Initial arena benchmarks

This commit is contained in:
2025-08-14 11:25:47 -04:00
parent b45fd1d29e
commit 281e9d728b
4 changed files with 391 additions and 16 deletions

View File

@@ -29,6 +29,13 @@ FetchContent_Declare(
)
FetchContent_MakeAvailable(doctest)
FetchContent_Declare(
nanobench
GIT_REPOSITORY https://github.com/martinus/nanobench.git
GIT_TAG a5a50c2b33eea2ff1fcb355cacdface43eb42b25 # v4.3.11
)
FetchContent_MakeAvailable(nanobench)
include_directories(src)
set(SOURCES src/main.cpp src/config.cpp)
@@ -42,4 +49,9 @@ add_executable(test_arena_allocator tests/test_arena_allocator.cpp)
target_link_libraries(test_arena_allocator doctest::doctest)
target_include_directories(test_arena_allocator PRIVATE src)
add_executable(bench_arena_allocator benchmarks/bench_arena_allocator.cpp)
target_link_libraries(bench_arena_allocator nanobench)
target_include_directories(bench_arena_allocator PRIVATE src)
add_test(NAME arena_allocator_tests COMMAND test_arena_allocator)
add_test(NAME arena_allocator_benchmarks COMMAND bench_arena_allocator)

