#include "config.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef __has_feature #define __has_feature(x) 0 #endif // Adapted from getaddrinfo man page int getListenFd(const char *node, const char *service) { struct addrinfo hints; struct addrinfo *result, *rp; int sfd, s; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */ hints.ai_socktype = SOCK_STREAM; /* stream socket */ hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */ hints.ai_protocol = 0; /* Any protocol */ hints.ai_canonname = nullptr; hints.ai_addr = nullptr; hints.ai_next = nullptr; s = getaddrinfo(node, service, &hints, &result); if (s != 0) { fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s)); abort(); } /* getaddrinfo() returns a list of address structures. Try each address until we successfully bind(2). If socket(2) (or bind(2)) fails, we (close the socket and) try the next address. */ for (rp = result; rp != nullptr; rp = rp->ai_next) { sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (sfd == -1) { continue; } int val = 1; setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val)); if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0) { break; /* Success */ } close(sfd); } freeaddrinfo(result); /* No longer needed */ if (rp == nullptr) { /* No address succeeded */ fprintf(stderr, "Could not bind\n"); abort(); } int rv = listen(sfd, SOMAXCONN); if (rv) { perror("listen"); abort(); } return sfd; } int getAcceptFd(int listenFd, struct sockaddr *addr) { socklen_t addrlen = sizeof(sockaddr); int fd = accept4(listenFd, addr, &addrlen, SOCK_NONBLOCK); return fd; } // Connection lifecycle. Only one of these is the case at a time // - Created on an accept thread from a call to accept // - Waiting on connection fd to be readable/writable // - Owned by a network thread, which drains readable and writable bytes // - Owned by a thread in the request processing pipeline // - Closed by a network thread according to http protocol // // Since only one thread owns a connection at a time, no synchronization is // necessary struct Connection { const int fd; const int64_t id; struct sockaddr addr; Connection(struct sockaddr addr, int fd, int64_t id) : fd(fd), id(id), addr(addr) {} ~Connection() { int e = close(fd); if (e == -1) { perror("close"); abort(); } } struct Task { std::string s; bool closeConnection{false}; int written = 0; }; std::deque tasks; void readBytes() { for (;;) { // TODO make size configurable char buf[1024]; int r = read(fd, buf, sizeof(buf)); if (r == -1) { if (errno == EINTR) { continue; } if (errno == EAGAIN) { return; } perror("read"); goto close_connection; } if (r == 0) { goto close_connection; } // pump parser tasks.emplace_back(std::string{buf, size_t(r)}); } close_connection: tasks.emplace_back(std::string{}, true); } bool writeBytes() { while (!tasks.empty()) { auto &front = tasks.front(); if (front.closeConnection) { return true; } int w; for (;;) { w = write(fd, front.s.data() + front.written, front.s.size() - front.written); if (w == -1) { if (errno == EINTR) { continue; } if (errno == EAGAIN) { return false; } perror("write"); return true; } break; } assert(w != 0); front.written += w; if (front.written == int(front.s.size())) { tasks.pop_front(); } } return false; } #if __has_feature(thread_sanitizer) void tsan_acquire() { tsan_sync.load(std::memory_order_acquire); } void tsan_release() { tsan_sync.store(0, std::memory_order_release); } std::atomic tsan_sync; #else void tsan_acquire() {} void tsan_release() {} #endif }; int main(int argc, char *argv[]) { std::string config_file = "config.toml"; if (argc > 1) { config_file = argv[1]; } auto config = weaseldb::ConfigParser::load_from_file(config_file); if (!config) { std::cerr << "Failed to load config from: " << config_file << std::endl; std::cerr << "Using default configuration..." << std::endl; config = weaseldb::Config{}; } std::cout << "Configuration loaded successfully:" << std::endl; std::cout << "Server bind address: " << config->server.bind_address << std::endl; std::cout << "Server port: " << config->server.port << std::endl; std::cout << "Max request size: " << config->server.max_request_size_bytes << " bytes" << std::endl; std::cout << "Min request ID length: " << config->commit.min_request_id_length << std::endl; std::cout << "Request ID retention: " << config->commit.request_id_retention_hours.count() << " hours" << std::endl; std::cout << "Subscription buffer size: " << config->subscription.max_buffer_size_bytes << " bytes" << std::endl; std::cout << "Keepalive interval: " << config->subscription.keepalive_interval.count() << " seconds" << std::endl; signal(SIGPIPE, SIG_IGN); int sockfd = getListenFd(config->server.bind_address.c_str(), std::to_string(config->server.port).c_str()); std::vector threads; int epollfd = epoll_create(/*ignored*/ 1); if (epollfd == -1) { perror("epoll_create"); abort(); } // Network threads // TODO make configurable int networkThreads = 1; // TODO make configurable constexpr int kEventBatchSize = 10; for (int i = 0; i < networkThreads; ++i) { threads.emplace_back([epollfd, i]() { pthread_setname_np(pthread_self(), ("network-" + std::to_string(i)).c_str()); for (;;) { struct epoll_event events[kEventBatchSize]{}; int eventCount; for (;;) { eventCount = epoll_wait(epollfd, events, kEventBatchSize, /*no timeout*/ -1); if (eventCount == -1) { if (errno == EINTR) { continue; } perror("epoll_wait"); abort(); } break; } for (int i = 0; i < eventCount; ++i) { std::unique_ptr conn{ static_cast(events[i].data.ptr)}; conn->tsan_acquire(); events[i].data.ptr = nullptr; const int fd = conn->fd; if (events[i].events & EPOLLERR) { // Done with connection continue; } if (events[i].events & EPOLLOUT) { // Write bytes, maybe close connection bool finished = conn->writeBytes(); if (finished) { // Done with connection continue; } } if (events[i].events & EPOLLIN) { conn->readBytes(); } if (events[i].events & EPOLLOUT) { bool done = conn->writeBytes(); if (done) { continue; } } if (conn->tasks.empty()) { // Transfer back to epoll instance. This thread or another thread // will wake when fd is ready events[i].events = EPOLLIN | EPOLLONESHOT; } else { events[i].events = EPOLLOUT | EPOLLONESHOT; } conn->tsan_release(); events[i].data.ptr = conn.release(); int e = epoll_ctl(epollfd, EPOLL_CTL_MOD, fd, &events[i]); if (e == -1) { perror("epoll_ctl"); abort(); } } } }); } std::atomic connectionId{0}; // TODO make configurable int acceptThreads = 1; for (int i = 0; i < acceptThreads; ++i) { threads.emplace_back([epollfd, i, sockfd, &connectionId]() { pthread_setname_np(pthread_self(), ("accept-" + std::to_string(i)).c_str()); // Call accept in a loop for (;;) { struct sockaddr addr; int fd = getAcceptFd(sockfd, &addr); if (fd == -1) { perror("accept4"); continue; } auto conn = std::make_unique( addr, fd, connectionId.fetch_add(1, std::memory_order_relaxed)); // Post to epoll instance struct epoll_event event{}; event.events = EPOLLIN | EPOLLONESHOT; conn->tsan_release(); event.data.ptr = conn.release(); int e = epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &event); if (e == -1) { perror("epoll_ctl"); abort(); } } }); } for (auto &t : threads) { t.join(); } return 0; }