#include "config.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include std::atomic shutdown_requested{false}; #ifndef __has_feature #define __has_feature(x) 0 #endif void signal_handler(int sig) { if (sig == SIGTERM || sig == SIGINT) { shutdown_requested.store(true, std::memory_order_relaxed); } } // Adapted from getaddrinfo man page int getListenFd(const char *node, const char *service) { struct addrinfo hints; struct addrinfo *result, *rp; int sfd, s; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */ hints.ai_socktype = SOCK_STREAM; /* stream socket */ hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */ hints.ai_protocol = 0; /* Any protocol */ hints.ai_canonname = nullptr; hints.ai_addr = nullptr; hints.ai_next = nullptr; s = getaddrinfo(node, service, &hints, &result); if (s != 0) { fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s)); abort(); } /* getaddrinfo() returns a list of address structures. Try each address until we successfully bind(2). If socket(2) (or bind(2)) fails, we (close the socket and) try the next address. */ for (rp = result; rp != nullptr; rp = rp->ai_next) { sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (sfd == -1) { continue; } int val = 1; setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val)); // Set socket to non-blocking for graceful shutdown int flags = fcntl(sfd, F_GETFL, 0); if (flags != -1) { fcntl(sfd, F_SETFL, flags | O_NONBLOCK); } if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0) { break; /* Success */ } close(sfd); } freeaddrinfo(result); /* No longer needed */ if (rp == nullptr) { /* No address succeeded */ fprintf(stderr, "Could not bind\n"); abort(); } int rv = listen(sfd, SOMAXCONN); if (rv) { perror("listen"); abort(); } return sfd; } int getAcceptFd(int listenFd, struct sockaddr_storage *addr) { // Use sockaddr_storage (not sockaddr) to handle both IPv4 and IPv6 socklen_t addrlen = sizeof(sockaddr_storage); int fd = accept4(listenFd, (struct sockaddr *)addr, &addrlen, SOCK_NONBLOCK); return fd; } // Connection lifecycle. Only one of these is the case at a time // - Created on an accept thread from a call to accept // - Waiting on connection fd to be readable/writable // - Owned by a network thread, which drains readable and writable bytes // - Owned by a thread in the request processing pipeline // - Closed by a network thread according to http protocol // // Since only one thread owns a connection at a time, no synchronization is // necessary // Connection ownership model: // - Created by accept thread, transferred to epoll via raw pointer // - Network threads claim ownership by wrapping raw pointer in unique_ptr // - Network threads transfer back to epoll by releasing unique_ptr to raw // pointer // - RAII cleanup happens if network thread doesn't transfer back struct Connection { const int fd; const int64_t id; struct sockaddr_storage addr; // sockaddr_storage handles IPv4/IPv6 Connection(struct sockaddr_storage addr, int fd, int64_t id) : fd(fd), id(id), addr(addr) {} ~Connection() { int e = close(fd); if (e == -1) { perror("close"); abort(); } } struct Task { std::string s; bool closeConnection{false}; int written = 0; }; std::deque tasks; void readBytes(size_t max_request_size) { // Use smaller buffer size but respect max request size // TODO revisit size_t buf_size = std::min(size_t(4096), max_request_size); std::vector buf(buf_size); for (;;) { int r = read(fd, buf.data(), buf.size()); if (r == -1) { if (errno == EINTR) { continue; } if (errno == EAGAIN) { return; } perror("read"); goto close_connection; } if (r == 0) { goto close_connection; } // "pump parser" // TODO revisit tasks.emplace_back(std::string{buf.data(), size_t(r)}); } close_connection: tasks.emplace_back(std::string{}, true); } bool writeBytes() { while (!tasks.empty()) { auto &front = tasks.front(); if (front.closeConnection) { return true; } int w; for (;;) { w = write(fd, front.s.data() + front.written, front.s.size() - front.written); if (w == -1) { if (errno == EINTR) { continue; // Standard practice: retry on signal interruption } if (errno == EAGAIN) { return false; } perror("write"); return true; } break; } assert(w != 0); front.written += w; if (front.written == int(front.s.size())) { tasks.pop_front(); } } return false; } #if __has_feature(thread_sanitizer) void tsan_acquire() { tsan_sync.load(std::memory_order_acquire); } void tsan_release() { tsan_sync.store(0, std::memory_order_release); } std::atomic tsan_sync; #else void tsan_acquire() {} void tsan_release() {} #endif }; int main(int argc, char *argv[]) { std::string config_file = "config.toml"; if (argc > 1) { config_file = argv[1]; } auto config = weaseldb::ConfigParser::load_from_file(config_file); if (!config) { std::cerr << "Failed to load config from: " << config_file << std::endl; std::cerr << "Using default configuration..." << std::endl; config = weaseldb::Config{}; } std::cout << "Configuration loaded successfully:" << std::endl; std::cout << "Server bind address: " << config->server.bind_address << std::endl; std::cout << "Server port: " << config->server.port << std::endl; std::cout << "Max request size: " << config->server.max_request_size_bytes << " bytes" << std::endl; std::cout << "Accept threads: " << config->server.accept_threads << std::endl; std::cout << "Network threads: " << config->server.network_threads << " (0 = auto)" << std::endl; std::cout << "Event batch size: " << config->server.event_batch_size << std::endl; std::cout << "Min request ID length: " << config->commit.min_request_id_length << std::endl; std::cout << "Request ID retention: " << config->commit.request_id_retention_hours.count() << " hours" << std::endl; std::cout << "Subscription buffer size: " << config->subscription.max_buffer_size_bytes << " bytes" << std::endl; std::cout << "Keepalive interval: " << config->subscription.keepalive_interval.count() << " seconds" << std::endl; signal(SIGPIPE, SIG_IGN); signal(SIGTERM, signal_handler); signal(SIGINT, signal_handler); int sockfd = getListenFd(config->server.bind_address.c_str(), std::to_string(config->server.port).c_str()); std::vector threads; int epollfd = epoll_create(/*ignored*/ 1); if (epollfd == -1) { perror("epoll_create"); abort(); } // Network threads - use config value, fallback to hardware concurrency int networkThreads = config->server.network_threads; if (networkThreads == 0) { // TODO revisit networkThreads = std::thread::hardware_concurrency(); if (networkThreads == 0) networkThreads = 1; // ultimate fallback } // Event batch size from configuration for (int i = 0; i < networkThreads; ++i) { threads.emplace_back( [epollfd, i, max_request_size = config->server.max_request_size_bytes, event_batch_size = config->server.event_batch_size]() { pthread_setname_np(pthread_self(), ("network-" + std::to_string(i)).c_str()); while (!shutdown_requested.load(std::memory_order_relaxed)) { std::vector events(event_batch_size); int eventCount; for (;;) { eventCount = epoll_wait(epollfd, events.data(), event_batch_size, 1000 /* 1 second timeout */); if (eventCount == -1) { if (errno == EINTR) { continue; } perror("epoll_wait"); abort(); } break; } if (eventCount == 0) { // Timeout occurred, check shutdown flag again continue; } for (int i = 0; i < eventCount; ++i) { // Take ownership from epoll: raw pointer -> unique_ptr std::unique_ptr conn{ static_cast(events[i].data.ptr)}; conn->tsan_acquire(); events[i].data.ptr = nullptr; // Clear epoll pointer (we own it now) const int fd = conn->fd; if (events[i].events & (EPOLLERR | EPOLLHUP | EPOLLRDHUP)) { // Connection closed or error occurred - unique_ptr destructor // cleans up continue; } if (events[i].events & EPOLLIN) { conn->readBytes(max_request_size); } if (events[i].events & EPOLLOUT) { bool done = conn->writeBytes(); if (done) { continue; } } if (conn->tasks.empty()) { // Transfer back to epoll instance. This thread or another // thread will wake when fd is ready events[i].events = EPOLLIN | EPOLLONESHOT | EPOLLRDHUP; } else { events[i].events = EPOLLOUT | EPOLLONESHOT | EPOLLRDHUP; } // Transfer ownership back to epoll: unique_ptr -> raw pointer conn->tsan_release(); events[i].data.ptr = conn.release(); // epoll now owns the connection int e = epoll_ctl(epollfd, EPOLL_CTL_MOD, fd, &events[i]); if (e == -1) { perror("epoll_ctl"); abort(); // Process termination - OS cleans up leaked connection } } } }); } std::atomic connectionId{0}; // Accept threads from configuration int acceptThreads = config->server.accept_threads; for (int i = 0; i < acceptThreads; ++i) { threads.emplace_back([epollfd, i, sockfd, &connectionId]() { pthread_setname_np(pthread_self(), ("accept-" + std::to_string(i)).c_str()); // Call accept in a loop while (!shutdown_requested.load(std::memory_order_relaxed)) { struct sockaddr_storage addr; int fd = getAcceptFd(sockfd, &addr); if (fd == -1) { if (errno == EINTR || errno == EAGAIN || errno == EWOULDBLOCK) { // TODO revisit std::this_thread::sleep_for(std::chrono::milliseconds(10)); continue; } perror("accept4"); continue; } auto conn = std::make_unique( addr, fd, connectionId.fetch_add(1, std::memory_order_relaxed)); // Transfer new connection to epoll ownership struct epoll_event event{}; event.events = EPOLLIN | EPOLLONESHOT | EPOLLRDHUP; // Listen for reads and disconnects conn->tsan_release(); event.data.ptr = conn.release(); // epoll now owns the connection int e = epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &event); if (e == -1) { perror("epoll_ctl"); abort(); // Process termination - OS cleans up leaked connection } } }); } for (auto &t : threads) { t.join(); } return 0; }