Files
weaseldb/src/thread_pipeline.hpp

436 lines
16 KiB
C++

#pragma once
#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <iterator>
#include <utility>
#include <vector>
// Wait strategies for controlling thread blocking behavior when no work is
// available
enum class WaitStrategy {
// Never block - threads busy-wait (spin) when no work available.
// Stage threads will always use 100% CPU even when idle.
// Requires dedicated CPU cores to avoid scheduler thrashing.
// Use when: latency is critical and you have spare cores.
Never,
// Block only when all upstream stages are idle (no new work entering
// pipeline).
// Downstream threads busy-wait if upstream has work but not for their stage.
// Eliminates futex notifications between stages, reduces to 0% CPU when idle.
// Requires dedicated cores to avoid priority inversion when pipeline has
// work.
// Use when: high throughput with spare cores and sustained workloads.
WaitIfUpstreamIdle,
// Block when individual stages are empty (original behavior).
// Each stage waits independently on its input sources.
// Safe for shared CPU environments, works well with variable workloads.
// Use when: general purpose, shared cores, or unpredictable workloads.
WaitIfStageEmpty,
};
// Multi-stage lock-free pipeline for high-throughput inter-thread
// communication.
//
// Overview:
// - Items flow from producers through multiple processing stages (stage 0 ->
// stage 1 -> ... -> final stage)
// - Each stage can have multiple worker threads processing items in parallel
// - Uses a shared ring buffer with atomic counters for lock-free coordination
// - Supports batch processing for efficiency
//
// Architecture:
// - Producers: External threads that add items to the pipeline via push()
// - Stages: Processing stages numbered 0, 1, 2, ... that consume items via
// acquire()
// - Items flow: Producers -> Stage 0 -> Stage 1 -> ... -> Final Stage
//
// Usage Pattern:
// // Producer threads (external to pipeline stages - add items for stage 0 to
// consume): auto guard = pipeline.push(batchSize, /*block=*/true); for (auto&
// item : guard.batch) {
// // Initialize item data
// }
// // Guard destructor publishes batch to stage 0 consumers
//
// // Stage worker threads (process items and pass to next stage):
// auto guard = pipeline.acquire(stageNum, threadId, maxBatch,
// /*mayBlock=*/true); for (auto& item : guard.batch) {
// // Process item
// }
// // Guard destructor marks items as consumed and available to next stage
//
// Memory Model:
// - Ring buffer size must be power of 2 for efficient masking
// - Actual ring slots accessed via: index & (slotCount - 1)
// - 128-byte aligned atomics prevent false sharing between CPU cache lines
//
// Thread Safety:
// - Fully lock-free using atomic operations with acquire/release memory
// ordering
// - Uses C++20 atomic wait/notify for efficient blocking when no work available
// - RAII guards ensure proper cleanup even with exceptions
template <class T, WaitStrategy wait_strategy = WaitStrategy::WaitIfStageEmpty>
struct ThreadPipeline {
// Constructor
// lgSlotCount: log2 of ring buffer size (e.g., 10 -> 1024 slots)
// threadsPerStage: number of worker threads for each processing stage (e.g.,
// {1, 4, 2} =
// 1 stage-0 worker, 4 stage-1 workers, 2 stage-2 workers)
// Note: Producer threads are external to the pipeline and not counted in
// threadsPerStage
ThreadPipeline(int lgSlotCount, const std::vector<int> &threadsPerStage)
: slot_count(1 << lgSlotCount), slot_count_mask(slot_count - 1),
threadState(threadsPerStage.size()), ring(slot_count) {
// Otherwise we can't tell the difference between full and empty.
