#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef __has_feature #define __has_feature(x) 0 #endif #ifndef __has_feature #define __has_feature(x) 0 #endif namespace { double now() { struct timespec t; int e = clock_gettime(CLOCK_MONOTONIC_RAW, &t); if (e == -1) { perror("clock_gettime"); abort(); } return double(t.tv_sec) + (1e-9 * double(t.tv_nsec)); } void fd_set_nb(int fd) { errno = 0; int flags = fcntl(fd, F_GETFL, 0); if (errno) { perror("fcntl"); abort(); } flags |= O_NONBLOCK; errno = 0; (void)fcntl(fd, F_SETFL, flags); if (errno) { perror("fcntl"); abort(); } } int getConnectFd(const char *node, const char *service) { struct addrinfo hints; struct addrinfo *result, *rp; int sfd, s; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */ hints.ai_socktype = SOCK_STREAM; /* stream socket */ s = getaddrinfo(node, service, &hints, &result); if (s != 0) { fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s)); abort(); } for (rp = result; rp != nullptr; rp = rp->ai_next) { sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (sfd == -1) { continue; } if (connect(sfd, rp->ai_addr, rp->ai_addrlen) == 0) { break; /* Success */ } close(sfd); } freeaddrinfo(result); /* No longer needed */ if (rp == nullptr) { /* No address succeeded */ return -1; } fd_set_nb(sfd); return sfd; } int getConnectFdUnix(const char *socket_name) { int sfd = socket(AF_UNIX, SOCK_STREAM, 0); if (sfd == -1) { perror("socket"); abort(); } struct sockaddr_un addr; memset(&addr, 0, sizeof(addr)); addr.sun_family = AF_UNIX; strncpy(addr.sun_path, socket_name, sizeof(addr.sun_path) - 1); int e = connect(sfd, (struct sockaddr *)&addr, sizeof(addr)); if (e == -1) { perror("connect"); abort(); } fd_set_nb(sfd); return sfd; } constexpr int kConcurrency = 1000; constexpr int kRequestsPerConnection = 1; constexpr std::string_view kRequestFmt = "GET /ok HTTP/1.1\r\nX-Request-Id: %" PRIu64 "\r\n\r\n"; constexpr int kConnectThreads = std::min(2, kConcurrency); constexpr int kNetworkThreads = std::min(8, kConcurrency); constexpr int kEventBatchSize = 32; constexpr int kConnectionBufSize = 1024; sem_t connectionLimit; } // namespace // Connection lifecycle. Only one of these is the case at a time // - Created on a connect thread from a call to connect // - Waiting on connection fd to be readable/writable // - Owned by a network thread, which drains all readable and writable bytes // - Closed by a network thread according to http protocol // // Since only one thread owns a connection at a time, no synchronization is // necessary struct Connection { static const llhttp_settings_t settings; static std::atomic requestId; char buf[kRequestFmt.size() + 64]; std::string_view request; uint64_t currentRequestId; void initRequest() { currentRequestId = requestId.fetch_add(1, std::memory_order_relaxed); int len = snprintf(buf, sizeof(buf), kRequestFmt.data(), currentRequestId); if (len == -1 || len > int(sizeof(buf))) { abort(); } request = std::string_view{buf, size_t(len)}; } Connection(int fd, int64_t id) : fd(fd), id(id) { llhttp_init(&parser, HTTP_RESPONSE, &settings); parser.data = this; initRequest(); } bool error = false; ~Connection() { int e = close(fd); if (e == -1) { perror("close"); abort(); } { e = sem_post(&connectionLimit); if (e == -1) { perror("sem_post"); abort(); } } } bool readBytes() { for (;;) { char buf[kConnectionBufSize]; int r = read(fd, buf, sizeof(buf)); if (r == -1) { if (errno == EINTR) { continue; } if (errno == EAGAIN) { return false; } } if (r == 0) { llhttp_finish(&parser); return true; } auto e = llhttp_execute(&parser, buf, r); if (e != HPE_OK) { fprintf(stderr, "Parse error: %s %s\n", llhttp_errno_name(e), llhttp_get_error_reason(&parser)); error = true; return true; } if (responsesReceived == kRequestsPerConnection) { return true; } } } bool writeBytes() { for (;;) { int w; w = write(fd, request.data(), request.size()); if (w == -1) { if (errno == EINTR) { continue; } if (errno == EAGAIN) { return false; } perror("write"); error = true; return true; } assert(w != 0); request = request.substr(w, request.size() - w); if (request.empty()) { ++requestsSent; if (requestsSent == kRequestsPerConnection) { return true; } } } } const int fd; const int64_t id; #if __has_feature(thread_sanitizer) void tsan_acquire() { tsan_sync.load(std::memory_order_acquire); } void tsan_release() { tsan_sync.store(0, std::memory_order_release); } std::atomic tsan_sync; #else void tsan_acquire() {} void tsan_release() {} #endif private: int requestsSent = 0; int responsesReceived = 0; template static int callback(llhttp_t *parser) { auto &self = *static_cast(parser->data); return (self.