View File

@@ -0,0 +1,309 @@
#include "arena_allocator.hpp"
#include <algorithm>
#include <iostream>
#include <memory>
#include <nanobench.h>
#include <string>
#include <vector>
struct TestStruct {
int a;
double b;
char c[64];
TestStruct(int x, double y) : a(x), b(y) {
std::fill(std::begin(c), std::end(c), 'x');
}
};
class BenchmarkResults {
public:
void add_result(const std::string &name, double ops_per_sec) {
results_.push_back({name, ops_per_sec});
}
void print_summary() {
std::cout << "\n=== Arena Allocator Benchmark Summary ===\n";
for (const auto &result : results_) {
std::cout << result.first << ": " << result.second << " ops/sec\n";
}
std::cout << "==========================================\n";
}
private:
std::vector<std::pair<std::string, double>> results_;
};
int main() {
BenchmarkResults results;
// Small allocation benchmark - Arena vs malloc
{
constexpr size_t NUM_ALLOCS = 10000;
constexpr size_t ALLOC_SIZE = 32;
auto bench = ankerl::nanobench::Bench()
.title("Small Allocations (32 bytes)")
.unit("allocation")
.warmup(100)
.epochs(1000);
// Arena allocator benchmark
bench.run("ArenaAllocator", [&] {
ArenaAllocator arena(4 * 1024 * 1024);
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
void *ptr = arena.allocate(ALLOC_SIZE);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
});
// Standard malloc benchmark
std::vector<void *> malloc_ptrs;
malloc_ptrs.reserve(NUM_ALLOCS);
bench.run("malloc", [&] {
malloc_ptrs.clear();
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
void *ptr = std::malloc(ALLOC_SIZE);
malloc_ptrs.push_back(ptr);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
for (void *ptr : malloc_ptrs) {
std::free(ptr);
}
});
}
// Medium allocation benchmark
{
constexpr size_t NUM_ALLOCS = 1000;
constexpr size_t ALLOC_SIZE = 1024;
auto bench = ankerl::nanobench::Bench()
.title("Medium Allocations (1024 bytes)")
.unit("allocation")
.warmup(50)
.epochs(500);
bench.run("ArenaAllocator", [&] {
ArenaAllocator arena(4 * 1024 * 1024);
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
void *ptr = arena.allocate(ALLOC_SIZE);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
});
std::vector<void *> malloc_ptrs;
malloc_ptrs.reserve(NUM_ALLOCS);
bench.run("malloc", [&] {
malloc_ptrs.clear();
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
void *ptr = std::malloc(ALLOC_SIZE);
malloc_ptrs.push_back(ptr);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
for (void *ptr : malloc_ptrs) {
std::free(ptr);
}
});
}
// Object construction benchmark
{
constexpr size_t NUM_CONSTRUCTS = 5000;
auto bench = ankerl::nanobench::Bench()
.title("Object Construction")
.unit("construction")
.warmup(50)
.epochs(500);
bench.run("ArenaAllocator::construct", [&] {
ArenaAllocator arena(4 * 1024 * 1024);
for (size_t i = 0; i < NUM_CONSTRUCTS; ++i) {
TestStruct *obj = arena.construct<TestStruct>(i, i * 1.5);
ankerl::nanobench::doNotOptimizeAway(obj);
}
});
std::vector<std::unique_ptr<TestStruct>> objects;
objects.reserve(NUM_CONSTRUCTS);
bench.run("std::make_unique", [&] {
objects.clear();
for (size_t i = 0; i < NUM_CONSTRUCTS; ++i) {
auto obj = std::make_unique<TestStruct>(i, i * 1.5);
ankerl::nanobench::doNotOptimizeAway(obj.get());
objects.push_back(std::move(obj));
}
});
}
// String allocation benchmark
{
constexpr size_t NUM_STRINGS = 1000;
const std::vector<std::string> test_strings = {
"short", "medium length string for testing",
"this is a much longer string that should test the allocation "
"performance with larger objects and see how well the arena allocator "
"handles variable sized allocations"};
auto bench = ankerl::nanobench::Bench()
.title("String Construction")
.unit("string")
.warmup(50)
.epochs(300);
bench.run("ArenaAllocator", [&] {
ArenaAllocator arena(4 * 1024 * 1024);
for (size_t i = 0; i < NUM_STRINGS; ++i) {
const auto &test_str = test_strings[i % test_strings.size()];
std::string *str = arena.construct<std::string>(test_str);
ankerl::nanobench::doNotOptimizeAway(str);
}
});
std::vector<std::unique_ptr<std::string>> strings;
strings.reserve(NUM_STRINGS);
bench.run("std::make_unique<string>", [&] {
strings.clear();
for (size_t i = 0; i < NUM_STRINGS; ++i) {
const auto &test_str = test_strings[i % test_strings.size()];
auto str = std::make_unique<std::string>(test_str);
ankerl::nanobench::doNotOptimizeAway(str.get());
strings.push_back(std::move(str));
}
});
}
// Mixed size allocation pattern
{
constexpr size_t NUM_ALLOCS = 2000;
const std::vector<size_t> sizes = {8, 16, 32, 64, 128, 256, 512, 1024};
auto bench = ankerl::nanobench::Bench()
.title("Mixed Size Allocations")
.unit("allocation")
.warmup(50)
.epochs(300);
bench.run("ArenaAllocator", [&] {
ArenaAllocator arena(4 * 1024 * 1024);
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
size_t size = sizes[i % sizes.size()];
void *ptr = arena.allocate(size);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
});
std::vector<void *> malloc_ptrs;
malloc_ptrs.reserve(NUM_ALLOCS);
bench.run("malloc", [&] {
malloc_ptrs.clear();
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
size_t size = sizes[i % sizes.size()];
void *ptr = std::malloc(size);
malloc_ptrs.push_back(ptr);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
for (void *ptr : malloc_ptrs) {
std::free(ptr);
}
});
}
// Arena reset performance
{
constexpr size_t NUM_RESETS = 1000;
constexpr size_t ALLOCS_PER_RESET = 100;
auto bench = ankerl::nanobench::Bench()
.title("Arena Reset Performance")
.unit("reset")
.warmup(20)
.epochs(200);
bench.run("ArenaAllocator reset", [&] {
ArenaAllocator arena(64 * 1024);
for (size_t i = 0; i < NUM_RESETS; ++i) {
// Allocate some memory
for (size_t j = 0; j < ALLOCS_PER_RESET; ++j) {
void *ptr = arena.allocate(64);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
// Reset the arena
arena.reset();
ankerl::nanobench::doNotOptimizeAway(&arena);
}
});
}
// Alignment performance test
{
constexpr size_t NUM_ALLOCS = 5000;
const std::vector<size_t> alignments = {8, 16, 32, 64, 128};
auto bench = ankerl::nanobench::Bench()
.title("Aligned Allocations")
.unit("allocation")
.warmup(50)
.epochs(300);
bench.run("ArenaAllocator aligned", [&] {
ArenaAllocator arena(4 * 1024 * 1024);
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
size_t alignment = alignments[i % alignments.size()];
void *ptr = arena.allocate(64, alignment);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
});
std::vector<void *> aligned_ptrs;
aligned_ptrs.reserve(NUM_ALLOCS);
bench.run("aligned_alloc", [&] {
aligned_ptrs.clear();
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
size_t alignment = alignments[i % alignments.size()];
void *ptr = std::aligned_alloc(alignment, 64);
aligned_ptrs.push_back(ptr);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
for (void *ptr : aligned_ptrs) {
std::free(ptr);
}
});
}
// Block growth performance
{
constexpr size_t INITIAL_BLOCK_SIZE = 1024;
constexpr size_t NUM_LARGE_ALLOCS = 10;
constexpr size_t LARGE_ALLOC_SIZE = 512;
auto bench = ankerl::nanobench::Bench()
.title("Block Growth Performance")
.unit("allocation")
.warmup(20)
.epochs(100);
bench.run("ArenaAllocator block growth", [&] {
ArenaAllocator arena(INITIAL_BLOCK_SIZE);
for (size_t i = 0; i < NUM_LARGE_ALLOCS; ++i) {
void *ptr = arena.allocate(LARGE_ALLOC_SIZE);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
});
}
std::cout << "\nBenchmarks completed successfully!\n";
return 0;
}