assert(!(slot_count_mask & 0x80000000));
for (size_t i = 0; i < threadsPerStage.size(); ++i) {
threadState[i] = std::vector<ThreadState>(threadsPerStage[i]);
for (auto &t : threadState[i]) {
t.last_stage = i == threadsPerStage.size() - 1;
if (i == 0) {
t.last_push_read = std::vector<uint32_t>(1);
} else {
t.last_push_read = std::vector<uint32_t>(threadsPerStage[i - 1]);
}
}
}
}
ThreadPipeline(ThreadPipeline const &) = delete;
ThreadPipeline &operator=(ThreadPipeline const &) = delete;
ThreadPipeline(ThreadPipeline &&) = delete;
ThreadPipeline &operator=(ThreadPipeline &&) = delete;
struct Batch {
Batch() : ring(), begin_(), end_() {}
struct Iterator {
using iterator_category = std::random_access_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = value_type *;
using reference = value_type &;
reference operator*() const {
return (*ring)[index_ & (ring->size() - 1)];
}
pointer operator->() const {
return &(*ring)[index_ & (ring->size() - 1)];
}
Iterator &operator++() {
++index_;
return *this;
}
Iterator operator++(int) {
auto tmp = *this;
++(*this);
return tmp;
}
Iterator &operator--() {
--index_;
return *this;
}
Iterator operator--(int) {
auto tmp = *this;
--(*this);
return tmp;
}
Iterator &operator+=(difference_type n) {
index_ += n;
return *this;
}
Iterator &operator-=(difference_type n) {
index_ -= n;
return *this;
}
Iterator operator+(difference_type n) const {
return Iterator(index_ + n, ring);
}
Iterator operator-(difference_type n) const {
return Iterator(index_ - n, ring);
}
difference_type operator-(const Iterator &rhs) const {
assert(ring == rhs.ring);
return static_cast<difference_type>(index_) -
static_cast<difference_type>(rhs.index_);
}
friend Iterator operator+(difference_type n, const Iterator &iter) {
return iter + n;
}
friend bool operator==(const Iterator &lhs, const Iterator &rhs) {
assert(lhs.ring == rhs.ring);
return lhs.index_ == rhs.index_;
}
friend bool operator!=(const Iterator &lhs, const Iterator &rhs) {
assert(lhs.ring == rhs.ring);
return lhs.index_ != rhs.index_;
}
friend bool operator<(const Iterator &lhs, const Iterator &rhs) {
assert(lhs.ring == rhs.ring);
// Handle potential uint32_t wraparound by using signed difference
return static_cast<int32_t>(lhs.index_ - rhs.index_) < 0;
}
friend bool operator<=(const Iterator &lhs, const Iterator &rhs) {
assert(lhs.ring == rhs.ring);
return static_cast<int32_t>(lhs.index_ - rhs.index_) <= 0;
}
friend bool operator>(const Iterator &lhs, const Iterator &rhs) {
assert(lhs.ring == rhs.ring);
return static_cast<int32_t>(lhs.index_ - rhs.index_) > 0;
}
friend bool operator>=(const Iterator &lhs, const Iterator &rhs) {
assert(lhs.ring == rhs.ring);
return static_cast<int32_t>(lhs.index_ - rhs.index_) >= 0;
}
/// Returns the ring buffer index (0 to ring->size()-1) for this iterator
/// position. Useful for distributing work across multiple threads by
/// using modulo operations.
uint32_t index() const { return index_ & (ring->size() - 1); }
private:
Iterator(uint32_t index, std::vector<T> *const ring)
: index_(index), ring(ring) {}
friend struct Batch;
uint32_t index_;
std::vector<T> *const ring;
};
[[nodiscard]] Iterator begin() { return Iterator(begin_, ring); }
[[nodiscard]] Iterator end() { return Iterator(end_, ring); }
[[nodiscard]] size_t size() const { return end_ - begin_; }
[[nodiscard]] bool empty() const { return end_ == begin_; }
T &operator[](uint32_t n) {
return (*ring)[(begin_ + n) & (ring->size() - 1)];
}
private:
friend struct ThreadPipeline;
Batch(std::vector<T> *const ring, uint32_t begin_, uint32_t end_)
: ring(ring), begin_(begin_), end_(end_) {}
std::vector<T> *const ring;
uint32_t begin_;
uint32_t end_;
};
private:
Batch acquireHelper(int stage, int thread, uint32_t maxBatch, bool mayBlock) {
uint32_t begin = threadState[stage][thread].local_pops & slot_count_mask;
uint32_t len = getSafeLen(stage, thread, mayBlock);
if (maxBatch != 0) {
len = std::min(len, maxBatch);
}
if (len == 0) {
return Batch{};
}
auto result = Batch{&ring, begin, begin + len};
threadState[stage][thread].local_pops += len;
return result;
}
// Used by producer threads to reserve slots in the ring buffer
alignas(128) std::atomic<uint32_t> slots{0};
// Used for producers to publish
alignas(128) std::atomic<uint32_t> pushes{0};
const uint32_t slot_count;
const uint32_t slot_count_mask;
// We can safely acquire this many items
uint32_t getSafeLen(int stage, int threadIndex, bool mayBlock) {
uint32_t safeLen = UINT32_MAX;
auto &thread = threadState[stage][threadIndex];
// See if we can determine that there are entries we can acquire entirely
// from state local to the thread
for (int i = 0; i < int(thread.last_push_read.size()); ++i) {
auto &lastPush = stage == 0 ? pushes : threadState[stage - 1][i].pops;
if (thread.last_push_read[i] == thread.local_pops) {
// Re-read lastPush with memory order and try again
thread.last_push_read[i] = lastPush.load(std::memory_order_acquire);
if (thread.last_push_read[i] == thread.local_pops) {
if (!mayBlock) {
return 0;
}
if constexpr (wait_strategy == WaitStrategy::Never) {
// Empty
} else if constexpr (wait_strategy ==
WaitStrategy::WaitIfUpstreamIdle) {
auto push = pushes.load(std::memory_order_relaxed);
