Simplify Arena benchmark

This commit is contained in:
2025-08-14 11:35:15 -04:00
parent 281e9d728b
commit 8daea72a22

View File

@@ -1,309 +1,39 @@
#include "arena_allocator.hpp"
#include <algorithm>
#include <iostream>
#include <memory>
#include <nanobench.h>
#include <string>
#include <vector>
struct TestStruct {
int a;
double b;
char c[64];
TestStruct(int x, double y) : a(x), b(y) {
std::fill(std::begin(c), std::end(c), 'x');
}
};
class BenchmarkResults {
public:
void add_result(const std::string &name, double ops_per_sec) {
results_.push_back({name, ops_per_sec});
}
void print_summary() {
std::cout << "\n=== Arena Allocator Benchmark Summary ===\n";
for (const auto &result : results_) {
std::cout << result.first << ": " << result.second << " ops/sec\n";
}
std::cout << "==========================================\n";
}
private:
std::vector<std::pair<std::string, double>> results_;
};
int main() {
BenchmarkResults results;
// Small allocation benchmark - Arena vs malloc
{
constexpr size_t NUM_ALLOCS = 10000;
constexpr size_t ALLOC_SIZE = 32;
for (int alloc_size : {16, 64, 256, 1024}) {
auto bench = ankerl::nanobench::Bench()
.title("Small Allocations (32 bytes)")
.title("Small Allocations (" + std::to_string(alloc_size) +
" bytes)")
.unit("allocation")
.warmup(100)
.epochs(1000);
.warmup(100);
// Arena allocator benchmark
bench.run("ArenaAllocator", [&] {
ArenaAllocator arena(4 * 1024 * 1024);
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
void *ptr = arena.allocate(ALLOC_SIZE);
{
// Arena allocator benchmark
ArenaAllocator arena;
bench.run("ArenaAllocator", [&] {
void *ptr = arena.allocate(alloc_size);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
});
});
}
// Standard malloc benchmark
std::vector<void *> malloc_ptrs;
malloc_ptrs.reserve(NUM_ALLOCS);
bench.run("malloc", [&] {
malloc_ptrs.clear();
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
void *ptr = std::malloc(ALLOC_SIZE);
{
// Standard malloc benchmark
std::vector<void *> malloc_ptrs;
malloc_ptrs.reserve(1'000'000);
bench.run("malloc", [&] {
void *ptr = std::malloc(alloc_size);
malloc_ptrs.push_back(ptr);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
});
for (void *ptr : malloc_ptrs) {
std::free(ptr);
}
});
}
}
// Medium allocation benchmark
{
constexpr size_t NUM_ALLOCS = 1000;
constexpr size_t ALLOC_SIZE = 1024;
auto bench = ankerl::nanobench::Bench()
.title("Medium Allocations (1024 bytes)")
.unit("allocation")
.warmup(50)
.epochs(500);
bench.run("ArenaAllocator", [&] {
ArenaAllocator arena(4 * 1024 * 1024);
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
void *ptr = arena.allocate(ALLOC_SIZE);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
});
std::vector<void *> malloc_ptrs;
malloc_ptrs.reserve(NUM_ALLOCS);
bench.run("malloc", [&] {
malloc_ptrs.clear();
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
void *ptr = std::malloc(ALLOC_SIZE);
malloc_ptrs.push_back(ptr);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
for (void *ptr : malloc_ptrs) {
std::free(ptr);
}
});
}
// Object construction benchmark
{
constexpr size_t NUM_CONSTRUCTS = 5000;
auto bench = ankerl::nanobench::Bench()
.title("Object Construction")
.unit("construction")
.warmup(50)
.epochs(500);
bench.run("ArenaAllocator::construct", [&] {
ArenaAllocator arena(4 * 1024 * 1024);
for (size_t i = 0; i < NUM_CONSTRUCTS; ++i) {
TestStruct *obj = arena.construct<TestStruct>(i, i * 1.5);
ankerl::nanobench::doNotOptimizeAway(obj);
}
});
std::vector<std::unique_ptr<TestStruct>> objects;
objects.reserve(NUM_CONSTRUCTS);
bench.run("std::make_unique", [&] {
objects.clear();
for (size_t i = 0; i < NUM_CONSTRUCTS; ++i) {
auto obj = std::make_unique<TestStruct>(i, i * 1.5);
ankerl::nanobench::doNotOptimizeAway(obj.get());
objects.push_back(std::move(obj));
}
});
}
// String allocation benchmark
{
constexpr size_t NUM_STRINGS = 1000;
const std::vector<std::string> test_strings = {
"short", "medium length string for testing",
