#pragma once #include #include #include #include #include #include #include #include #include #include #include // Topology configuration - separates stage layout from pipeline logic struct PipelineTopology { std::vector threads_per_stage; int num_stages; int total_threads; PipelineTopology(const std::vector &threads) : threads_per_stage(threads), num_stages(threads.size()) { assert(!threads.empty()); assert(std::all_of(threads.begin(), threads.end(), [](int t) { return t > 0; })); total_threads = std::accumulate(threads.begin(), threads.end(), 0); } // Get the flat array offset for the first thread of a stage int stage_offset(int stage) const { assert(stage >= 0 && stage < num_stages); int offset = 0; for (int i = 0; i < stage; ++i) { offset += threads_per_stage[i]; } return offset; } // Get flat array index for a specific thread in a stage int thread_index(int stage, int thread) const { assert(stage >= 0 && stage < num_stages); assert(thread >= 0 && thread < threads_per_stage[stage]); return stage_offset(stage) + thread; } // Get number of threads in the previous stage (for initialization) int prev_stage_thread_count(int stage) const { return (stage == 0) ? 1 : threads_per_stage[stage - 1]; } }; // Wait strategies for controlling thread blocking behavior when no work is // available enum class WaitStrategy { // Never block - threads busy-wait (spin) when no work available. // Stage threads will always use 100% CPU even when idle. // Requires dedicated CPU cores to avoid scheduler thrashing. // Use when: latency is critical and you have spare cores. Never, // Block only when all upstream stages are idle (no new work entering // pipeline). // Downstream threads busy-wait if upstream has work but not for their stage. // Eliminates futex notifications between stages, reduces to 0% CPU when idle. // Requires dedicated cores to avoid priority inversion when pipeline has // work. // Use when: high throughput with spare cores and sustained workloads. WaitIfUpstreamIdle, // Block when individual stages are empty (original behavior). // Each stage waits independently on its input sources. // Safe for shared CPU environments, works well with variable workloads. // Use when: general purpose, shared cores, or unpredictable workloads. WaitIfStageEmpty, }; // Core thread state - extracted from pipeline concerns struct ThreadState { // Where this thread has published up to alignas(128) std::atomic pops{0}; // Where this thread will publish to the next time it publishes, or if idle // where it has published to uint32_t local_pops{0}; // Where the previous stage's threads have published up to last we checked std::vector last_push_read; bool last_stage; }; // Core pipeline algorithms - independent of storage layout namespace PipelineAlgorithms { // Calculate how many items can be safely acquired from a stage template uint32_t calculate_safe_len(const PipelineTopology &topology, std::vector &all_threads, std::atomic &pushes, int stage, int thread_in_stage, bool may_block) { int thread_idx = topology.thread_index(stage, thread_in_stage); auto &thread = all_threads[thread_idx]; uint32_t safe_len = UINT32_MAX; // Check all threads from the previous stage (or pushes for stage 0) int prev_stage_threads = topology.prev_stage_thread_count(stage); for (int i = 0; i < prev_stage_threads; ++i) { auto &last_push = (stage == 0) ? pushes : all_threads[topology.thread_index(stage - 1, i)].pops; if (thread.last_push_read[i] == thread.local_pops) { // Re-read with memory order and try again thread.last_push_read[i] = last_push.load(std::memory_order_acquire); if (thread.last_push_read[i] == thread.local_pops) { if (!may_block) { return 0; } if constexpr (wait_strategy == WaitStrategy::Never) { // Empty - busy wait } else if constexpr (wait_strategy == WaitStrategy::WaitIfUpstreamIdle) { auto push = pushes.load(std::memory_order_relaxed); if (push == thread.local_pops) { pushes.wait(push, std::memory_order_relaxed); } } else { static_assert(wait_strategy == WaitStrategy::WaitIfStageEmpty); last_push.wait(thread.last_push_read[i], std::memory_order_relaxed); } thread.last_push_read[i] = last_push.load(std::memory_order_acquire); } } safe_len = std::min(safe_len, thread.last_push_read[i] - thread.local_pops); } return safe_len; } // Update thread pops counter after processing template