if (push == thread.local_pops) {
pushes.wait(push, std::memory_order_relaxed);
}
} else {
static_assert(wait_strategy == WaitStrategy::WaitIfStageEmpty);
// Wait for lastPush to change and try again
lastPush.wait(thread.last_push_read[i], std::memory_order_relaxed);
}
thread.last_push_read[i] = lastPush.load(std::memory_order_acquire);
}
}
safeLen = std::min(safeLen, thread.last_push_read[i] - thread.local_pops);
}
return safeLen;
}
struct ThreadState {
// Where this thread has published up to
alignas(128) std::atomic<uint32_t> pops{0};
// Where this thread will publish to the next time it publishes, or if idle
// where it has published to
uint32_t local_pops{0};
// Where the previous stage's threads have published up to last we checked
std::vector<uint32_t> last_push_read;
bool last_stage;
};
// threadState[i][j] is the state for thread j in stage i
std::vector<std::vector<ThreadState>> threadState;
// Shared ring buffer
std::vector<T> ring;
public:
struct StageGuard {
Batch batch;
~StageGuard() {
if (ts != nullptr) {
if (wait_strategy == WaitStrategy::WaitIfStageEmpty || ts->last_stage) {
// seq_cst so that the notify can't be ordered before the store
ts->pops.store(local_pops, std::memory_order_seq_cst);
ts->pops.notify_all();
} else {
ts->pops.store(local_pops, std::memory_order_release);
}
}
}
StageGuard(StageGuard const &) = delete;
StageGuard &operator=(StageGuard const &) = delete;
StageGuard(StageGuard &&other)
: batch(other.batch), local_pops(other.local_pops),
ts(std::exchange(other.ts, nullptr)) {}
StageGuard &operator=(StageGuard &&other) {
batch = other.batch;
local_pops = other.local_pops;
ts = std::exchange(other.ts, nullptr);
return *this;
}
private:
uint32_t local_pops;
friend struct ThreadPipeline;
StageGuard(Batch batch, ThreadState *ts)
: batch(batch), local_pops(ts->local_pops),
ts(batch.empty() ? nullptr : ts) {}
ThreadState *ts;
};
struct ProducerGuard {
Batch batch;
~ProducerGuard() {
if (tp == nullptr) {
return;
}
// Wait for earlier slots to finish being published, since publishing
// implies that all previous slots were also published.
for (;;) {
uint32_t p = tp->pushes.load(std::memory_order_acquire);
if (p == old_slot) {
break;
}
tp->pushes.wait(p, std::memory_order_relaxed);
}
// Publish. seq_cst so that the notify can't be ordered before the store
tp->pushes.store(new_slot, std::memory_order_seq_cst);
// We have to notify every time, since we don't know if this is the last
// push ever
tp->pushes.notify_all();
}
private:
friend struct ThreadPipeline;
ProducerGuard() : batch(), tp() {}
ProducerGuard(Batch batch, ThreadPipeline<T, wait_strategy> *tp,
uint32_t old_slot, uint32_t new_slot)
: batch(batch), tp(tp), old_slot(old_slot), new_slot(new_slot) {}
ThreadPipeline<T, wait_strategy> *const tp;
uint32_t old_slot;
uint32_t new_slot;
};
// Acquire a batch of items for processing by a consumer thread.
// stage: which processing stage (0 = first consumer stage after producers)
// thread: thread ID within the stage (0 to threadsPerStage[stage]-1)
// maxBatch: maximum items to acquire (0 = no limit)
// mayBlock: whether to block waiting for items (false = return empty batch if
// none available) Returns: StageGuard with batch of items to process
[[nodiscard]] StageGuard acquire(int stage, int thread, int maxBatch = 0,
bool mayBlock = true) {
assert(stage < int(threadState.size()));
assert(thread < int(threadState[stage].size()));
auto batch = acquireHelper(stage, thread, maxBatch, mayBlock);
return StageGuard{std::move(batch), &threadState[stage][thread]};
}
// Reserve slots in the ring buffer for a producer thread to fill with items.
// This is used by producer threads to add new items to stage 0 of the
// pipeline.
//
// size: number of slots to reserve (must be > 0 and <= ring buffer capacity)
// block: if true, blocks when ring buffer is full; if false, returns empty
// guard Returns: ProducerGuard with exclusive access to reserved slots
//
// Usage: Fill items in the returned batch, then let guard destructor publish
// them. The guard destructor ensures items are published in the correct
// order.
//
// Preconditions:
// - size > 0 (must request at least one slot)
// - size <= slotCount (cannot request more slots than ring buffer capacity)
// Violating preconditions results in program termination via abort().
[[nodiscard]] ProducerGuard push(uint32_t const size, bool block) {
if (size == 0) {
std::abort();
}
if (size > slot_count) {
std::abort();
}
// Reserve a slot to construct an item, but don't publish to consumer yet
uint32_t slot;
uint32_t begin;
for (;;) {
begin_loop:
slot = slots.load(std::memory_order_relaxed);
begin = slot & slot_count_mask;
// Make sure we won't stomp the back of the ring buffer
for (auto &thread : threadState.back()) {
uint32_t pops = thread.pops.load(std::memory_order_acquire);
if (slot + size - pops > slot_count) {
if (!block) {
return ProducerGuard{};
}
thread.pops.wait(pops, std::memory_order_relaxed);
goto begin_loop;
}
}
if (slots.compare_exchange_weak(slot, slot + size,
std::memory_order_relaxed,
std::memory_order_relaxed)) {
break;
}
}
return ProducerGuard{Batch{&ring, begin, begin + size}, this, slot,
slot + size};
}
};