Files
weaseldb/tests/test_arena_allocator.cpp

344 lines
8.8 KiB
C++

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include "arena_allocator.hpp"
#include <doctest/doctest.h>
#include <string>
#include <vector>
TEST_CASE("ArenaAllocator basic construction") {
ArenaAllocator arena;
CHECK(arena.num_blocks() == 0);
CHECK(arena.used_bytes() == 0);
CHECK(arena.total_allocated() == 0);
CHECK(arena.available_in_current_block() == 0);
}
TEST_CASE("ArenaAllocator custom initial size") {
ArenaAllocator arena(2048);
CHECK(arena.num_blocks() == 0);
CHECK(arena.total_allocated() == 0);
CHECK(arena.available_in_current_block() == 0);
}
TEST_CASE("ArenaAllocator basic allocation") {
ArenaAllocator arena;
SUBCASE("allocate zero bytes returns nullptr") {
void *ptr = arena.allocate(0);
CHECK(ptr == nullptr);
CHECK(arena.used_bytes() == 0);
}
SUBCASE("allocate single byte") {
void *ptr = arena.allocate(1);
CHECK(ptr != nullptr);
CHECK(arena.used_bytes() >= 1);
}
SUBCASE("allocate multiple bytes") {
void *ptr1 = arena.allocate(100);
void *ptr2 = arena.allocate(200);
CHECK(ptr1 != nullptr);
CHECK(ptr2 != nullptr);
CHECK(ptr1 != ptr2);
CHECK(arena.used_bytes() >= 300);
}
}
TEST_CASE("ArenaAllocator alignment") {
ArenaAllocator arena;
SUBCASE("default alignment") {
void *ptr = arena.allocate(1);
CHECK(reinterpret_cast<uintptr_t>(ptr) % alignof(std::max_align_t) == 0);
}
SUBCASE("custom alignment") {
void *ptr8 = arena.allocate(1, 8);
CHECK(reinterpret_cast<uintptr_t>(ptr8) % 8 == 0);
void *ptr16 = arena.allocate(1, 16);
CHECK(reinterpret_cast<uintptr_t>(ptr16) % 16 == 0);
void *ptr32 = arena.allocate(1, 32);
CHECK(reinterpret_cast<uintptr_t>(ptr32) % 32 == 0);
}
SUBCASE("alignment with larger allocations") {
ArenaAllocator fresh_arena;
void *ptr = fresh_arena.allocate(100, 64);
CHECK(reinterpret_cast<uintptr_t>(ptr) % 64 == 0);
}
}
TEST_CASE("ArenaAllocator block management") {
ArenaAllocator arena(128);
SUBCASE("single block allocation") {
void *ptr = arena.allocate(64);
CHECK(ptr != nullptr);
CHECK(arena.num_blocks() == 1);
CHECK(arena.used_bytes() == 64);
}
SUBCASE("multiple blocks when size exceeded") {
void *ptr1 = arena.allocate(100);
CHECK(arena.num_blocks() == 1);
void *ptr2 = arena.allocate(50);
CHECK(arena.num_blocks() == 2);
CHECK(ptr1 != ptr2);
}
SUBCASE("allocation larger than block size grows arena") {
void *ptr = arena.allocate(200);
CHECK(ptr != nullptr);
CHECK(arena.num_blocks() == 1);
}
}
TEST_CASE("ArenaAllocator construct template") {
ArenaAllocator arena;
SUBCASE("construct int") {
int *ptr = arena.construct<int>(42);
CHECK(ptr != nullptr);
CHECK(*ptr == 42);
}
SUBCASE("construct string") {
std::string *ptr = arena.construct<std::string>("hello world");
CHECK(ptr != nullptr);
CHECK(*ptr == "hello world");
}
SUBCASE("construct multiple objects") {
int *ptr1 = arena.construct<int>(10);
int *ptr2 = arena.construct<int>(20);
CHECK(ptr1 != ptr2);
CHECK(*ptr1 == 10);
CHECK(*ptr2 == 20);
}
SUBCASE("construct with multiple arguments") {
auto *ptr = arena.construct<std::pair<int, std::string>>(42, "test");
CHECK(ptr != nullptr);
CHECK(ptr->first == 42);
CHECK(ptr->second == "test");
}
}
TEST_CASE("ArenaAllocator reset functionality") {
ArenaAllocator arena;
arena.allocate(100);
arena.allocate(200);
size_t used_before = arena.used_bytes();
CHECK(used_before > 0);
arena.reset();
CHECK(arena.used_bytes() == 0);
CHECK(arena.num_blocks() >= 1);
void *ptr = arena.allocate(50);
CHECK(ptr != nullptr);
CHECK(arena.used_bytes() == 50);
}
TEST_CASE("ArenaAllocator reset memory leak test") {
ArenaAllocator arena(32); // Smaller initial size
// Force multiple blocks
arena.allocate(30); // First block (32 bytes)
CHECK(arena.num_blocks() == 1);
arena.allocate(30); // Should create second block (64 bytes due to doubling)
CHECK(arena.num_blocks() == 2);
arena.allocate(100); // Should create third block (128 bytes due to doubling,
// or larger for 100)
CHECK(arena.num_blocks() == 3);
size_t total_before = arena.total_allocated();
CHECK(total_before > 32);
arena.reset();
// After reset, only first block should remain (others freed to prevent memory
// leak)
CHECK(arena.num_blocks() == 1);