void update_thread_pops(const PipelineTopology &topology, std::vector &all_threads, int stage, int thread_in_stage, uint32_t local_pops) { int thread_idx = topology.thread_index(stage, thread_in_stage); auto &thread_state = all_threads[thread_idx]; if constexpr (wait_strategy == WaitStrategy::WaitIfStageEmpty) { thread_state.pops.store(local_pops, std::memory_order_seq_cst); thread_state.pops.notify_all(); } else if (thread_state.last_stage) { thread_state.pops.store(local_pops, std::memory_order_seq_cst); thread_state.pops.notify_all(); } else { thread_state.pops.store(local_pops, std::memory_order_release); } } // Check if producer can proceed without stomping the ring buffer // Returns: 0 = can proceed, 1 = should retry, 2 = cannot proceed (return empty // guard) inline int check_producer_capacity(const PipelineTopology &topology, std::vector &all_threads, uint32_t slot, uint32_t size, uint32_t slot_count, bool block) { // Check against last stage threads int last_stage = topology.num_stages - 1; int last_stage_offset = topology.stage_offset(last_stage); int last_stage_thread_count = topology.threads_per_stage[last_stage]; for (int i = 0; i < last_stage_thread_count; ++i) { auto &thread = all_threads[last_stage_offset + i]; uint32_t pops = thread.pops.load(std::memory_order_acquire); if (slot + size - pops > slot_count) { if (!block) { return 2; // Cannot proceed, caller should return empty guard } thread.pops.wait(pops, std::memory_order_relaxed); return 1; // Should retry } } return 0; // Can proceed } } // namespace PipelineAlgorithms // Multi-stage lock-free pipeline for high-throughput inter-thread // communication. // // Overview: // - Items flow from producers through multiple processing stages (stage 0 -> // stage 1 -> ... -> final stage) // - Each stage can have multiple worker threads processing items in parallel // - Uses a shared ring buffer with atomic counters for lock-free coordination // - Supports batch processing for efficiency // // Architecture: // - Producers: External threads that add items to the pipeline via push() // - Stages: Processing stages numbered 0, 1, 2, ... that consume items via // acquire() // - Items flow: Producers -> Stage 0 -> Stage 1 -> ... -> Final Stage // // Usage Pattern: // // Producer threads (external to pipeline stages - add items for stage 0 to // consume): auto guard = pipeline.push(batchSize, /*block=*/true); for (auto& // item : guard.batch) { // // Initialize item data // } // // Guard destructor publishes batch to stage 0 consumers // // // Stage worker threads (process items and pass to next stage): // auto guard = pipeline.acquire(stageNum, threadId, maxBatch, // /*mayBlock=*/true); for (auto& item : guard.batch) { // // Process item // } // // Guard destructor marks items as consumed and available to next stage // // Memory Model: // - Ring buffer size must be power of 2 for efficient masking // - Actual ring slots accessed via: index & (slotCount - 1) // - 128-byte aligned atomics prevent false sharing between CPU cache lines // // Thread Safety: // - Fully lock-free using atomic operations with acquire/release memory // ordering // - Uses C++20 atomic wait/notify for efficient blocking when no work available // - RAII guards ensure proper cleanup even with exceptions // // Refactored Design: // - Topology configuration separated from pipeline logic // - Flattened thread storage replaces nested vectors // - Core algorithms extracted into pure functions // - Ready for compile-time static version implementation template struct ThreadPipeline { // Constructor now takes topology configuration ThreadPipeline(int lgSlotCount, const PipelineTopology &topo) : topology(topo), slot_count(1 << lgSlotCount), slot_count_mask(slot_count - 1), all_threads(topology.total_threads), ring(slot_count) { // Otherwise we can't tell the difference between full and empty assert(!