->finger.root()
|
|
: handle.rootForVersion(version[i]);
|
|
iterator[i].impl->~Impl();
|
|
new (iterator[i].impl) Iterator::Impl();
|
|
} else {
|
|
root = handle.rootForVersion(version[i]);
|
|
iterator[i].impl =
|
|
new (safe_malloc(sizeof(Iterator::Impl))) Iterator::Impl();
|
|
}
|
|
Finger &finger = iterator[i].impl->finger;
|
|
search<std::memory_order_acquire>(key[i], root, version[i], finger);
|
|
|
|
if (finger.searchPathSize() == 0) {
|
|
iterator[i].impl->cmp = 1;
|
|
} else if (finger.backNode() == 0) {
|
|
iterator[i].impl->cmp = 1;
|
|
move<std::memory_order_acquire>(finger, version[i], true);
|
|
if (finger.searchPathSize() > 0) {
|
|
assert(finger.backNode() != 0);
|
|
}
|
|
} else {
|
|
iterator[i].impl->cmp = 0;
|
|
}
|
|
|
|
iterator[i].impl->version = version[i];
|
|
iterator[i].impl->map = this;
|
|
|
|
const Entry *prev = nullptr;
|
|
for (;;) {
|
|
if (finger.searchPathSize() > 0) {
|
|
materializeMutations(iterator[i].impl, prev, nullptr);
|
|
if (iterator[i].impl->mutationCount > 0) {
|
|
break;
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
prev = iterator[i].impl->map->mm.base[finger.backNode()].entry;
|
|
iterator[i].impl->map->move<std::memory_order_acquire>(
|
|
finger, iterator[i].impl->version, true);
|
|
}
|
|
if (iterator[i].impl->cmp == 0) {
|
|
iterator[i].impl->mutationIndex = iterator[i].impl->mutationCount - 1;
|
|
} else {
|
|
iterator[i].impl->mutationIndex = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool VersionedMap::Iterator::operator!=(const Iterator &other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
int VersionedMap::Iterator::cmp() const { return impl->cmp; }
|
|
|
|
void VersionedMap::firstGeq(const Key *key, const int64_t *version,
|
|
Iterator *iterator, int count) const {
|
|
impl->firstGeq(key, version, iterator, count);
|
|
}
|
|
|
|
VersionedMap::Iterator VersionedMap::begin(int64_t version) const {
|
|
VersionedMap::Iterator result;
|
|
result.impl = new (safe_malloc(sizeof(Iterator::Impl))) Iterator::Impl();
|
|
result.impl->cmp = 1;
|
|
|
|
bool ignored;
|
|
result.impl->finger.push(
|
|
impl->roots.getThreadSafeHandle().rootForVersion(version), ignored);
|
|
if (result.impl->finger.backNode() == 0) {
|
|
result.impl->finger.pop();
|
|
} else {
|
|
uint32_t c;
|
|
while ((c = impl->child<std::memory_order_acquire>(
|
|
result.impl->finger.backNode(), false, version)) != 0) {
|
|
result.impl->finger.push(c, false);
|
|
}
|
|
}
|
|
result.impl->map = impl;
|
|
|
|
const Entry *prev = nullptr;
|
|
for (;;) {
|
|
if (result.impl->finger.searchPathSize() > 0) {
|
|
materializeMutations(result.impl, prev, nullptr);
|
|
if (result.impl->mutationCount > 0) {
|
|
break;
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
prev = result.impl->map->mm.base[result.impl->finger.backNode()].entry;
|
|
result.impl->map->move<std::memory_order_acquire>(
|
|
result.impl->finger, result.impl->version, true);
|
|
}
|
|
result.impl->mutationIndex = 0;
|
|
|
|
result.impl->version = version;
|
|
return result;
|
|
}
|
|
|
|
VersionedMap::Iterator VersionedMap::end(int64_t version) const {
|
|
VersionedMap::Iterator result;
|
|
result.impl = new (safe_malloc(sizeof(Iterator::Impl))) Iterator::Impl();
|
|
result.impl->cmp = 1;
|
|
result.impl->map = impl;
|
|
result.impl->mutationIndex = 0;
|
|
result.impl->version = version;
|
|
return result;
|
|
}
|
|
|
|
int64_t VersionedMap::getVersion() const { return impl->latestVersion; }
|
|
|
|
int64_t VersionedMap::getOldestVersion() const { return impl->oldestVersion; }
|
|
|
|
void VersionedMap::setOldestVersion(int64_t oldestVersion) {
|
|
impl->setOldestVersion(oldestVersion);
|
|
}
|
|
|
|
int64_t VersionedMap::getBytes() const { return impl->getBytes(); }