*Method)(); } template static int callback(llhttp_t *parser, const char *at, size_t length) { auto &self = *static_cast(parser->data); return (self.*Method)(at, length); } uint64_t responseId = 0; int on_header_value(const char *data, size_t s) { for (int i = 0; i < int(s); ++i) { responseId = responseId * 10 + data[i] - '0'; } return 0; } int on_message_complete() { responseId = 0; ++responsesReceived; initRequest(); return 0; } llhttp_t parser; }; std::atomic Connection::requestId = {}; const llhttp_settings_t Connection::settings = []() { llhttp_settings_t settings; llhttp_settings_init(&settings); settings.on_message_complete = callback<&Connection::on_message_complete>; settings.on_header_value = callback<&Connection::on_header_value>; return settings; }(); int main() { signal(SIGPIPE, SIG_IGN); int epollfd = epoll_create(/*ignored*/ 1); if (epollfd == -1) { perror("epoll_create"); abort(); } int e = sem_init(&connectionLimit, 0, kConcurrency); if (e == -1) { perror("sem_init"); abort(); } std::atomic connectionId{0}; std::vector threads; for (int i = 0; i < kNetworkThreads; ++i) { threads.emplace_back([epollfd, i]() { pthread_setname_np(pthread_self(), ("network-" + std::to_string(i)).c_str()); for (;;) { struct epoll_event events[kEventBatchSize]; int eventCount; for (;;) { eventCount = epoll_wait(epollfd, events, kEventBatchSize, /*no timeout*/ -1); if (eventCount == -1) { if (errno == EINTR) { continue; } perror("epoll_wait"); abort(); } break; } for (int i = 0; i < eventCount; ++i) { std::unique_ptr conn{ static_cast(events[i].data.ptr)}; conn->tsan_acquire(); events[i].data.ptr = nullptr; const int fd = conn->fd; if (events[i].events & EPOLLERR) { // Done with connection continue; } if (events[i].events & EPOLLOUT) { bool finished = conn->writeBytes(); if (conn->error) { continue; } if (finished) { int e = shutdown(conn->fd, SHUT_WR); if (e == -1) { perror("shutdown"); conn->error = true; continue; } } } if (events[i].events & EPOLLIN) { bool finished = conn->readBytes(); if (conn->error) { continue; } if (finished) { continue; } } // Transfer back to epoll instance. This thread or another thread // will wake when fd is ready if (!conn->request.empty() && !conn->error) { events[i].events = EPOLLOUT | EPOLLONESHOT; } else { events[i].events = EPOLLIN | EPOLLONESHOT; } conn->tsan_release(); events[i].data.ptr = conn.release(); int e = epoll_ctl(epollfd, EPOLL_CTL_MOD, fd, &events[i]); if (e == -1) { perror("epoll_ctl"); abort(); } } } }); } for (int i = 0; i < kConnectThreads; ++i) { threads.emplace_back([epollfd, i, &connectionId]() { pthread_setname_np(pthread_self(), ("connect-" + std::to_string(i)).c_str()); for (;;) { int e; { e = sem_wait(&connectionLimit); if (e == -1) { perror("sem_wait"); abort(); } } // int fd = getConnectFd("127.0.0.1", "4569"); int fd = getConnectFdUnix("weaseldb.sock"); auto conn = std::make_unique( fd, connectionId.fetch_add(1, std::memory_order_relaxed)); // Post to epoll instance struct epoll_event event{}; event.events = EPOLLOUT | EPOLLONESHOT; conn->tsan_release(); event.data.ptr = conn.release(); e = epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &event); if (e == -1) { perror("epoll_ctl"); abort(); } } }); } for (double prevTime = now(), prevConnections = connectionId.load(std::memory_order_relaxed); ;) { sleep(1); double currTime = now(); double currConnections = connectionId.load(std::memory_order_relaxed); printf("req/s: %f\n", (currConnections - prevConnections) / (currTime - prevTime) * kRequestsPerConnection); } for (auto &thread : threads) { thread.join(); } }