(slot_count_mask & 0x80000000)); initialize_all_threads(); } // Legacy constructor for backward compatibility ThreadPipeline(int lgSlotCount, const std::vector &threadsPerStage) : ThreadPipeline(lgSlotCount, PipelineTopology(threadsPerStage)) {} ThreadPipeline(ThreadPipeline const &) = delete; ThreadPipeline &operator=(ThreadPipeline const &) = delete; ThreadPipeline(ThreadPipeline &&) = delete; ThreadPipeline &operator=(ThreadPipeline &&) = delete; struct Batch { Batch() : ring(), begin_(), end_() {} struct Iterator { using iterator_category = std::random_access_iterator_tag; using difference_type = std::ptrdiff_t; using value_type = T; using pointer = value_type *; using reference = value_type &; reference operator*() const { return (*ring)[index_ & (ring->size() - 1)]; } pointer operator->() const { return &(*ring)[index_ & (ring->size() - 1)]; } Iterator &operator++() { ++index_; return *this; } Iterator operator++(int) { auto tmp = *this; ++(*this); return tmp; } Iterator &operator--() { --index_; return *this; } Iterator operator--(int) { auto tmp = *this; --(*this); return tmp; } Iterator &operator+=(difference_type n) { index_ += n; return *this; } Iterator &operator-=(difference_type n) { index_ -= n; return *this; } Iterator operator+(difference_type n) const { return Iterator(index_ + n, ring); } Iterator operator-(difference_type n) const { return Iterator(index_ - n, ring); } difference_type operator-(const Iterator &rhs) const { assert(ring == rhs.ring); return static_cast(index_) - static_cast(rhs.index_); } friend Iterator operator+(difference_type n, const Iterator &iter) { return iter + n; } friend bool operator==(const Iterator &lhs, const Iterator &rhs) { assert(lhs.ring == rhs.ring); return lhs.index_ == rhs.index_; } friend bool operator!=(const Iterator &lhs, const Iterator &rhs) { assert(lhs.ring == rhs.ring); return lhs.index_ != rhs.index_; } friend bool operator<(const Iterator &lhs, const Iterator &rhs) { assert(lhs.ring == rhs.ring); // Handle potential uint32_t wraparound by using signed difference return static_cast(lhs.index_ - rhs.index_) < 0; } friend bool operator<=(const Iterator &lhs, const Iterator &rhs) { assert(lhs.ring == rhs.ring); return static_cast(lhs.index_ - rhs.index_) <= 0; } friend bool operator>(const Iterator &lhs, const Iterator &rhs) { assert(lhs.ring == rhs.ring); return static_cast(lhs.index_ - rhs.index_) > 0; } friend bool operator>=(const Iterator &lhs, const Iterator &rhs) { assert(lhs.ring == rhs.ring); return static_cast(lhs.index_ - rhs.index_) >= 0; } /// Returns the ring buffer index (0 to ring->size()-1) for this iterator /// position. Useful for distributing work across multiple threads by /// using modulo operations. uint32_t index() const { return index_ & (ring->size() - 1); } private: Iterator(uint32_t index, std::vector *const ring) : index_(index), ring(ring) {} friend struct Batch; uint32_t index_; std::vector *const ring; }; [[nodiscard]] Iterator begin() { return Iterator(begin_, ring); } [[nodiscard]] Iterator end() { return Iterator(end_, ring); } [[nodiscard]] size_t size() const { return end_ - begin_; } [[nodiscard]] bool empty() const { return end_ == begin_; } T &operator[](uint32_t n) { return (*ring)[(begin_ + n) & (ring->size() - 1)]; } private: friend struct ThreadPipeline; Batch(std::vector *const ring, uint32_t begin_, uint32_t end_) : ring(ring), begin_(begin_), end_(end_) {} std::vector *const ring; uint32_t begin_; uint32_t end_; }; private: // Pipeline configuration PipelineTopology topology; // Core state alignas(128) std::atomic slots{0}; alignas(128) std::atomic pushes{0}; const uint32_t slot_count; const uint32_t slot_count_mask; // Flattened thread storage - single array instead of nested vectors std::vector all_threads; // Ring buffer std::vector ring; void initialize_all_threads() { for (int stage = 0; stage < topology.num_stages; ++stage) { int stage_offset = topology.stage_offset(stage); int stage_thread_count = topology.threads_per_stage[stage]; int prev_stage_threads = topology.prev_stage_thread_count(stage); bool is_last_stage = (stage == topology.num_stages - 1); for (int thread = 0; thread < stage_thread_count; ++thread) { auto &thread_state = all_threads[stage_offset + thread]; thread_state.last_stage = is_last_stage; thread_state.last_push_read = std::vector(prev_stage_threads); } } } Batch acquire_helper(int stage, int thread, uint32_t maxBatch, bool may_block) { int thread_idx = topology.thread_index(stage, thread); auto &thread_state = all_threads[thread_idx]; uint32_t begin = thread_state.local_pops & slot_count_mask; uint32_t len = PipelineAlgorithms::calculate_safe_len( topology, all_threads, pushes, stage, thread, may_block); if (maxBatch != 0) { len = std::min(len, maxBatch); } if (len == 0) { return Batch{}; } auto result = Batch{&ring, begin, begin + len}; thread_state.local_pops += len; return result; } public: struct StageGuard { Batch batch; ~StageGuard() { if (cleanup_func) { cleanup_func(); } } StageGuard(StageGuard const &) = delete; StageGuard &operator=(StageGuard const &) = delete; StageGuard(StageGuard &&other) noexcept : batch(other.batch), cleanup_func(std::exchange(other.cleanup_func, nullptr)) {} StageGuard &operator=(StageGuard &&other) noexcept { batch = other.batch; cleanup_func = std::exchange(other.cleanup_func, nullptr); return *this; } private: friend struct ThreadPipeline; std::function cleanup_func; StageGuard(Batch batch, std::function cleanup) : batch(batch), cleanup_func(batch.empty() ? nullptr : cleanup) {} }; struct ProducerGuard { Batch batch; ~ProducerGuard() { if (tp == nullptr) { return; } // Wait for earlier slots to finish being published, since publishing // implies that all previous slots were also published. for (;;) { uint32_t p = tp->pushes.load(std::memory_order_acquire); if (p == old_slot) { break; } tp->pushes.wait(p, std::memory_order_relaxed); } // Publish. seq_cst so that the notify can't be ordered before the store tp->pushes.store(new_slot, std::memory_order_seq_cst); // We have to notify every time, since we don't know if this is the last // push ever tp->pushes.notify_all(); } private: friend struct ThreadPipeline; ProducerGuard() : batch(), tp() {} ProducerGuard(Batch batch, ThreadPipeline *tp, uint32_t old_slot, uint32_t new_slot) : batch(batch), tp(tp), old_slot(old_slot), new_slot(new_slot) {} ThreadPipeline *const tp; uint32_t old_slot; uint32_t new_slot; }; // Acquire a batch of items for processing by a consumer thread. // stage: which processing stage (0 = first consumer stage after producers) // thread: thread ID within the stage (0 to threadsPerStage[stage]-1) // maxBatch: maximum items to acquire (0 = no limit) // mayBlock: whether to block waiting for items (false = return empty batch if // none available) Returns: StageGuard with batch of items to process [[nodiscard]] StageGuard acquire(int stage, int thread, int maxBatch = 0, bool mayBlock = true) { assert(stage >= 0 && stage < topology.num_stages); assert(thread >= 0 && thread < topology.threads_per_stage[stage]); auto batch = acquire_helper(stage, thread, maxBatch, mayBlock); // Create cleanup function that will update thread state on destruction int thread_idx = topology.thread_index(stage, thread); uint32_t local_pops = all_threads[thread_idx].local_pops; auto cleanup = [this, stage, thread, local_pops]() { PipelineAlgorithms::update_thread_pops( topology, all_threads, stage, thread, local_pops); }; return StageGuard{std::move(batch), cleanup}; } // Reserve slots in the ring buffer for a producer thread to fill with items. // This is used by producer threads to add new items to stage 0 of the // pipeline. // // size: number of slots to reserve (must be > 0 and <= ring buffer capacity) // block: if true, blocks when ring buffer is full; if false, returns empty // guard Returns: ProducerGuard with exclusive access to reserved slots // // Usage: Fill items in the returned batch, then let guard destructor publish // them. The guard destructor ensures items are published in the correct // order. // // Preconditions: // - size > 0 (must request at least one slot) // - size <= slotCount (cannot request more slots than ring buffer capacity) // Violating preconditions results in program termination via abort(). [[nodiscard]] ProducerGuard push(uint32_t const size, bool block) { if (size == 0) { std::abort(); } if (size > slot_count) { std::abort(); } uint32_t slot; uint32_t begin; for (;;) { slot = slots.load(std::memory_order_relaxed); begin = slot & slot_count_mask; // Use algorithm function to check capacity int capacity_result = PipelineAlgorithms::check_producer_capacity( topology, all_threads, slot, size, slot_count, block); if (capacity_result == 1) { continue; // Retry } if (capacity_result == 2) { return ProducerGuard{}; // Cannot proceed, return empty guard } // capacity_result == 0, can proceed if (slots.compare_exchange_weak(slot, slot + size, std::memory_order_relaxed, std::memory_order_relaxed)) { break; } } return ProducerGuard{Batch{&ring, begin, begin + size}, this, slot, slot + size}; } };