CHECK(arena.total_allocated() == 32); // Only first block size
CHECK(arena.used_bytes() == 0);
// Should be able to use the first block again
void *ptr = arena.allocate(20);
CHECK(ptr != nullptr);
CHECK(arena.used_bytes() == 20);
}
TEST_CASE("ArenaAllocator memory tracking") {
ArenaAllocator arena(512);
CHECK(arena.total_allocated() == 0);
CHECK(arena.used_bytes() == 0);
CHECK(arena.available_in_current_block() == 0);
arena.allocate(100);
CHECK(arena.used_bytes() >= 100);
CHECK(arena.available_in_current_block() <= 412);
arena.allocate(400);
CHECK(arena.num_blocks() == 1);
arena.allocate(50);
CHECK(arena.num_blocks() == 2);
CHECK(arena.total_allocated() >= 1024);
}
TEST_CASE("ArenaAllocator stress test") {
ArenaAllocator arena(1024);
SUBCASE("many small allocations") {
std::vector<void *> ptrs;
for (int i = 0; i < 1000; ++i) {
void *ptr = arena.allocate(8);
CHECK(ptr != nullptr);
ptrs.push_back(ptr);
}
for (size_t i = 1; i < ptrs.size(); ++i) {
CHECK(ptrs[i] != ptrs[i - 1]);
}
}
SUBCASE("alternating small and large allocations") {
for (int i = 0; i < 50; ++i) {
void *small_ptr = arena.allocate(16);
void *large_ptr = arena.allocate(256);
CHECK(small_ptr != nullptr);
CHECK(large_ptr != nullptr);
CHECK(small_ptr != large_ptr);
}
}
}
TEST_CASE("ArenaAllocator move semantics") {
ArenaAllocator arena1(512);
arena1.allocate(100);
size_t used_bytes = arena1.used_bytes();
size_t num_blocks = arena1.num_blocks();
ArenaAllocator arena2 = std::move(arena1);
CHECK(arena2.used_bytes() == used_bytes);
CHECK(arena2.num_blocks() == num_blocks);
void *ptr = arena2.allocate(50);
CHECK(ptr != nullptr);
}
TEST_CASE("ArenaAllocator edge cases") {
SUBCASE("very small block size") {
ArenaAllocator arena(16);
void *ptr = arena.allocate(8);
CHECK(ptr != nullptr);
CHECK(arena.num_blocks() == 1);
}
SUBCASE("allocation exactly block size") {
ArenaAllocator arena(64);
void *ptr = arena.allocate(64);
CHECK(ptr != nullptr);
CHECK(arena.num_blocks() == 1);
void *ptr2 = arena.allocate(1);
CHECK(ptr2 != nullptr);
CHECK(arena.num_blocks() == 2);
}
SUBCASE("multiple resets") {
ArenaAllocator arena;
for (int i = 0; i < 10; ++i) {
arena.allocate(100);
arena.reset();
CHECK(arena.used_bytes() == 0);
}
}
}
struct TestObject {
int value;
std::string name;
TestObject(int v, const std::string &n) : value(v), name(n) {}
~TestObject() = default;
};
TEST_CASE("ArenaAllocator with custom objects") {
ArenaAllocator arena;
TestObject *obj1 = arena.construct<TestObject>(42, "first");
TestObject *obj2 = arena.construct<TestObject>(84, "second");
CHECK(obj1 != nullptr);
CHECK(obj2 != nullptr);
CHECK(obj1 != obj2);
CHECK(obj1->value == 42);
CHECK(obj1->name == "first");
CHECK(obj2->value == 84);
CHECK(obj2->name == "second");
}
TEST_CASE("ArenaAllocator geometric growth policy") {
ArenaAllocator arena(64);
SUBCASE("normal geometric growth doubles size") {
arena.allocate(60); // Fill first block
size_t initial_total = arena.total_allocated();
arena.allocate(10); // Force new block
CHECK(arena.num_blocks() == 2);
CHECK(arena.total_allocated() == initial_total + 128); // 64 * 2 = 128
}
SUBCASE("large allocation creates appropriately sized block") {
arena.allocate(60); // Fill first block
size_t initial_total = arena.total_allocated();
arena.allocate(200); // Force large block
CHECK(arena.num_blocks() == 2);
CHECK(arena.total_allocated() >= initial_total + 200); // At least 200 bytes
}
SUBCASE("multiple growths maintain O(log n) blocks") {
size_t allocation_size = 32;
for (int i = 0; i < 10; ++i) {
arena.allocate(allocation_size);
}
// Should have grown logarithmically, not linearly
CHECK(arena.num_blocks() < 6); // Much less than 10
}
}
TEST_CASE("ArenaAllocator alignment edge cases") {
ArenaAllocator arena;
SUBCASE("unaligned then aligned allocation") {
void *ptr1 = arena.allocate(1, 1);
void *ptr2 = arena.allocate(8, 8);
CHECK(ptr1 != nullptr);
CHECK(ptr2 != nullptr);
CHECK(reinterpret_cast<uintptr_t>(ptr2) % 8 == 0);
}
SUBCASE("large alignment requirements") {
ArenaAllocator fresh_arena;
void *ptr = fresh_arena.allocate(1, 128);
CHECK(ptr != nullptr);
CHECK(reinterpret_cast<uintptr_t>(ptr) % 128 == 0);
}
}