"this is a much longer string that should test the allocation "
"performance with larger objects and see how well the arena allocator "
"handles variable sized allocations"};
auto bench = ankerl::nanobench::Bench()
.title("String Construction")
.unit("string")
.warmup(50)
.epochs(300);
bench.run("ArenaAllocator", [&] {
ArenaAllocator arena(4 * 1024 * 1024);
for (size_t i = 0; i < NUM_STRINGS; ++i) {
const auto &test_str = test_strings[i % test_strings.size()];
std::string *str = arena.construct<std::string>(test_str);
ankerl::nanobench::doNotOptimizeAway(str);
}
});
std::vector<std::unique_ptr<std::string>> strings;
strings.reserve(NUM_STRINGS);
bench.run("std::make_unique<string>", [&] {
strings.clear();
for (size_t i = 0; i < NUM_STRINGS; ++i) {
const auto &test_str = test_strings[i % test_strings.size()];
auto str = std::make_unique<std::string>(test_str);
ankerl::nanobench::doNotOptimizeAway(str.get());
strings.push_back(std::move(str));
}
});
}
// Mixed size allocation pattern
{
constexpr size_t NUM_ALLOCS = 2000;
const std::vector<size_t> sizes = {8, 16, 32, 64, 128, 256, 512, 1024};
auto bench = ankerl::nanobench::Bench()
.title("Mixed Size Allocations")
.unit("allocation")
.warmup(50)
.epochs(300);
bench.run("ArenaAllocator", [&] {
ArenaAllocator arena(4 * 1024 * 1024);
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
size_t size = sizes[i % sizes.size()];
void *ptr = arena.allocate(size);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
});
std::vector<void *> malloc_ptrs;
malloc_ptrs.reserve(NUM_ALLOCS);
bench.run("malloc", [&] {
malloc_ptrs.clear();
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
size_t size = sizes[i % sizes.size()];
void *ptr = std::malloc(size);
malloc_ptrs.push_back(ptr);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
for (void *ptr : malloc_ptrs) {
std::free(ptr);
}
});
}
// Arena reset performance
{
constexpr size_t NUM_RESETS = 1000;
constexpr size_t ALLOCS_PER_RESET = 100;
auto bench = ankerl::nanobench::Bench()
.title("Arena Reset Performance")
.unit("reset")
.warmup(20)
.epochs(200);
bench.run("ArenaAllocator reset", [&] {
ArenaAllocator arena(64 * 1024);
for (size_t i = 0; i < NUM_RESETS; ++i) {
// Allocate some memory
for (size_t j = 0; j < ALLOCS_PER_RESET; ++j) {
void *ptr = arena.allocate(64);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
// Reset the arena
arena.reset();
ankerl::nanobench::doNotOptimizeAway(&arena);
}
});
}
// Alignment performance test
{
constexpr size_t NUM_ALLOCS = 5000;
const std::vector<size_t> alignments = {8, 16, 32, 64, 128};
auto bench = ankerl::nanobench::Bench()
.title("Aligned Allocations")
.unit("allocation")
.warmup(50)
.epochs(300);
bench.run("ArenaAllocator aligned", [&] {
ArenaAllocator arena(4 * 1024 * 1024);
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
size_t alignment = alignments[i % alignments.size()];
void *ptr = arena.allocate(64, alignment);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
});
std::vector<void *> aligned_ptrs;
aligned_ptrs.reserve(NUM_ALLOCS);
bench.run("aligned_alloc", [&] {
aligned_ptrs.clear();
for (size_t i = 0; i < NUM_ALLOCS; ++i) {
size_t alignment = alignments[i % alignments.size()];
void *ptr = std::aligned_alloc(alignment, 64);
aligned_ptrs.push_back(ptr);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
for (void *ptr : aligned_ptrs) {
std::free(ptr);
}
});
}
// Block growth performance
{
constexpr size_t INITIAL_BLOCK_SIZE = 1024;
constexpr size_t NUM_LARGE_ALLOCS = 10;
constexpr size_t LARGE_ALLOC_SIZE = 512;
auto bench = ankerl::nanobench::Bench()
.title("Block Growth Performance")
.unit("allocation")
.warmup(20)
.epochs(100);
bench.run("ArenaAllocator block growth", [&] {
ArenaAllocator arena(INITIAL_BLOCK_SIZE);
for (size_t i = 0; i < NUM_LARGE_ALLOCS; ++i) {
void *ptr = arena.allocate(LARGE_ALLOC_SIZE);
ankerl::nanobench::doNotOptimizeAway(ptr);
}
});
}
std::cout << "\nBenchmarks completed successfully!\n";
return 0;
}
}