View File

@@ -7,8 +7,9 @@
class ArenaAllocator {
public:
explicit ArenaAllocator(size_t initial_size = 1024)
: block_size_(initial_size), current_block_(0), current_offset_(0) {
add_block();
: initial_block_size_(initial_size), current_block_(0),
current_offset_(0) {
add_block(initial_size);
}
~ArenaAllocator() = default;
@@ -29,11 +30,9 @@ public:
size_t aligned_offset =
align_up(block_addr + current_offset_, alignment) - block_addr;
if (aligned_offset + size > block_size_) {
if (size > block_size_) {
throw std::bad_alloc();
}
add_block();
if (aligned_offset + size > block_sizes_[current_block_]) {
size_t next_block_size = calculate_next_block_size(size);
add_block(next_block_size);
block_start = blocks_[current_block_].get();
block_addr = reinterpret_cast<uintptr_t>(block_start);
aligned_offset = align_up(block_addr, alignment) - block_addr;
@@ -55,25 +54,44 @@ public:
current_offset_ = 0;
}
size_t total_allocated() const { return blocks_.size() * block_size_; }
size_t total_allocated() const {
size_t total = 0;
for (size_t size : block_sizes_) {
total += size;
}
return total;
}
size_t used_bytes() const {
return current_block_ * block_size_ + current_offset_;
size_t total = current_offset_;
for (size_t i = 0; i < current_block_; ++i) {
total += block_sizes_[i];
}
return total;
}
size_t available_in_current_block() const {
return block_size_ - current_offset_;
return block_sizes_[current_block_] - current_offset_;
}
size_t num_blocks() const { return blocks_.size(); }
private:
void add_block() {
blocks_.emplace_back(std::make_unique<char[]>(block_size_));
void add_block(size_t size) {
blocks_.emplace_back(std::make_unique<char[]>(size));
block_sizes_.push_back(size);
current_block_ = blocks_.size() - 1;
current_offset_ = 0;
}
size_t calculate_next_block_size(size_t required_size) const {
size_t current_size =
blocks_.empty() ? initial_block_size_ : block_sizes_[current_block_];
size_t doubled_size = current_size * 2;
return std::max(required_size, doubled_size);
}
static size_t align_up(size_t value, size_t alignment) {
if (alignment == 0 || (alignment & (alignment - 1)) != 0) {
return value;
@@ -81,8 +99,9 @@ private:
return (value + alignment - 1) & ~(alignment - 1);
}
size_t block_size_;
size_t initial_block_size_;
size_t current_block_;
size_t current_offset_;
std::vector<std::unique_ptr<char[]>> blocks_;
std::vector<size_t> block_sizes_;
};

View File

@@ -90,8 +90,10 @@ TEST_CASE("ArenaAllocator block management") {
CHECK(ptr1 != ptr2);
}
SUBCASE("allocation larger than block size throws") {
CHECK_THROWS_AS(arena.allocate(200), std::bad_alloc);
SUBCASE("allocation larger than block size grows arena") {
void *ptr = arena.allocate(200);
CHECK(ptr != nullptr);
CHECK(arena.num_blocks() == 2);
}
}
@@ -160,7 +162,7 @@ TEST_CASE("ArenaAllocator memory tracking") {
arena.allocate(50);
CHECK(arena.num_blocks() == 2);
CHECK(arena.total_allocated() == 1024);
CHECK(arena.total_allocated() >= 1024);
}
TEST_CASE("ArenaAllocator stress test") {
@@ -256,6 +258,39 @@ TEST_CASE("ArenaAllocator with custom objects") {
CHECK(obj2->name == "second");
}
TEST_CASE("ArenaAllocator geometric growth policy") {
ArenaAllocator arena(64);
SUBCASE("normal geometric growth doubles size") {
arena.allocate(60); // Fill first block
size_t initial_total = arena.total_allocated();
arena.allocate(10); // Force new block
CHECK(arena.num_blocks() == 2);
CHECK(arena.total_allocated() == initial_total + 128); // 64 * 2 = 128
}
SUBCASE("large allocation creates appropriately sized block") {
arena.allocate(60); // Fill first block
size_t initial_total = arena.total_allocated();
arena.allocate(200); // Force large block
CHECK(arena.num_blocks() == 2);
CHECK(arena.total_allocated() >= initial_total + 200); // At least 200 bytes
}
SUBCASE("multiple growths maintain O(log n) blocks") {
size_t allocation_size = 32;
for (int i = 0; i < 10; ++i) {
arena.allocate(allocation_size);
}
// Should have grown logarithmically, not linearly
CHECK(arena.num_blocks() < 6); // Much less than 10
}
}
TEST_CASE("ArenaAllocator alignment edge cases") {
ArenaAllocator arena;