|
|
|
|
// ==================== END IMPLEMENTATION ====================
|
|
|
|
// GCOVR_EXCL_START
|
|
|
|
inline void VersionedMap::Impl::printInOrder(int64_t version) {
|
|
printInOrderHelper(version,
|
|
roots.getThreadSafeHandle().rootForVersion(version), 0);
|
|
}
|
|
|
|
inline void VersionedMap::Impl::printInOrderHelper(int64_t version,
|
|
uint32_t node, int depth) {
|
|
if (node == 0) {
|
|
return;
|
|
}
|
|
printInOrderHelper(version,
|
|
child<std::memory_order_relaxed>(node, false, version),
|
|
depth + 1);
|
|
for (int i = 0; i < depth; ++i) {
|
|
printf(" ");
|
|
}
|
|
printf("node %u: ", node);
|
|
printf("%.*s", mm.base[node].entry->keyLen, mm.base[node].entry->getKey());
|
|
if (mm.base[node].entry->valLen >= 0) {
|
|
printf(" -> '%.*s' @ %" PRId64, mm.base[node].entry->valLen,
|
|
mm.base[node].entry->getVal(), mm.base[node].entry->pointVersion);
|
|
} else {
|
|
printf(" <cleared @ %" PRId64 ">", mm.base[node].entry->pointVersion);
|
|
}
|
|
if (mm.base[node].entry->clearTo()) {
|
|
printf(" <clearTo @ %" PRId64 ">", mm.base[node].entry->rangeVersion);
|
|
}
|
|
printf("\n");
|
|
VersionedMap::Impl::printInOrderHelper(
|
|
version, child<std::memory_order_relaxed>(node, true, version),
|
|
depth + 1);
|
|
}
|
|
|
|
VersionedMap::Impl *cast(const VersionedMap &m) {
|
|
VersionedMap::Impl *result;
|
|
memcpy(&result, &m, sizeof(void *));
|
|
return result;
|
|
}
|
|
|
|
#if SHOW_MEMORY
|
|
struct __attribute__((visibility("default"))) PeakPrinter {
|
|
~PeakPrinter() {
|
|
printf("--- versioned_map ---\n");
|
|
printf("malloc bytes: %g\n", double(mallocBytes));
|
|
printf("Peak malloc bytes: %g\n", double(peakMallocBytes));
|
|
printf("mmap bytes: %g\n", double(mmapBytes));
|
|
printf("Peak mmap bytes: %g\n", double(peakMmapBytes));
|
|
}
|
|
} peakPrinter;
|
|
#endif
|
|
|
|
} // namespace weaselab
|
|
|
|
#ifdef ENABLE_MAIN
|
|
#include <nanobench.h>
|
|
|
|
#include "PrintMutation.h"
|
|
|
|
void breakpoint_me() {}
|
|
|
|
int main() {
|
|
{
|
|
weaselab::VersionedMap versionedMap{0};
|
|
printf("Bytes: %" PRId64 "\n", versionedMap.getBytes());
|
|
{
|
|
weaselab::VersionedMap::Mutation m[] = {
|
|
{(const uint8_t *)"a", nullptr, 1, 0, weaselab::VersionedMap::Set},
|
|
{(const uint8_t *)"b", nullptr, 1, 0, weaselab::VersionedMap::Set},
|
|
{(const uint8_t *)"c", nullptr, 1, 0, weaselab::VersionedMap::Set},
|
|
{(const uint8_t *)"d", nullptr, 1, 0, weaselab::VersionedMap::Set},
|
|
{(const uint8_t *)"e", nullptr, 1, 0, weaselab::VersionedMap::Set},
|
|
{(const uint8_t *)"f", nullptr, 1, 0, weaselab::VersionedMap::Set},
|
|
};
|
|
versionedMap.addMutations(m, sizeof(m) / sizeof(m[0]), 1);
|
|
}
|
|
printf("Bytes: %" PRId64 "\n", versionedMap.getBytes());
|
|
{
|
|
weaselab::VersionedMap::Mutation m[] = {
|
|
{(const uint8_t *)"a", (const uint8_t *)"d", 1, 1,
|
|
weaselab::VersionedMap::Clear},
|
|
};
|
|
versionedMap.addMutations(m, sizeof(m) / sizeof(m[0]), 2);
|
|
}
|
|
{
|
|
weaselab::VersionedMap::Mutation m[] = {
|
|
{(const uint8_t *)"b", (const uint8_t *)"", 1, 0,
|
|
weaselab::VersionedMap::Clear},
|
|
};
|
|
versionedMap.addMutations(m, sizeof(m) / sizeof(m[0]), 3);
|
|
}
|
|
const int64_t v = 3;
|
|
cast(versionedMap)->printInOrder(v);
|
|
weaselab::VersionedMap::Key k = {(const uint8_t *)"a", 2};
|
|
weaselab::VersionedMap::Iterator iter;
|
|
versionedMap.firstGeq(&k, &v, &iter, 1);
|
|
printf("Bytes: %" PRId64 "\n", versionedMap.getBytes());
|
|
versionedMap.setOldestVersion(2);
|
|
printf("Bytes: %" PRId64 "\n", versionedMap.getBytes());
|
|
breakpoint_me();
|
|
for (auto end = versionedMap.end(v); iter != end; ++iter) {
|
|
printMutation(*iter);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
// GCOVR_EXCL_STOP
|